
CYAN
MAGENTA

YELLOW
BLACK
PANTONE 123 CV

this print for content only—size & color not accurate 7" x 9-1/4" / CASEBOUND / MALLOY
(1.0625 INCH BULK -- 536 pages -- 50# Thor)

THE EXPERT’S VOICE® IN .NET

Serge Lidin

Expert

.NET 2.0 IL
Assembler

An in-depth view of inner workings of the .NET 2.0
common language runtime and the runtime’s own
language—the IL assembler

BOOKS FOR PROFESSIONALS BY PROFESSIONALS®

Expert .NET 2.0 IL Assembler
Dear Reader,

This book is about the inner workings of version 2.0 of the Microsoft .NET
common language runtime and about the intricacies of programming in the
runtime’s own language—the IL assembly language. The IL assembly language
(ILAsm), unlike high-level programming languages such as C#, provides access to
the full functionality of the .NET runtime. Many compilers and programming
tools, ranging from purely academic projects to enterprise systems, use the IL
assembler as their back end for code generation. Any .NET application, regard-
less of the language it was originally written in, can be represented in ILAsm, so
you can always disassemble a .NET assembly or module into ILAsm and see for
yourself how it really works.

This book is a revision and an extension of my previous book Inside
Microsoft .NET IL Assembler, which was the first book to describe the inner
workings of ILAsm in the .NET 1.0 runtime. A great deal of time has passed
since the release of that version of the runtime (and the IL assembler) in early
2002, and in our industry technologies innovate quickly. Now that the more
powerful .NET 2.0 version has been released, I realized I needed to get back to
writing.

By reading this book you will learn how .NET 2.0 applications are built, how
the runtime functions, and how to program in the IL assembly language. You
will also discover how to build compilers and tools that generate ILAsm code
and how to read and analyze the ILAsm code the IL disassembler shows you.

Best regards,

Serge Lidin

Author of

Inside Microsoft
.NET IL Assembler

Shelve in Programming/
Microsoft/.NET

User level:
Advanced

www.apress.com
SOURCE CODE ONLINE

forums.apress.com
FOR PROFESSIONALS
BY PROFESSIONALS™

Join online discussions:

THE APRESS ROADMAP

Pro C# 2005 and the
.NET 2.0 Platform, Third Edition

Pro VB 2005 and the
.NET 2.0 Platform, Second Edition

Pro ASP.NET 2.0
in C# 2005 / in VB 2005

Expert Service-Oriented Architecture
in C#, Second Edition

Expert ASP.NET 2.0
Advanced Application Design

Expert .NET 2.0
IL Assembler

.NET 2.0 IL Assem
bler

Lidin

ISBN 1-59059-646-3

9 781590 596463

90000

6 89253 59646 3

Companion eBook
Available

Companion eBook

See last page for details
on $10 eBook version

Expert

Serge Lidin

Expert .NET 2.0
IL Assembler

Ch00_6463_FINAL 7/27/06 3:00 PM Page i

Expert .NET 2.0 IL Assembler

Copyright © 2006 by Serge Lidin

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any means,
electronic or mechanical, including photocopying, recording, or by any information storage or retrieval
system, without the prior written permission of the copyright owner and the publisher.

ISBN-13: 978-1-59059-646-3

ISBN-10: 1-59059-646-3

Printed and bound in the United States of America 9 8 7 6 5 4 3 2 1

Trademarked names may appear in this book. Rather than use a trademark symbol with every occurrence
of a trademarked name, we use the names only in an editorial fashion and to the benefit of the trademark
owner, with no intention of infringement of the trademark.

Lead Editor: Ewan Buckingham
Technical Reviewers: Jim Hogg, Vance Morrison
Editorial Board: Steve Anglin, Ewan Buckingham, Gary Cornell, Jason Gilmore, Jonathan Gennick,

Jonathan Hassell, James Huddleston, Chris Mills, Matthew Moodie, Dominic Shakeshaft, Jim Sumser,
Keir Thomas, Matt Wade

Project Manager: Sofia Marchant
Copy Edit Manager: Nicole LeClerc
Copy Editor: Kim Wimpsett
Assistant Production Director: Kari Brooks-Copony
Senior Production Editor: Laura Cheu
Compositor: Diana Van Winkle, Van Winkle Design
Proofreader: Linda Seifert
Indexer: Broccoli Information Management
Artist: Diana Van Winkle, Van Winkle Design
Cover Designer: Kurt Krames
Manufacturing Director: Tom Debolski

Distributed to the book trade worldwide by Springer-Verlag New York, Inc., 233 Spring Street, 6th Floor,
New York, NY 10013. Phone 1-800-SPRINGER, fax 201-348-4505, e-mail orders-ny@springer-sbm.com,
or visit http://www.springeronline.com.

For information on translations, please contact Apress directly at 2560 Ninth Street, Suite 219, Berkeley,
CA 94710. Phone 510-549-5930, fax 510-549-5939, e-mail info@apress.com, or visit http://www.apress.com.

The information in this book is distributed on an “as is” basis, without warranty. Although every precaution
has been taken in the preparation of this work, neither the author(s) nor Apress shall have any liability to any
person or entity with respect to any loss or damage caused or alleged to be caused directly or indirectly by
the information contained in this work.

The source code for this book is available to readers at http://www.apress.com in the Source Code section.
You will need to answer questions pertaining to this book in order to successfully download the code.

Ch00_6463_FINAL 7/27/06 3:00 PM Page ii

To Alenushka, with all my love.

Ch00_6463_FINAL 7/27/06 3:00 PM Page iii

Ch00_6463_FINAL 7/27/06 3:00 PM Page iv

Contents at a Glance

About the Author . xix

About the Technical Reviewers . xxi

Acknowledgments . xxii

Introduction . xxv

PART 1 ■ ■ ■ Quick Start
■CHAPTER 1 Simple Sample . 3

■CHAPTER 2 Enhancing the Code . 23

■CHAPTER 3 Making the Coding Easier . 31

PART 2 ■ ■ ■ Underlying Structures
■CHAPTER 4 The Structure of a Managed Executable File 41

■CHAPTER 5 Metadata Tables Organization . 73

PART 3 ■ ■ ■ Fundamental Components
■CHAPTER 6 Modules and Assemblies . 93

■CHAPTER 7 Namespaces and Classes . 117

■CHAPTER 8 Primitive Types and Signatures . 145

■CHAPTER 9 Fields and Data Constants . 165

■CHAPTER 10 Methods . 185

■CHAPTER 11 Generic Types . 225

■CHAPTER 12 Generic Methods . 247

PART 4 ■ ■ ■ Inside the Execution Engine
■CHAPTER 13 IL Instructions . 261

■CHAPTER 14 Managed Exception Handling . 295

v

Ch00_6463_FINAL 7/27/06 3:00 PM Page v

PART 5 ■ ■ ■ Special Components
■CHAPTER 15 Events and Properties . 313

■CHAPTER 16 Custom Attributes . 327

■CHAPTER 17 Security Attributes . 347

■CHAPTER 18 Managed and Unmanaged Code Interoperation 363

■CHAPTER 19 Multilanguage Projects . 389

PART 6 ■ ■ ■ Appendixes
■APPENDIX A ILAsm Grammar Reference . 411

■APPENDIX B Metadata Tables Reference . 433

■APPENDIX C IL Instruction Set Reference . 445

■APPENDIX D IL Assembler and Disassembler Command-Line Options 453

■APPENDIX E Offline Verification Tool Reference . 459

■INDEX . 477

Ch00_6463_FINAL 7/27/06 3:00 PM Page vi

Contents

About the Author . xix

About the Technical Reviewers . xxi

Acknowledgments . xxii

Introduction . xxv

PART 1 ■ ■ ■ Quick Start

■CHAPTER 1 Simple Sample . 3

Basics of the Common Language Runtime . 3

Simple Sample: The Code . 7

Program Header . 8

Class Declaration . 9

Field Declaration . 11

Method Declaration . 12

Global Items . 16

Mapped Fields . 17

Data Declaration . 18

Value Type As Placeholder . 19

Calling Unmanaged Code . 19

Forward Declaration of Classes . 21

Summary . 22

■CHAPTER 2 Enhancing the Code . 23

Compacting the Code . 23

Protecting the Code . 26

Summary . 30

■CHAPTER 3 Making the Coding Easier . 31

Aliasing . 31

Compilation Control Directives . 34

Referencing the Current Class and Its Relatives . 37

Summary . 38 vii

Ch00_6463_FINAL 7/27/06 3:00 PM Page vii

PART 2 ■ ■ ■ Underlying Structures

■CHAPTER 4 The Structure of a Managed Executable File 41

PE/COFF Headers . 42

MS-DOS Header/Stub and PE Signature . 42

COFF Header . 43

PE Header . 47

Section Headers . 53

Common Language Runtime Header . 55

Header Structure . 55

Flags Field . 57

EntryPointToken Field . 58

VTableFixups Field . 58

StrongNameSignature Field . 59

Relocation Section . 59

Text Section . 61

Data Sections . 63

Data Constants . 63

V-Table . 63

Unmanaged Export Table . 64

Thread Local Storage . 66

Resources . 67

Unmanaged Resources . 67

Managed Resources . 69

Summary . 70

Phase 1: Initialization . 70

Phase 2: Source Code Parsing . 70

Phase 3: Image Generation . 70

Phase 4: Completion . 71

■CHAPTER 5 Metadata Tables Organization . 73

What Is Metadata? . 73

Heaps and Tables . 75

Heaps . 75

General Metadata Header . 76

Metadata Table Streams . 79

RIDs and Tokens . 83

RIDs . 83

Tokens . 83

■CONTENTSviii

Ch00_6463_FINAL 7/27/06 3:00 PM Page viii

Coded Tokens . 85

Metadata Validation . 88

Summary . 89

PART 3 ■ ■ ■ Fundamental Components

■CHAPTER 6 Modules and Assemblies . 93

What Is an Assembly? . 93

Private and Shared Assemblies . 93

Application Domains As Logical Units of Execution 94

Manifest . 96

Assembly Metadata Table and Declaration . 97

AssemblyRef Metadata Table and Declaration . 99

Autodetection of Referenced Assemblies . 101

The Loader in Search of Assemblies . 101

Module Metadata Table and Declaration . 105

ModuleRef Metadata Table and Declaration . 105

File Metadata Table and Declaration . 106

Managed Resource Metadata and Declaration . 107

ExportedType Metadata Table and Declaration . 110

Order of Manifest Declarations in ILAsm . 112

Single-Module and Multimodule Assemblies . 112

Summary of Metadata Validity Rules . 113

Assembly Table Validity Rules . 114

AssemblyRef Table Validity Rules . 114

Module Table Validity Rules . 114

ModuleRef Table Validity Rules . 115

File Table Validity Rules . 115

ManifestResource Table Validity Rules . 115

ExportedType Table Validity Rules . 116

■CHAPTER 7 Namespaces and Classes . 117

Class Metadata . 118

TypeDef Metadata Table . 120

TypeRef Metadata Table . 120

InterfaceImpl Metadata Table . 121

NestedClass Metadata Table . 121

ClassLayout Metadata Table . 121

■CONTENTS ix

Ch00_6463_FINAL 7/27/06 3:00 PM Page ix

Namespace and Full Class Name . 122

ILAsm Naming Conventions . 122

Namespaces . 124

Full Class Names . 125

Class Attributes . 126

Flags . 126

Class Visibility and Friend Assemblies . 128

Class References . 129

Parent of the Type . 129

Interface Implementations . 130

Class Layout Information . 131

Interfaces . 131

Value Types . 133

Boxed and Unboxed Values . 133

Instance Members of Value Types . 134

Derivation of Value Types . 135

Enumerations . 135

Delegates . 136

Nested Types . 138

Class Augmentation . 140

Summary of the Metadata Validity Rules . 142

TypeDef Table Validity Rules . 142

Enumeration-Specific Validity Rules . 143

TypeRef Table Validity Rules . 143

InterfaceImpl Table Validity Rules . 144

NestedClass Table Validity Rules . 144

ClassLayout Table Validity Rules . 144

■CHAPTER 8 Primitive Types and Signatures . 145

Primitive Types in the Common Language Runtime 145

Primitive Data Types . 145

Data Pointer Types . 146

Function Pointer Types . 148

Vectors and Arrays . 149

Modifiers . 151

Native Types . 153

Variant Types . 155

Representing Classes in Signatures . 157

Signatures . 158

Calling Conventions . 158

■CONTENTSx

Ch00_6463_FINAL 7/27/06 3:00 PM Page x

Field Signatures . 159

Method and Property Signatures . 159

MemberRef Signatures . 160

Indirect Call Signatures . 161

Local Variables Signatures . 161

Type Specifications . 162

Summary of Signature Validity Rules . 163

■CHAPTER 9 Fields and Data Constants . 165

Field Metadata . 165

Defining a Field . 166

Referencing a Field . 168

Instance and Static Fields . 168

Default Values . 169

Mapped Fields . 171

Data Constants Declaration . 173

Explicit Layouts and Union Declaration . 175

Global Fields . 177

Constructors vs. Data Constants . 179

Summary of Metadata Validity Rules . 181

Field Table Validity Rules . 181

FieldLayout Table Validity Rules . 182

FieldRVA Table Validity Rules . 182

FieldMarshal Table Validity Rules . 183

Constant Table Validity Rules . 183

MemberRef Table Validity Rules . 183

■CHAPTER 10 Methods . 185

Method Metadata . 185

Method Table Record Entries . 186

Method Flags . 187

Method Name . 190

Method Implementation Flags . 190

Method Parameters . 191

Referencing the Methods . 193

Method Implementation Metadata . 194

Static, Instance, Virtual Methods . 194

Explicit Method Overriding . 199

Method Overriding and Accessibility . 205

■CONTENTS xi

Ch00_6463_FINAL 7/27/06 3:00 PM Page xi

Method Header Attributes . 205

Local Variables . 207

Class Constructors . 209

Class Constructors and the beforefieldinit Flag 210

Module Constructors . 212

Instance Constructors . 213

Instance Finalizers . 215

Variable Argument Lists . 216

Method Overloading . 218

Global Methods . 220

Summary of Metadata Validity Rules . 221

Method Table Validity Rules . 221

Param Table Validity Rules . 223

MethodImpl Table Validity Rules . 223

■CHAPTER 11 Generic Types . 225

Generic Type Metadata . 226

GenericParam Metadata Table . 228

GenericParamConstraint Metadata Table . 229

TypeSpec Metadata Table . 229

Constraint Flags . 229

Defining Generic Types in ILAsm . 230

Addressing the Type Parameters . 231

Generic Type Instantiations . 232

Defining Generic Types: Inheritance, Implementation, Constraints 233

Defining Generic Types: Cyclic Dependencies . 234

The Members of Generic Types . 237

Virtual Methods in Generic Types . 239

Nested Generic Types . 243

Summary of the Metadata Validity Rules . 245

■CHAPTER 12 Generic Methods . 247

Generic Method Metadata . 247

MethodSpec Metadata Table . 249

Signatures of Generic Methods . 249

Defining Generic Methods in ILAsm . 250

Calling Generic Methods . 251

Overriding Virtual Generic Methods . 253

Summary of the Metadata Validity Rules . 257

■CONTENTSxii

Ch00_6463_FINAL 7/27/06 3:00 PM Page xii

PART 4 ■ ■ ■ Inside the Execution Engine

■CHAPTER 13 IL Instructions . 261

Long-Parameter and Short-Parameter Instructions 262

Labels and Flow Control Instructions . 263

Unconditional Branching Instructions . 263

Conditional Branching Instructions . 264

Comparative Branching Instructions . 264

The switch Instruction . 265

The break Instruction . 266

Managed EH Block Exiting Instructions . 266

EH Block Ending Instructions . 266

The ret Instruction . 267

Arithmetical Instructions . 267

Stack Manipulation . 267

Constant Loading . 268

Indirect Loading . 269

Indirect Storing . 269

Arithmetical Operations . 270

Overflow Arithmetical Operations . 271

Bitwise Operations . 272

Shift Operations . 273

Conversion Operations . 273

Overflow Conversion Operations . 274

Logical Condition Check Instructions . 275

Block Operations . 276

Addressing Arguments and Local Variables . 276

Method Argument Loading . 277

Method Argument Address Loading . 277

Method Argument Storing . 277

Method Argument List . 278

Local Variable Loading . 278

Local Variable Reference Loading . 278

Local Variable Storing . 278

Local Block Allocation . 279

Prefix Instructions . 279

Addressing Fields . 280

Calling Methods . 281

Direct Calls . 281

■CONTENTS xiii

Ch00_6463_FINAL 7/27/06 3:00 PM Page xiii

Indirect Calls . 283

Tail Calls . 283
Constrained Virtual Calls . 284

Addressing Classes and Value Types . 285

Vector Instructions . 289

Vector Creation . 289

Element Address Loading . 290

Element Loading . 290

Element Storing . 291

Code Verifiability . 292

■CHAPTER 14 Managed Exception Handling . 295

EH Clause Internal Representation . 295

Types of EH Clauses . 297

Label Form of EH Clause Declaration . 299

Scope Form of EH Clause Declaration . 301

Processing the Exceptions . 304

Exception Types . 305

Loader Exceptions . 306

JIT Compiler Exceptions . 306

Execution Engine Exceptions . 306

Interoperability Exceptions . 308

Subclassing the Exceptions . 308

Unmanaged Exception Mapping . 309

Summary of EH Clause Structuring Rules . 309

PART 5 ■ ■ ■ Special Components

■CHAPTER 15 Events and Properties . 313

Events and Delegates . 313

Event Metadata . 316

The Event Table . 316

The EventMap Table . 317

The MethodSemantics Table . 317

Event Declaration . 318

Property Metadata . 321

The Property Table . 322

The PropertyMap Table . 322

■CONTENTSxiv

Ch00_6463_FINAL 7/27/06 3:00 PM Page xiv

Property Declaration . 323

Summary of Metadata Validity Rules . 324

Event Table Validity Rules . 324

EventMap Table Validity Rules . 325

Property Table Validity Rules . 325

PropertyMap Table Validity Rules . 325

MethodSemantics Table Validity Rules . 325

■CHAPTER 16 Custom Attributes . 327

Concept of a Custom Attribute . 327

CustomAttribute Metadata Table . 328

Custom Attribute Value Encoding . 329

Verbal Description of Custom Attribute Value . 331

Custom Attribute Declaration . 332

Classification of Custom Attributes . 336

Execution Engine and JIT Compiler . 337

Interoperation Subsystem . 338

Security . 340

Remoting Subsystem . 341

Visual Studio Debugger . 342

Assembly Linker . 343

Common Language Specification (CLS) Compliance 344

Pseudocustom Attributes . 344

Summary of Metadata Validity Rules . 346

■CHAPTER 17 Security Attributes . 347

Declarative Security . 348

Declarative Actions . 348

Security Permissions . 350

Access Permissions . 350

Identity Permissions . 354

Custom Permissions . 356

Permission Sets . 358

Declarative Security Metadata . 358

Permission Set Blob Encoding . 359

Security Attribute Declaration . 360

Summary of Metadata Validity Rules . 361

■CONTENTS xv

Ch00_6463_FINAL 7/27/06 3:00 PM Page xv

■CHAPTER 18 Managed and Unmanaged Code Interoperation 363

Thunks and Wrappers . 364

P/Invoke Thunks . 364

Implementation Map Metadata . 366

IJW Thunks . 367

COM Callable Wrappers . 368

Runtime Callable Wrappers . 369

Data Marshaling . 370

Blittable Types . 371

In/Out Parameters . 371

String Marshaling . 372

Object Marshaling . 373

More Object Marshaling . 375

Array Marshaling . 376

Delegate Marshaling . 376

Providing Managed Methods As Callbacks for Unmanaged Code 377

Managed Methods As Unmanaged Exports . 380

Export Table Group . 381

Summary . 387

■CHAPTER 19 Multilanguage Projects . 389

IL Disassembler . 389

Principles of Round-Tripping . 394

Creative Round-Tripping . 395

Using Class Augmentation . 396

Module Linking Through Round-Tripping . 397

ASMMETA: Resolving Circular Dependencies . 398

IL Inlining in High-Level Languages . 400

Compiling in Debug Mode . 402

Summary . 408

■CONTENTSxvi

Ch00_6463_FINAL 7/27/06 3:00 PM Page xvi

PART 6 ■ ■ ■ Appendixes

■APPENDIX A ILAsm Grammar Reference . 411

Lexical Tokens . 411

Auxiliary Lexical Tokens . 411

Data Type Nonterminals . 411

Identifier Nonterminals . 412

Class Referencing . 412

Module-Level Declarations . 412

Compilation Control Directives . 413

Module Parameter Declaration . 413

V-Table Fixup Table Declaration . 413

Manifest Declarations . 414

Managed Types in Signatures . 416

Native Types in Marshaling Signatures . 417

Method and Field Referencing . 419

Class Declaration . 420

Generic Type Parameters Declaration . 421

Class Body Declarations . 421

Field Declaration . 422

Method Declaration . 423

Method Body Declarations . 424

External Source Directives . 425

Managed Exception Handling Directives . 425

IL Instructions . 426

Event Declaration . 426

Property Declaration . 427

Constant Declarations . 427

Custom Attribute Declarations . 429

Verbal Description of Custom Attribute Initialization Blob 429

Security Declarations . 430

Aliasing of Types, Methods, Fields, and Custom Attributes 431

Data Declaration . 431

■APPENDIX B Metadata Tables Reference . 433

■APPENDIX C IL Instruction Set Reference . 445

■CONTENTS xvii

Ch00_6463_FINAL 7/27/06 3:00 PM Page xvii

■APPENDIX D IL Assembler and Disassembler
Command-Line Options . 453

IL Assembler . 453

IL Disassembler . 456

Output Redirection Options . 456

ILAsm Code-Formatting Options (PE Files Only) 456

File Output Options (PE Files Only) . 457

File or Console Output Options (PE Files Only) 457

Metadata Summary Option . 458

■APPENDIX E Offline Verification Tool Reference . 459

Error Codes and Messages . 461

■INDEX . 477

■CONTENTSxviii

Ch00_6463_FINAL 7/27/06 3:00 PM Page xviii

About the Author

■SERGE LIDIN, a Russian-born Canadian with more than 20 years in the
computer industry, has programmed in more languages and for more
platforms than he can recall, in areas varying from astrophysics models
to industrial process simulations to transaction processing in financial
systems. From 1999 to mid-2005, he worked on the Microsoft .NET com-
mon language runtime team, where he designed and developed the IL
assembler, IL disassembler, Metadata validator, and run-time metadata

validation in the execution engine. Currently, Serge works on the Microsoft Phoenix team,
developing future frameworks for code generation and transformation. When not writing
software or sleeping, he plays tennis, skis, and reads books (his literary taste is below any
criticism). Serge shares his time between Vancouver, British Columbia, where his heart is,
and Redmond, Washington, where his brain is.

xix

Ch00_6463_FINAL 7/27/06 3:00 PM Page xix

Ch00_6463_FINAL 7/27/06 3:00 PM Page xx

About the Technical Reviewers

■JIM HOGG joined Microsoft seven years ago as a program manager—first on the .NET runtime
team, working on metadata, and now with the compiler team, working on optimizations. His
previous experience includes stints in computational physics, seismic processing, and operat-
ing systems.

■VANCE MORRISON has been working at Microsoft for the past seven years and has been
involved in the design of the .NET runtime since its inception. He drove the design for the
.NET intermediate language (IL) and was the lead for the just-in-time (JIT) compiler team
for much of that time. He is currently the compiler architect for Microsoft’s .NET runtime.

xxi

Ch00_6463_FINAL 7/27/06 3:00 PM Page xxi

Ch00_6463_FINAL 7/27/06 3:00 PM Page xxii

Acknowledgments

First I would like to thank the editing team from Apress who worked with me on this book:
Ewan Buckingham, Sofia Marchant, Kim Wimpsett (ah, those unforgettable discussions about
subjunctive tense vs. indicative tense!), and Laura Cheu. It was a pleasure and an honor to
work with such a highly professional team.

I would also like to thank my colleagues Jim Hogg and Vance Morrison, who were the
principal technical reviewers of this book. Jim worked on the common language runtime team
for quite a while and was the driving force of the ECMA/ISO standardization effort concerning
the .NET common language infrastructure. Vance has worked on the CLR team since the
team’s inception in 1998, he led the just-in-time compiler team for a long time, and he helped
me a lot with the IL assembler. Jim and Vance provided invaluable feedback on the draft of the
book, leaving no stone unturned.

And of course I would like to extend my thanks to my colleagues who helped me write
this book and the first IL assembler book by answering my questions and digging into the
specifications and source code with me: Larry Sullivan, Jim Miller, Bill Evans, Chris Brumme,
Mei-Chin Tsai, Erik Meijer, Thorsten Brunklaus, Ronald Laeremans, Kevin Ransom, Suzanne
Cook, Shajan Dasan, Craig Sinclair, and many others.

xxiii

Ch00_6463_FINAL 7/27/06 3:00 PM Page xxiii

Ch00_6463_FINAL 7/27/06 3:00 PM Page xxiv

Introduction

Why was this book written? To tell the truth, I don’t think I had much choice in this matter.
This book is a revision and extension of my earlier book, Inside Microsoft .NET IL Assembler,
which hit the shelves in early 2002, about a month after the release of version 1.0 of the .NET
common language infrastructure (CLI). So, it is fairly obvious why I had to write this new book
now, more than four years later, when the more powerful version 2.0 of the .NET CLI has just
been released. And I don’t think I had much choice in the matter of writing the first book
either, because somebody had to start writing about the .NET CLI inner workings.

The .NET universe, like other information technology universes, resembles a great pyra-
mid turned upside down and standing on its tip. The tip on which the .NET pyramid stands is
the common language runtime. The runtime converts the intermediate language (IL) binary
code into platform-specific (native) machine code and executes it. Resting on top of the run-
time are the .NET Framework class library, the compilers, and environments such as Microsoft
Visual Studio. And above them begin the layers of application development, from instrumen-
tal to end user oriented. The pyramid quickly grows higher and wider.

This book is not exactly about the common language runtime—even though it’s only the
tip of the .NET pyramid, the runtime is too vast a topic to be described in detail in any book of
reasonable (say, luggable) size. Rather, this book focuses on the next best thing: the .NET IL
assembler. IL assembly language (ILAsm) is a low-level language, specifically designed to
describe every functional feature of the common language runtime. If the runtime can do it,
ILAsm must be able to express it.

Unlike high-level languages, and like other assembly languages, ILAsm is platform-driven
rather than concept-driven. An assembly language usually is an exact linguistic mapping of
the underlying platform, which in this case is the common language runtime. It is, in fact,
so exact a mapping that this language is used for describing aspects of the runtime in the
ECMA/ISO standardization documents regarding the .NET common language infrastructure.
(ILAsm itself, as part of the common language infrastructure, is a subject of this standardiza-
tion effort as well.) As a result of the close mapping, it is impossible to describe an assembly
language without going into significant detail about the underlying platform. So, to a great
extent, this book is about the common language runtime after all.

The IL assembly language is very popular among .NET developers. No, I am not claiming
that all .NET developers prefer to program in ILAsm rather than in Visual C++/CLI, C#, or
Visual Basic. But all .NET developers use the IL disassembler now and then, and many use it
on a regular basis. A cyan thunderbolt—the IL disassembler icon (a silent praise for David
Drake and his “Hammer’s Slammers”)—glows on the computer screens of .NET developers
regardless of their language preferences and problem areas. And the text output of the IL
disassembler is ILAsm source code.

Virtually all books about .NET-based programming that are devoted to high-level pro-
gramming languages such as C# or Visual Basic or to techniques such as ADO.NET at some
moment mention the IL disassembler as a tool of choice to analyze the innards of a .NET
managed executable. But these volumes stop short of explaining what the disassembly text

xxv

Ch00_6463_FINAL 7/27/06 3:00 PM Page xxv

means and how to interpret it. This is an understandable choice, given the topics of these
books; the detailed description of metadata structuring and IL assembly language represents
a separate issue.

Now perhaps you see what I mean when I say I had no choice but to write this book.
Someone had to, and because I had been given the responsibility of designing and developing
the IL assembler and disassembler, it was my obligation to see it through all the way.

History of ILAsm, Part I
The first versions of the IL assembler and IL disassembler were developed in early 1998 by
Jonathan Forbes. The current language is very different from this original one, the only dis-
tinct common feature being the leading dots in the directive keywords. The assembler and
disassembler were built as purely internal tools facilitating the ongoing development of the
common language runtime and were used rather extensively inside the runtime development
team.

When Jonathan left the common language runtime team in the beginning of 1999, the
assembler and disassembler fell in the lap of Larry Sullivan, head of a development group with
the colorful name Common Runtime Odds and Ends Development Team (CROEDT). In April
of that year, I joined the team, and Larry passed the assembler and disassembler to me. When
an alpha version of the common language runtime was presented at a Technical Preview in
May 1999, the assembler and disassembler attracted significant attention, and I was told to
rework the tools and bring them up to production level. So I did, with great help from Larry,
Vance Morrison, and Jim Miller. The tools were still considered internal, so we (Larry, Vance,
Jim, and I) could afford to redesign the language—not to mention the implementation of the
tools—radically.

A major breakthrough occurred in the second half of 1999, when the IL assembler input
and IL disassembler output were synchronized enough to achieve limited round-tripping.
Round-tripping means you can take a managed (IL) executable compiled from a particular
language, disassemble it, add or change some ILAsm code, and reassemble it back into a mod-
ified executable. The round-tripping technique opened new avenues, and shortly thereafter it
began to be used in certain production processes both inside Microsoft and by its partners.

At about the same time, third-party .NET-oriented compilers that used ILAsm as a base
language started to appear. The best known is probably Fujitsu’s NetCOBOL, which made
quite a splash at the Professional Developers Conference in July 2000, where the first pre-beta
version of the common language runtime, along with the .NET Framework class library, com-
pilers, and tools, was released to the developer community.

Since the release of the beta 1 version in late 2000, the IL assembler and IL disassembler
have been fully functional in the sense that they reflect all the features of metadata and IL,
support complete round-tripping, and maintain synchronization of their changes with the
changes in the runtime itself.

■INTRODUCTIONxxvi

Ch00_6463_FINAL 7/27/06 3:00 PM Page xxvi

ILAsm Marching On
These days the IL assembler is used more and more in the compiler and tool implementation,
in education, and in academic research. The following compilers (for example), ranging from
purely academic projects to industrial-strength systems, produce ILAsm code as their output
and let the IL assembler take care of emitting the managed executables:

• Ada# (USAF Academy, Colorado)

• Alice.NET (Saarland University, Saarbrücken)

• Boo (codehaus.org)

• NetCOBOL (Fujitsu)

• COBOL2002 for .NET Framework (NEC/Hitachi)

• NetExpress COBOL (Microfocus)

• CommonLarceny.NET (Northeastern University, Boston)

• CULE.NET (CULEPlace.com)

• Component Pascal (Queensland University of Technology, Australia)

• Fortran (Lahey/Fujitsu)

• Hotdog Scheme (Northwestern University, Chicago)

• Lagoona.NET (University of California, Irvine)

• LCC (ANSI C) (Microsoft Research, Redmond)

• Mercury (University of Melbourne, Australia)

• Modula-2 (Queensland University of Technology, Australia)

• Moscow ML.NET (Royal Veterinary and Agricultural University, Denmark)

• Oberon.NET (Swiss Federal Institute of Technology, Zürich)

• S# (Smallscript.com)

• SML.NET (Microsoft Research, Cambridge, United Kingdom)

The ability of the IL disassembler and IL assembler to work in tandem gave birth to a
slew of interesting tools and techniques based on “creative round-tripping” of managed
executables (disassembling—text manipulation—reassembling). For example, Preemptive
Software (a company known for its Java and .NET-oriented obfuscators and code optimizers)
built its DotFuscator system on this base. The DotFuscator is a commercial, industrial-
strength obfuscation and optimization system, well known on the market. I discuss some
other interesting examples of application of “creative round-tripping” in Chapter 19.

■INTRODUCTION xxvii

Ch00_6463_FINAL 7/27/06 3:00 PM Page xxvii

Practically all academic courses on .NET programming use ILAsm to some extent (how else
could the authors of these courses show the innards of .NET managed executables?). Some
courses are completely ILAsm based, such as the course developed by Dr. Regeti Govindarajulu
at International Institute of Informational Technologies (Hyderabad, India) and the course
developed by Drs. Andrey Makarov, Sergey Skorobogatov, and Andrey Chepovskiy at Lomonosov
University and Bauman Technical University (Moscow, Russia).

Who Should Read This Book
This book targets all the .NET-oriented developers who, working at a sufficiently advanced
level, care about what their programs compile into or who are willing to analyze the end
results of their programming. Here these readers will find the information necessary to inter-
pret disassembly texts and metadata structure summaries, allowing them to develop more
efficient programming techniques.

This analysis of disassemblies and metadata structuring is crucial in assessing the correct-
ness and efficiency of any .NET-oriented compiler, so this book should also prove especially
useful for compiler developers who are targeting .NET. A narrower but growing group of readers
who will find the book extremely helpful includes developers who use the IL assembly language
directly, such as compiler developers targeting ILAsm as an intermediate step, developers con-
templating multilanguage projects, and developers willing to exploit the capabilities of the
common language runtime that are inaccessible through the high-level languages.

Finally, this book can be valuable in all phases of software development, from conceptual
design to implementation and maintenance.

Organization of This Book
I begin in Part 1, “Quick Start,” with a quick overview of ILAsm and common language runtime
features, based on a simple sample program. This overview is in no way complete; rather, it is
intended to convey a general impression about the runtime and ILAsm as a language.

The following parts discuss features of the runtime and corresponding ILAsm constructs
in a detailed, bottom-up manner. Part 2, “Underlying Structures,” describes the structure of a
managed executable file and general metadata organization. Part 3, “Fundamental Compo-
nents,” is dedicated to the components that constitute a necessary base of any application:
assemblies, modules, classes, methods, fields, and related topics. Part 4, “Inside the Execution
Engine,” brings you, yes, inside the execution engine, describing the execution of IL instruc-
tions and managed exception handling. Part 5, “Special Components,” discusses metadata
representation and the usage of the additional components: events, properties, and custom
and security attributes. And Part 6, “Interoperation,” describes the interoperation between
managed and unmanaged code and discusses practical applications of the IL assembler and
IL disassembler to multilanguage projects.

The book’s five appendixes contain references concerning ILAsm grammar, metadata
organization, and IL instruction set and tool features, including the IL assembler, the IL
disassembler, and the offline metadata validation tool.

■INTRODUCTIONxxviii

Ch00_6463_FINAL 7/27/06 3:00 PM Page xxviii

Quick Start

P A R T 1

■ ■ ■

Ch01_6463_CMP2 4/23/06 12:43 PM Page 1

Ch01_6463_CMP2 4/23/06 12:43 PM Page 2

Simple Sample

This chapter offers a general overview of ILAsm, the MSIL assembly language. (MSIL stands
for Microsoft intermediate language, which will soon be discussed in this chapter.) The chapter
reviews a relatively simple program written in ILAsm, and then I suggest some modifications
that illustrate how you can express the concepts and elements of Microsoft .NET program-
ming in this language.

This chapter does not teach you how to write programs in ILAsm. But it should help you
understand what the IL assembler (ILASM) and the IL disassembler (ILDASM) do and how to
use that understanding to analyze the internal structure of a .NET-based program with the
help of these ubiquitous tools. You’ll also learn some intriguing facts about the mysterious
affairs that take place behind the scenes within the common language runtime—intriguing
enough, I hope, to prompt you to read the rest of the book.

■Note For your sake and mine, I’ll abbreviate IL assembly language as ILAsm throughout this book. Don’t
confuse it with ILASM, which is the abbreviation for the IL assembler (in other words, the ILAsm compiler) in
the .NET documentation.

Basics of the Common Language Runtime
The .NET common language runtime is but one of many aspects of .NET, but it’s the core of
.NET. (Note that, for variety’s sake, I’ll sometimes refer to the common language runtime as
the runtime.) Rather than focusing on an overall description of the .NET platform, I’ll concen-
trate on the part of .NET where the action really happens: the common language runtime.

■Note For excellent discussions of the general structure of .NET and its components, see Introducing
Microsoft .NET, Third Edition (Microsoft Press, 2003), by David S. Platt, and Inside C#, Second Edition
(Microsoft Press, 2002), by Tom Archer and Andrew Whitechapel.

3

C H A P T E R 1

■ ■ ■

Ch01_6463_CMP2 4/23/06 12:43 PM Page 3

Simply put, the common language runtime is a run-time environment in which .NET
applications run. It provides an operating layer between the .NET applications and the under-
lying operating system. In principle, the common language runtime is similar to the runtimes
of interpreted languages such as GBasic. But this similarity is only in principle: the common
language runtime is not an interpreter.

The .NET applications generated by .NET-oriented compilers (such as Microsoft Visual
C#, Microsoft Visual Basic .NET, ILAsm, and many others) are represented in an abstract,
intermediate form, independent of the original programming language and of the target
machine and its operating system. Because they are represented in this abstract form, .NET
applications written in different languages can interoperate closely, not only on the level of
calling each other’s functions but also on the level of class inheritance.

Of course, given the differences in programming languages, a set of rules must be estab-
lished for the applications to allow them to get along with their neighbors nicely. For example,
if you write an application in Visual C# and name three items MYITEM, MyItem, and myitem,
Visual Basic .NET, which is case insensitive, will have a hard time differentiating them. Like-
wise, if you write an application in ILAsm and define a global method, Visual C# will be unable
to call the method because it has no concept of global (out-of-class) items.

The set of rules guaranteeing the interoperability of .NET applications is known as the
Common Language Specification (CLS), outlined in Partition I of the Common Language
Infrastructure standard of Ecma International and the International Organization for Stan-
dardization (ISO). It limits the naming conventions, the data types, the function types, and
certain other elements, forming a common denominator for different languages. It is impor-
tant to remember, however, that the CLS is merely a recommendation and has no bearing
whatsoever on common language runtime functionality. If your application is not CLS com-
pliant, it might be valid in terms of the common language runtime, but you have no guarantee
that it will be able to interoperate with other applications on all levels.

The abstract intermediate representation of the .NET applications, intended for the com-
mon language runtime environment, includes two main components: metadata and managed
code. Metadata is a system of descriptors of all structural items of the application—classes,
their members and attributes, global items, and so on—and their relationships. This chapter
provides some examples of metadata, and later chapters describe all the metadata structures.

The managed code represents the functionality of the application’s methods (functions)
encoded in an abstract binary form known as Microsoft intermediate language (MSIL) or
common intermediate language (CIL). To simplify things, I’ll refer to this encoding simply as
intermediate language (IL). Of course, other intermediate languages exist in the world, but as
far as our endeavors are concerned, let’s agree that IL means MSIL, unless specified otherwise.

The runtime “manages” the IL code. Common language runtime management includes, but
is not limited to, three major activities: type control, structured exception handling, and garbage
collection. Type control involves the verification and conversion of item types during execution.
Managed exception handling is functionally similar to “unmanaged” structured exception han-
dling, but it is performed by the runtime rather than by the operating system. Garbage collection
involves the automatic identification and disposal of objects no longer in use.

A .NET application, intended for the common language runtime environment, consists of
one or more managed executables, each of which carries metadata and (optionally) managed
code. Managed code is optional because it is always possible to build a managed executable
containing no methods. (Obviously, such an executable can be used only as an auxiliary part of
an application.) Managed .NET applications are called assemblies. (This statement is somewhat

CHAPTER 1 ■ SIMPLE SAMPLE4

Ch01_6463_CMP2 4/23/06 12:43 PM Page 4

simplified; for more details about assemblies, application domains, and applications, see
Chapter 6.) The managed executables are referred to as modules. You can create single-module
assemblies and multimodule assemblies. As illustrated in Figure 1-1, each assembly contains
one prime module, which carries the assembly identity information in its metadata.

Figure 1-1. A multimodule .NET assembly

Figure 1-1 also shows that the two principal components of a managed executable are the
metadata and the IL code. The two major common language runtime subsystems dealing with
each component are, respectively, the loader and the just-in-time (JIT) compiler.

In brief, the loader reads the metadata and creates in memory an internal representation
and layout of the classes and their members. It performs this task on demand, meaning a class
is loaded and laid out only when it is referenced. Classes that are never referenced are never
loaded. When loading a class, the loader runs a series of consistency checks of the related
metadata.

The JIT compiler, relying on the results of the loader’s activity, compiles the methods
encoded in IL into the native code of the underlying platform. Because the runtime is not an
interpreter, it does not execute the IL code. Instead, the IL code is compiled in memory into
the native code, and the native code is executed. The JIT compilation is also done on demand,
meaning a method is compiled only when it is called. The compiled methods stay cached in
memory. If memory is limited, however, as in the case of a small computing device such as a

Metadata

Prime Module

Module 3

Assembly Identity

Metadata

IL Code

Metadata

IL Code

IL Code

Module 1

Module 2

Metadata

IL Code

CHAPTER 1 ■ SIMPLE SAMPLE 5

Ch01_6463_CMP2 4/23/06 12:43 PM Page 5

handheld PDA or a smart phone, the methods can be discarded if not used. If a method is
called again after being discarded, it is recompiled.

Figure 1-2 illustrates the sequence of creating and executing a managed .NET application.
Arrows with hollow circles at the base indicate data transfer; the arrow with the black circle
represents requests and control messages.

Figure 1-2. The creation and execution of a managed .NET application

Source Code

Network

Managed Compiler

Metadata

IL Code

 Metadata

IL Code

Loader
Internal Data
Structures

JIT Compiler Native Code

Execution Engine

Managed Module

Managed Module

CLR

CHAPTER 1 ■ SIMPLE SAMPLE6

Ch01_6463_CMP2 4/23/06 12:43 PM Page 6

You can precompile a managed executable from IL to the native code using the NGEN
utility. You can do this when the executable is expected to run repeatedly from a local disk in
order to save time on JIT compilation. This is standard procedure, for example, for managed
components of the .NET Framework, which are precompiled during installation. (Tom Archer
refers to this as install-time code generation.) In this case, the precompiled code is saved to the
local disk or other storage, and every time the executable is invoked, the precompiled native-
code version is used instead of the original IL version. The original file, however, must also be
present because the precompiled version must be authenticated against the original file
before it is allowed to execute.

With the roles of the metadata and the IL code established, I’ll now cover the ways you
can use ILAsm to describe them.

Simple Sample: The Code
No, the sample will not be “Hello, world!” This sample is a simple managed console applica-
tion that prompts the user to enter an integer and then identifies the integer as odd or even.
When the user enters something other than a decimal number, the application responds
with “How rude!” and terminates. (See the source file Simple.il on the Apress Web site at
http://www.apress.com.)

The sample, shown in Listing 1-1, uses managed console APIs from the .NET Framework
class library for console input and output, and it uses the unmanaged function sscanf from
the C run-time library for input string conversion to an integer.

■Note To increase code readability throughout this book, all ILAsm keywords within the code listings
appear in bold.

Listing 1-1. OddOrEven Sample Application

//----------- Program header
.assembly extern mscorlib { auto }
.assembly OddOrEven { }
.module OddOrEven.exe
//----------- Class declaration
.namespace Odd.or {

.class public auto ansi Even extends [mscorlib]System.Object {
//----------- Field declaration

.field public static int32 val
//----------- Method declaration

.method public static void check() cil managed {
.entrypoint
.locals init (int32 Retval)

AskForNumber:
ldstr "Enter a number"
call void [mscorlib]System.Console::WriteLine(string)

CHAPTER 1 ■ SIMPLE SAMPLE 7

Ch01_6463_CMP2 4/23/06 12:43 PM Page 7

call string [mscorlib]System.Console::ReadLine ()
ldsflda valuetype CharArray8 Format
ldsflda int32 Odd.or.Even::val
call vararg int32 sscanf(string,int8*,...,int32*)
stloc Retval
ldloc Retval
brfalse Error
ldsfld int32 Odd.or.Even::val
ldc.i4 1
and
brfalse ItsEven
ldstr "odd!"
br PrintAndReturn

ItsEven:
ldstr "even!"
br PrintAndReturn

Error:
ldstr "How rude!"

PrintAndReturn:
call void [mscorlib]System.Console::WriteLine(string)
ldloc Retval
brtrue AskForNumber
ret

} // End of method
} // End of class

} // End of namespace
//----------- Global items
.field public static valuetype CharArray8 Format at FormatData
//----------- Data declaration
.data FormatData = bytearray(25 64 00 00 00 00 00 00) // % d
//----------- Value type as placeholder
.class public explicit CharArray8

extends [mscorlib]System.ValueType { .size 8 }
//----------- Calling unmanaged code
.method public static pinvokeimpl("msvcrt.dll" cdecl)

vararg int32 sscanf(string,int8*) cil managed { }

In the following sections, I’ll walk you through this source code line by line.

Program Header
This is the program header of the OddOrEven application:

.assembly extern mscorlib { auto }

.assembly OddOrEven { }

.module OddOrEven.exe

CHAPTER 1 ■ SIMPLE SAMPLE8

Ch01_6463_CMP2 4/23/06 12:43 PM Page 8

.assembly extern mscorlib { auto } defines a metadata item named Assembly Reference
(or AssemblyRef), identifying the external managed application (assembly) used in this program.
In this case, the external application is Mscorlib.dll, the main assembly of the .NET Framework
classes. (The topic of the .NET Framework class library itself is beyond the scope of this book; for
further information, consult the detailed specification of the .NET Framework class library pub-
lished as Partition IV of the Ecma International/ISO standard.)

The Mscorlib.dll assembly contains declarations of all the base classes from which all other
classes are derived. Although theoretically you could write an application that never uses any-
thing from Mscorlib.dll, I doubt that such an application would be of any use. (One obvious
exception is Mscorlib.dll itself.) Thus, it’s a good habit to begin a program in ILAsm with a dec-
laration of AssemblyRef to Mscorlib.dll, followed by declarations of other AssemblyRefs (if any).

The scope of an AssemblyRef declaration (between the curly braces) can contain addi-
tional information identifying the referenced assembly, such as the version or culture
(previously known as locale). Because this information is not relevant to understanding this
sample, I have omitted it here. (Chapter 5 describes this additional information in detail.)
Instead, I used the keyword auto, which prompts ILASM to automatically discover the latest
version of the referenced assembly.

Note that the assembly autodetection feature is specific to ILASM 2.0 and newer. Versions
1.0 and 1.1 have no autodetection, but they allow referencing Mscorlib.dll (and only it) with-
out additional identifying information. So when using older versions of ILASM, just leave the
AssemblyRef scope empty.

Note also that although the code references the assembly Mscorlib.dll, AssemblyRef is
declared by filename only, without the extension. Including the extension causes the loader
to look for Mscorlib.dll.dll or Mscorlib.dll.exe, resulting in a run-time error.

.assembly OddOrEven { } defines a metadata item named Assembly, which, to no one’s
surprise, identifies the current application (assembly). Again, you could include additional
information identifying the assembly in the assembly declaration—see Chapter 6 for details—
but it is not necessary here. Like AssemblyRef, the assembly is identified by its filename,
without the extension.

Why do you need to identify the application as an assembly? If you don’t, it will not be
an application at all; rather, it will be a nonprime module—part of some other application
(assembly)—and as such will not be able to execute on its own. Giving the module an .exe
extension changes nothing; only assemblies can be executed.

.module OddOrEven.exe defines a metadata item named Module, identifying the current
module. Each module, prime or otherwise, carries this identification in its metadata. Note that
the module is identified by its full filename, including the extension. The path, however, must
not be included.

Class Declaration
This is the class declaration of the OddOrEven application:

.namespace Odd.or {
.class public auto ansi Even extends [mscorlib]System.Object {

...
}
...

}

CHAPTER 1 ■ SIMPLE SAMPLE 9

Ch01_6463_CMP2 4/23/06 12:43 PM Page 9

.namespace Odd.or { … } declares a namespace. A namespace does not represent a sepa-
rate metadata item. Rather, a namespace is a common prefix of the full names of all the
classes declared within the scope of the namespace declaration.

.class public auto ansi Even extends [mscorlib]System.Object { ... } defines a
metadata item named Type Definition (TypeDef). Each class, structure, or enumeration
defined in the current module is described by a respective TypeDef record in the metadata.
The name of the class is Even. Because it is declared within the scope of the namespace Odd.or,
its full name (by which it can be referenced elsewhere and by which the loader identifies it) is
Odd.or.Even. You could forgo the namespace declaration and just declare the class by its full
name; it would not make any difference.

The keywords public, auto, and ansi define the flags of the TypeDef item. The keyword
public, which defines the visibility of the class, means the class is visible outside the current
assembly. (Another keyword for class visibility is private, the default, which means the class is
for internal use only and cannot be referenced from outside.)

The keyword auto in this context defines the class layout style (automatic, the default),
directing the loader to lay out this class however it sees fit. Alternatives are sequential (which
preserves the specified sequence of the fields) and explicit (which explicitly specifies the off-
set for each field, giving the loader exact instructions for laying out the class).

The keyword ansi defines the mode of string conversion within the class when interoper-
ating with the unmanaged code. This keyword, the default, specifies that the strings will be
converted to and from “normal” C-style strings of bytes. Alternative keywords are unicode
(strings are converted to and from UTF-16 Unicode) and autochar (the underlying platform
determines the mode of string conversion).

The clause extends [mscorlib]System.Object defines the parent, or base class, of the
class Odd.or.Even. The code [mscorlib]System.Object represents a metadata item named Type
Reference (TypeRef). This particular TypeRef has System as its namespace, Object as its name,
and AssemblyRef mscorlib as the resolution scope. Each class defined outside the current
module is addressed by TypeRef. You can also address the classes defined in the current mod-
ule by TypeRefs instead of TypeDefs, which is considered harmless enough but not nice.

By default, all classes are derived from the class System.Object defined in the assembly
Mscorlib.dll. Only System.Object itself and the interfaces have no base class, as explained in
Chapter 7.

The structures—referred to as value types in .NET lingo—are derived from the [mscorlib]
System.ValueType class. The enumerations are derived from the [mscorlib]System.Enum class.
Because these two distinct kinds of TypeDefs are recognized solely by the classes they extend,
you must use the extends clause every time you declare a value type or an enumeration.

You have probably noticed that the declaration of TypeDef in the sample contains three
default items: the flags auto and ansi and the extends clause. Yes, in fact, I could have declared
the same TypeDef as .class public Even { ... }, but then I would not be able to discuss the
TypeDef flags and the extends clause.

Finally, I must emphasize one important fact about the class declaration in ILAsm.
(Please pay attention, and don’t say I haven’t told you!) Some languages require that all of a
class’s attributes and members be defined within the lexical scope of the class, defining the
class as a whole in one place. In ILAsm the class needn’t be defined all in one place.

In ILAsm, you can declare a TypeDef with some of its attributes and members, close the
TypeDef’s scope, and then reopen the same TypeDef later in the source code to declare more of
its attributes and members. This technique is referred to as class amendment.

CHAPTER 1 ■ SIMPLE SAMPLE10

Ch01_6463_CMP2 4/23/06 12:43 PM Page 10

When you amend a TypeDef, the flags, the extends clause, and the implements clause (not
discussed here in the interests of keeping the sample simple) are ignored. You should define
these characteristics of a TypeDef the first time you declare it.

There is no limitation on the number of TypeDef amendments or on how many source
files a TypeDef declaration might span. You are required, however, to completely define a
TypeDef within one module. Thus, it is impossible to amend the TypeDefs defined in other
assemblies or other modules of the same assembly.

Chapter 7 provides detailed information about ILAsm class declarations.

USING PSEUDOFLAGS TO DECLARE A VALUE TYPE AND AN ENUMERATION

You might want to know about a little cheat that will allow you to circumvent the necessity of repeating the
extends clause. ILAsm has two keywords, value and enum, that can be placed among the class flags to
identify, respectively, value types and enumerations if you omit the extends clause. (If you include the
extends clause, these keywords are ignored.) This is, of course, not a proper way to represent the meta-
data, because it can give the incorrect impression that value types and enumerations are identified by certain
TypeDef flags. I am ashamed that ILAsm contains such lowly tricks, but I am too lazy to type extends
[mscorlib]System.ValueType again and again. ILDASM never resorts to these cheats and always
truthfully prints the extends clause, but ILDASM has the advantage of being a software utility.

Field Declaration
This is the field declaration of the OddOrEven application:

.field public static int32 val

.field public static int32 val defines a metadata item named Field Definition
(FieldDef). Because the declaration occurs within the scope of class Odd.or.Even, the declared
field belongs to this class.

The keywords public and static define the flags of the FieldDef. The keyword public
identifies the accessibility of this field and means the field can be accessed by any member for
whom this class is visible. Alternative accessibility flags are as follows:

• The assembly flag specifies that the field can be accessed from anywhere within this
assembly but not from outside.

• The family flag specifies that the field can be accessed from any of the classes descend-
ing from Odd.or.Even.

• The famandassem flag specifies that the field can be accessed from any of those descen-
dants of Odd.or.Even that are defined in this assembly.

• The famorassem flag specifies that the field can be accessed from anywhere within this
assembly as well as from any descendant of Odd.or.Even, even if the descendant is
declared outside this assembly.

• The private flag specifies that the field can be accessed from Odd.or.Even only.

CHAPTER 1 ■ SIMPLE SAMPLE 11

Ch01_6463_CMP2 4/23/06 12:43 PM Page 11

• The privatescope flag specifies that the field can be accessed from anywhere within
current module. This flag is the default. The privatescope flag is a special case, and I
strongly recommend you do not use it. Private scope items are exempt from the
requirement of having a unique parent/name/signature triad, which means you can
define two or more private scope items within the same class that have the same name
and the same type. Some compilers emit private scope items for their internal pur-
poses. It is the compiler’s problem to distinguish one private scope item from another;
if you decide to use private scope items, you should at least give them unique names.
Because the default accessibility is privatescope, which can be a problem, it’s impor-
tant to remember to specify the accessibility flags.

The keyword static means the field is static—that is, it is shared by all instances of class
Odd.or.Even. If you did not designate the field as static, it would be an instance field, individ-
ual to a specific instance of the class.

The keyword int32 defines the type of the field, a 32-bit signed integer. (Chapter 8
describes types and signatures.) And, of course, val is the name of the field.

You can find a detailed explanation of field declarations in Chapter 9.

Method Declaration
This is the method declaration of the OddOrEven application:

.method public static void check() cil managed {
.entrypoint
.locals init (int32 Retval)

...
}

.method public static void check() cil managed { ... } defines a metadata item
named Method Definition (MethodDef). Because it is declared within the scope of Odd.or.Even,
this method is a member of this class.

The keywords public and static define the flags of MethodDef and mean the same as the
similarly named flags of FieldDef discussed in the preceding section. Not all the flags of
FieldDefs and MethodDefs are identical—see Chapter 9 as well as Chapter 10 for details—but
the accessibility flags are, and the keyword static means the same for fields and methods.

The keyword void defines the return type of the method. If the method had a calling con-
vention that differed from the default, you would place the respective keyword after the flags
but before the return type. Calling convention, return type, and types of method parameters
define the signature of the MethodDef. Note that a lack of parameters is expressed as (), never
as (void). The notation (void) would mean that the method has one parameter of type void,
which is an illegal signature.

The keywords cil and managed define so-called implementation flags of the MethodDef
and indicate that the method body is represented in IL. A method represented in native code
rather than in IL would carry the implementation flags native unmanaged.

Now, let’s proceed to the method body. In ILAsm, the method body (or method scope)
generally contains three categories of items: instructions (compiled into IL code), labels
marking the instructions, and directives (compiled into metadata, header settings, managed
exception handling clauses, and so on—in short, anything but IL code). Outside the method
body, only directives exist. Every declaration discussed so far has been a directive.

CHAPTER 1 ■ SIMPLE SAMPLE12

Ch01_6463_CMP2 4/23/06 12:43 PM Page 12

.entrypoint identifies the current method as the entry point of the application (the
assembly). Each managed EXE file must have a single entry point. The ILAsm compiler
will refuse to compile a module without a specified entry point, unless you use the /DLL
command-line option.

.locals init (int32 Retval) defines the single local variable of the current method. The
type of the variable is int32, and its name is Retval. The keyword init means the local vari-
ables will be initialized at run time before the method executes. If the local variables are not
designated with this keyword in even one of the assembly’s methods, the assembly will fail
verification (in a security check performed by the common language runtime) and will be able
to run only in full-trust mode, when verification is disabled. For that reason, you should never
forget to use the keyword init with the local variable declaration. If you need more than one
local variable, you can list them, separated by commas, within the parentheses—for example,
.locals init (int32 Retval, string TempStr).

AskForNumber:
ldstr "Enter a number"
call void [mscorlib]System.Console::WriteLine(string)

AskForNumber: is a label. It needn’t occupy a separate line; the IL disassembler marks
every instruction with a label on the same line as the instruction. Labels are not compiled into
metadata or IL; rather, they are used solely for the identification of certain offsets within IL
code at compile time.

A label marks the first instruction that follows it. Labels don’t mark directives. In other
words, if you moved the AskForNumber label two lines up so that the directives .entrypoint and
.locals separated the label and the first instruction, the label would still mark the first
instruction.

An important note before I go on to the instructions: IL is strictly a stack-based language.
Every instruction takes something (or nothing) from the top of the stack and puts something
(or nothing) onto the stack. Some instructions have parameters in addition to arguments and
some don’t, but the general rule does not change: instructions take all required arguments (if
any) from the stack and put the results (if any) onto the stack. No IL instruction can address a
local variable or a method parameter directly, except the instructions of load and store groups,
which, respectively, put the value or the address of a variable or a parameter onto the stack or
take the value from the stack and put it into a variable or a parameter.

Elements of the IL stack are not bytes or words, but slots. When I talk about IL stack depth,
I am talking in terms of items put onto the stack, with no regard for the size of each item. Each
slot of the IL stack carries information about the type of its current “occupant.” And if you put
an int32 item on the stack and then try to execute an instruction, which expects, for instance, a
string, the JIT compiler becomes very unhappy and very outspoken, throwing an Unexpected
Type exception and aborting the compilation.

ldstr "Enter a number" is an instruction that creates a string object from the specified
string constant and loads a reference to this object onto the stack. The string constant in this
case is stored in the metadata. You can refer to such strings as common language runtime
string constants or metadata string constants. You can store and handle the string constants in
another way, as explained in a few moments, but ldstr deals exclusively with common lan-
guage runtime string constants, which are always stored in Unicode (UTF-16) format.

CHAPTER 1 ■ SIMPLE SAMPLE 13

Ch01_6463_CMP2 4/23/06 12:43 PM Page 13

call void [mscorlib]System.Console::WriteLine(string) is an instruction that calls a
console output method from the .NET Framework class library. The string is taken from the
stack as the method argument, and nothing is put back, because the method returns void.

The parameter of this instruction is a metadata item named Member Reference
(MemberRef). It refers to the static method named WriteLine, which has the signature
void(string); the method is a member of class System.Console, declared in the external
assembly mscorlib. The MemberRefs are members of TypeRefs—discussed earlier in this chap-
ter in the section “Class Declaration”—just as FieldDefs and MethodDefs are TypeDef members.
However, there are no separate FieldRefs and MethodRefs; the MemberRefs cover references to
both fields and methods.

You can distinguish field references from method references by their signatures.
MemberRefs for fields and for methods have different calling conventions and different
signature structures. Chapter 8 discusses signatures, including those of MemberRefs, in detail.

How does the IL assembler know what type of signature should be generated for a
MemberRef? Mostly from the context. For example, if a MemberRef is the parameter of a call
instruction, it must be a MemberRef for a method. In certain cases in which the context is
not clear, the compiler requires explicit specifications, such as method void
Odd.or.Even::check() or field int32 Odd.or.Even::val.

call string [mscorlib]System.Console::ReadLine()
ldsflda valuetype CharArray8 Format
ldsflda int32 Odd.or.Even::val
call vararg int32 sscanf(string,int8*,...,int32*)

call string [mscorlib]System.Console::ReadLine() is an instruction that calls a console
input method from the .NET Framework class library. Nothing is taken from the stack, and a
string is put onto the stack as a result of this call.

ldsflda valuetype CharArray8 Format is an instruction that loads the address of the static
field Format of type valuetype CharArray8. (Both the field and the value type are declared later
in the source code and are discussed in later sections.) IL has separate instructions for loading
instance and static fields (ldfld and ldsfld) or their addresses (ldflda and ldsflda). Also note
that the “address” loaded onto the stack is not exactly an address (or a C/C++ pointer) but
rather a reference to the item (a field in this sample).

As you probably guessed, valuetype CharArray8 Format is another MemberRef, this time to
the field Format of type valuetype CharArray8. Because this MemberRef is not attributed to any
TypeRef, it must be a global item. (The following section discusses declaring global items.) In
addition, this MemberRef is not attributed to any external resolution scope, such as [mscorlib].
Hence, it must be a global item defined somewhere in the current module.

ldsflda int32 Odd.or.Even::val is an instruction that loads the address of the static field
val, which is a member of the class Odd.or.Even, of type int32. But because the method being
discussed is also a member of Odd.or.Even, why do you need to specify the full class name
when referring to a member of the same class? Such are the rules of ILAsm: all references must
be fully qualified. It might look a bit cumbersome, compared to most high-level languages,
but it has its advantages. You don’t need to keep track of the context, and all references to the
same item look the same throughout the source code. And the IL assembler doesn’t need to
load and inspect the referenced assemblies to resolve the ambiguous references, which means
the IL assembler can compile a module in the absence of the referenced assemblies and

CHAPTER 1 ■ SIMPLE SAMPLE14

Ch01_6463_CMP2 4/23/06 12:43 PM Page 14

modules (if you are not using the autodetection of the referenced assemblies, which, of
course, doesn’t work without the assemblies to detect).

Because both class Odd.or.Even and its field val are declared in the same module, the
ILAsm compiler will not generate a MemberRef item but instead will use a FieldDef item. This
way there will be no need to resolve the reference at run time.

call vararg int32 sscanf(string,int8*,...,int32*) is an instruction that calls the
global static method sscanf. This method takes three items currently on the stack (the string
returned from System.Console::ReadLine, the reference to the global field Format, and the ref-
erence to the field Odd.or.Even::val) and puts the result of type int32 onto the stack.

This method call has two major peculiarities. First, it is a call to an unmanaged method
from the C run-time library. I’ll defer the explanation of this issue until I discuss the declara-
tion of this method. (I have a formal excuse for that because, after all, at the call site managed
and unmanaged methods look the same.)

The second peculiarity of this method is its calling convention, vararg, which means this
method has a variable argument list. The vararg methods have some (or no) mandatory
parameters, followed by an unspecified number of optional parameters of unspecified types—
unspecified, that is, at the moment of the method declaration. When the method is invoked,
all the mandatory parameters (if any) plus all the optional parameters used in this invocation
(if any) should be explicitly specified.

Let’s take a closer look at the list of arguments in this call. The ellipsis refers to a
pseudoargument of a special kind, known as a sentinel. A sentinel’s role can be formulated as
“separating the mandatory arguments from the optional ones,” but I think it would be less
ambiguous to say that a sentinel immediately precedes the optional arguments and it is a pre-
fix of the optional part of a vararg signature.

What is the difference? An ironclad common language runtime rule concerning the vararg
method signatures dictates that a sentinel cannot be used when no optional arguments are
specified. Thus, a sentinel can never appear in MethodDef signatures—only mandatory parame-
ters are specified when a method is declared—and it should not appear in call site signatures
when only mandatory arguments are supplied. Signatures containing a trailing sentinel are ille-
gal. That’s why I think it is important to look at a sentinel as the beginning of optional arguments
and not as a separator between mandatory and optional arguments or (heaven forbid!) as the
end of mandatory arguments.

For those less familiar with the C runtime, I should note that the function sscanf parses
and converts the buffer string (the first argument) according to the format string (the second
argument), puts the results in the rest of the pointer arguments, and returns the number of
successfully converted items. In this sample, only one item will be converted, so sscanf will
return 1 on success or 0 on failure.

stloc Retval
ldloc Retval
brfalse Error

stloc Retval is an instruction that takes the result of the call to sscanf from the stack and
stores it in the local variable Retval. You need to save this value in a local variable because you
will need it later.

ldloc Retval copies the value of Retval back onto the stack. You need to check this value,
which was taken off the stack by the stloc instruction.

CHAPTER 1 ■ SIMPLE SAMPLE 15

Ch01_6463_CMP2 4/23/06 12:43 PM Page 15

brfalse Error takes an item from the stack, and if it is 0, it branches (switches the com-
putation flow) to the label Error.

ldsfld int32 Odd.or.Even::val
ldc.i4 1
and
brfalse ItsEven
ldstr "odd!"
br PrintAndReturn

ldsfld int32 Odd.or.Even::val is an instruction that loads the value of the static field
Odd.or.Even::val onto the stack. If the code has proceeded this far, the string-to-integer con-
version must have been successful, and the value that resulted from this conversion must be
sitting in the field val. The last time you addressed this field, you used the instruction ldsflda
to load the field address onto the stack. This time you need the value, so you use ldsfld.

ldc.i4 1 is an instruction that loads the constant 1 of type int32 onto the stack.
Instruction and takes two items from the stack—the value of the field val and the integer

constant 1—performs a bitwise AND operation and puts the result onto the stack. Performing
the bitwise AND operation with 1 zeroes all the bits of the value of val except the least-
significant bit.

brfalse ItsEven takes an item from the stack (the result of the bitwise AND operation),
and if it is 0, it branches to the label ItsEven. The result of the previous instruction is 0 if the
value of val is even, and it is 1 if the value is odd.

ldstr "odd!" is an instruction that loads the string odd! onto the stack.
br PrintAndReturn is an instruction that does not touch the stack and branches uncondi-

tionally to the label PrintAndReturn.
The rest of the code in the Odd.or.Even::check method should be clear. This section has

covered all the instructions used in this method except ret, which is fairly obvious: it returns
whatever is on the stack. If the method’s return type does not match the type of the item on
the stack, the JIT compiler will disapprove, throw an exception, and abort the compilation. It
will do the same if the stack contains more than one item by the time ret is reached or if the
method is supposed to return void (that is, not return anything) and the stack still contains an
item—or, conversely, if the method is supposed to return something and the stack is empty.

Global Items
These are the global items of the OddOrEven application:

{
...
} // End of namespace
.field public static valuetype CharArray8 Format at FormatData

.field public static valuetype CharArray8 Format at FormatData declares a static
field named Format of type valuetype CharArray8. As you might remember, you used a refer-
ence to this field in the method Odd.or.Even::check.

This field differs from, for example, the field Odd.or.Even::val because it is declared out-
side any class scope and hence does not belong to any class. It is thus a global item. Global
items belong to the module containing their declarations. As you’ve learned, a module is a

CHAPTER 1 ■ SIMPLE SAMPLE16

Ch01_6463_CMP2 4/23/06 12:43 PM Page 16

managed executable file (EXE or DLL); one or more modules constitute an assembly, which is
the primary building block of a managed .NET application; and each assembly has one prime
module, which carries the assembly identification information in its metadata.

Actually, a little trick is connected with the concept of global items not belonging to any
class. In fact, the metadata of every module contains one special TypeDef named <Module>,
which represents…any guesses? Yes, you are absolutely right.

This TypeDef is always present in the metadata, and it always holds the honorable first posi-
tion in the TypeDef table. However, <Module> is not a proper TypeDef, because its attributes are
limited compared to “normal” TypeDefs (classes, value types, and so on). This sounds almost like
real life—the more honorable the position you hold, the more limited your options are.

<Module> cannot be public, that is, visible outside its assembly. <Module> can have
only static members, which means all global fields and methods must be static. In addition,
<Module> cannot have events or properties because events and properties cannot be static.
(Consult Chapter 15 for details.) The reason for this limitation is obvious: given that an assem-
bly always contains exactly one instance of every module, the concept of instantiation
becomes meaningless.

The accessibility of global fields and methods differs from the accessibility of member fields
and methods belonging to a “normal” class. Even public global items cannot be accessed from
outside the assembly. <Module> does not extend anything—that is, it has no base class—and no
class can inherit from <Module>. However, all the classes declared within a module have full
access to the global items of this module, including the private ones.

This last feature is similar to class nesting and is quite different from class inheritance.
(Derived classes don’t have access to the private items of their base classes.) A nested class is
a class declared within the scope of another class. That other class is usually referred to as an
enclosing class or an encloser. A nested class is not a member class or an inner class in the
sense that it has no implicit access to the encloser’s instance reference (this). A nested class is
connected to its encloser by three facts only: it is declared within the encloser’s lexical scope;
its visibility is “filtered” by the encloser’s visibility (that is, if the encloser is private, the nested
class will not be visible outside the assembly, regardless of its own visibility); and it has access
to all of the encloser’s members.

Because all the classes declared within a module are by definition declared within the lex-
ical scope of the module, it is only logical that the relationship between the module and the
classes declared in it is that of an encloser and nested classes.

As a result, global item accessibilities public, assembly, and famorassem all amount to
assembly; private, family, and famandassem amount to private; and privatescope is, well,
privatescope. The metadata validity rules explicitly state that only three accessibilities are
permitted for the global fields and methods: public (which is actually assembly), private,
and privatescope. The loader, however, is more serene about the accessibility flags of the
global items: it allows any accessibility flags to be set, interpreting them as just described
(as assembly, private, or privatescope).

Mapped Fields
This is the mapped field of the OddOrEven application:

.field public static valuetype CharArray8 Format at FormatData

CHAPTER 1 ■ SIMPLE SAMPLE 17

Ch01_6463_CMP2 4/23/06 12:43 PM Page 17

The declaration of the field Format contains one more new item, the clause at FormatData.
This clause indicates the Format field is located in the data section of the module and its location
is identified by the data label FormatData. (The following section discusses data declaration and
labeling.)

Compilers widely use this technique of mapping fields to data for field initialization. This
technique does have some limitations, however. First, mapped fields must be static. This is
logical. After all, the mapping itself is static, because it takes place at compile time. And even if
you manage to map an instance field, all the different instances of this field will be physically
mapped to the same memory, which means you’ll wind up with a static field anyway. Because
the loader, encountering a mapped instance field, decides in favor of “instanceness” and com-
pletely ignores the field mapping, the mapped instance fields are laid out just like all other
instance fields.

Second, the mapped fields belong in the data section and hence are unreachable for the
garbage collection subsystem of the common language runtime, which automatically disposes
of unused objects. For this reason, mapped fields cannot be of a type that is subject to garbage
collection (such as class or array). Value types are permitted as types of the mapped fields, as
long as these value types have no members of types that are subject to garbage collection. If this
rule is violated, the loader throws a Type Load exception and aborts loading the module.

Third, mapping a field to a predefined memory location leaves this field wide open to
access and manipulation. This is perfectly fine from the point of view of security as long as the
field does not have an internal structure whose parts are not intended for public access. That’s
why the type of a mapped field cannot be any value type that has nonpublic member fields.
The loader enforces this rule strictly and checks for nonpublic fields all the way down. For
example, if the type of a mapped field is value type A, the loader will check whether its fields
are all public. If among these fields is one field of value type B, the loader will check whether
value type B’s fields are also all public. If among these fields are two fields of value types C and
D—well, you get the picture. If the loader finds a nonpublic field at any level in the type of a
mapped field, it throws a Type Load exception and aborts the loading.

Data Declaration
This is the data declaration of the OddOrEven application:

.field public static valuetype CharArray8 Format at FormatData

.data FormatData = bytearray(25 64 00 00 00 00 00 00)

.data FormatData = bytearray(25 64 00 00 00 00 00 00) defines a data segment
labeled FormatData. This segment is 8 bytes long and has ASCII codes of the characters %
(0x25) and d (0x64) in the first 2 bytes and zeros in the remaining 6 bytes.

The segment is described as bytearray, which is the most ubiquitous way to describe data
in ILAsm. The numbers within the parentheses represent the hexadecimal values of the bytes,
without the 0x prefix. The byte values should be separated by spaces, and I recommend you
always use the two-digit form, even if one digit would suffice (as in the case of 0, for example).

It is fairly obvious you can represent literally any data as a bytearray. For example, instead
of using the quoted string in the instruction ldstr "odd!", you could use a bytearray presen-
tation of the string:

ldstr bytearray(6F 00 64 00 64 00 21 00 00 00)

CHAPTER 1 ■ SIMPLE SAMPLE18

Ch01_6463_CMP2 4/23/06 12:43 PM Page 18

The numbers in parentheses represent the Unicode characters o, d, d, and ! and the zero
terminator. When you use ILDASM, you can see bytearrays everywhere. A bytearray is a uni-
versal, type-neutral form of data representation, and ILDASM uses it whenever it cannot
identify the type associated with the data as one of the elementary types, such as int32.

On the other hand, you could define the data FormatData as follows:

.data FormatData = int64(0x0000000000006425)

This would result in the same data segment size and contents. When you specify a type
declaring a data segment (for instance, int64), no record concerning this type is entered into
metadata or anywhere else. The ILAsm compiler uses the specified type for two purposes only:
to identify the size of the data segment being allocated and to identify the byte layout within
this segment.

Value Type As Placeholder
This is the value type used as a placeholder:

.field public static valuetype CharArray8 Format at FormatData

.data FormatData = bytearray(25 64 00 00 00 00 00 00)

.class public explicit CharArray8
extends [mscorlib]System.ValueType { .size 8 }

.class public explicit CharArray8 extends [mscorlib]System.ValueType { .size 8 }
declares a value type that has no members but has an explicitly specified size, 8 bytes. Declar-
ing such a value type is a common way to declare “just a piece of memory.” In this case, you
don’t need to declare any members of this value type because you aren’t interested in the
internal structure of this piece of memory; you simply want to use it as a type of your global
field Format to specify the field’s size. In a sense, this value type is nothing but a placeholder.

Could you use an array of 8 bytes instead and save yourself the declaration of another
value type? You could if you did not intend to map the field to the data. Because arrays are
subject to garbage collection, they are not allowed as types of mapped fields.

Using value types as placeholders is popular with managed C/C++ compilers because of
the need to store and address numerous ANSI string constants. The Visual C# and Visual Basic
.NET compilers, which deal mostly with Unicode strings, are less enthusiastic about this tech-
nique because they can directly use the common language runtime string constants, which
are stored in metadata in Unicode format.

Calling Unmanaged Code
This is how the OddOrEven application declares the unmanaged method, which is called from
the managed method check:

.method public static pinvokeimpl("msvcrt.dll" cdecl)
vararg int32 sscanf(string,int8*) cil managed { }

The line .method public static pinvokeimpl("msvcrt.dll" cdecl) vararg int32
sscanf(string, int8*) cil managed { } declares an unmanaged method, to be called from
managed code. The attribute pinvokeimpl("msvcrt.dll" cdecl) indicates that this is an
unmanaged method, called using the mechanism known as platform invocation or P/Invoke.

CHAPTER 1 ■ SIMPLE SAMPLE 19

Ch01_6463_CMP2 4/23/06 12:43 PM Page 19

This attribute also indicates that this method resides in the unmanaged DLL Msvcrt.dll and
has the calling convention cdecl. This calling convention means the unmanaged method han-
dles the arguments the same way an ANSI C function does.

The method takes two mandatory parameters of types string and int8* (the equivalent
of C/C++ char*) and returns int32. Being a vararg method, sscanf can take any number of
optional parameters of any type, but as you know already, neither the optional parameters nor
a sentinel is specified when a vararg method is declared.

Platform invocation is the mechanism the common language runtime provides to facilitate
the calls from the managed code to unmanaged functions. Behind the scenes, the runtime con-
structs the so-called stub, or thunk, which allows the addressing of the unmanaged function
and conversion of managed argument types to the appropriate unmanaged types and back.
This conversion is known as parameter marshaling.

What is being declared here is not an actual unmanaged method to be called but a stub
generated by the runtime, as it is seen from the managed code, which explains the implemen-
tation flags cil managed. Specifying the method signature as int32(string, int8*), you
specify the “managed side” of parameter marshaling. The unmanaged side of the parameter
marshaling is defined by the actual signature of the unmanaged method being invoked.

The actual signature of the unmanaged function sscanf in C is int sscanf(const char*,
const char*, …). So, the first parameter is marshaled from managed type string to unman-
aged type char*. Recall that when I declared the class Odd.or.Even, I specified the ansi flag,
which means the managed strings by default are marshaled as ANSI C strings, that is, char*.
And because the call to sscanf is made from a member method of class Odd.or.Even, you don’t
need to provide special information about marshaling the managed strings.

The second parameter of the sscanf declaration is int8*, which is a direct equivalent of
char*; as a result, little marshaling is required. (ILAsm has type char as well, but it indicates a
Unicode character rather than ANSI, equivalent to “unsigned short” in C, so you cannot use
this type here.)

The optional parameters of the original (unmanaged) sscanf are supposed to be the
pointers to items (variables) you want to fill while parsing the buffer string. The number and
base types of these pointers are defined according to the format specification string (the sec-
ond argument of sscanf). In this case, given the format specification string "%d", sscanf will
expect a single optional argument of type int*. When I call the managed thunk of sscanf, I
provide the optional argument of type int32*, which might require marshaling to a native
integer pointer only if you are dealing with a platform other than a 32-bit Intel platform (for
example, an AMD or Intel 64-bit platform).

The P/Invoke mechanism is very useful because it gives you full access to rich and numer-
ous native libraries and platform APIs. But don’t overestimate the ubiquity of P/Invoke. Different
platforms tend to have different APIs, so overtaxing P/Invoke can easily limit the portability of
your applications. It’s better to stick with the .NET Framework class library and take some con-
solation in the thought that by now you can make a fair guess about what lies at the bottom of
this library.

Now that I’ve finished showing you the source code, find the sample file Simple.il on the
Apress Web site, copy it into your working directory, compile it using the console command
ilasm simple (assuming you have installed the .NET Framework and the Platform software
development kit [SDK]), and try running the resulting Simple.exe.

CHAPTER 1 ■ SIMPLE SAMPLE20

Ch01_6463_CMP2 4/23/06 12:43 PM Page 20

Forward Declaration of Classes
This section is relevant only to earlier versions (1.0 and 1.1) of ILASM, but I still think it is
useful information. Considering the size of the install base of the .NET Framework of these
versions, chances are you will encounter older ILASM more than once.

If you have an older version of the .NET Framework installed, you can carry out a little
experiment with the sample code. Open the source file Simple.il in any text editor, and modify
it by moving the declaration of the value type CharArray8 in front of the declaration of the field
Format:

{
...

} // End of namespace
.class public explicit CharArray8

extends [mscorlib]System.ValueType { .size 8 }
.field public static valuetype CharArray8 Format at FormatData

Everything seems to be in order. But when you try to recompile the file, ILAsm compila-
tion fails with the error message Unresolved MemberRef 'Format'.

Now modify the source file again, this time moving the declaration of value type
CharArray8 before the declaration of the namespace Odd.or:

.class public explicit CharArray8
extends [mscorlib]System.ValueType { .size 8 }

.namespace Odd.or {
.class public auto ansi Even extends [mscorlib]System.Object {

.field public static int32 val

.method public static void check() cil managed {
...
ldsflda valuetype CharArray8 Format
...

} // End of method
} // End of class

} // End of namespace
.field public static valuetype CharArray8 Format at FormatData

Now when you save the source code and try to recompile it, everything is back to normal.
What’s going on here?

After the first change, when the field Format was being referenced in the ldsflda instruc-
tion in the method check, the value type CharArray8 had not been declared yet, so the
respective TypeRef was emitted for it, and the signature of the field reference received the
TypeRef as its type.

Then the value type CharArray8 was declared, and a new TypeDef was created. After that,
when the field Format was actually declared, its type was recognized as a locally declared value
type, and the signature of the field definition received the TypeDef as its type. But, no field
named Format with a TypeRef as its type was declared anywhere in this module. Hence, you
get the reference-to-definition resolution failure.

CHAPTER 1 ■ SIMPLE SAMPLE 21

Ch01_6463_CMP2 4/23/06 12:43 PM Page 21

(This is an inviting moment to criticize the ILAsm compiler’s lack of ability to match the
signatures on a pragmatic level, with type analysis and matching the TypeRefs to TypeDefs by
full name and resolution scope. Have patience, however.)

After the second change in the source code, the value type CharArray8 was declared first
so that all references to it, no matter where they happen, refer to it as TypeDef. This is a rather
obvious solution.

The solution becomes not so obvious when you consider two classes, members of which
use each other’s class as the type. Which class to declare first? Actually, both of them.

In the “Class Declaration” section I mentioned the class amendment technique, based on
that ILAsm allows you to reopen a class scope to declare more class attributes and members.
The general solution to the declaration/reference problem is to specify the empty-scope class
definitions for all classes first. Following that, you can specify all the classes in full, with their
attributes and members, as amendments. The “first wave” of class declarations should carry
all class flags, extends clauses, and implements clauses and should include all nested classes
(also with empty scopes). You should leave all the member declarations for later.

This technique of the forward declaration of classes guards against declaration/reference
errors and, as a side effect, reduces the metadata size because it is unnecessary to emit redun-
dant TypeRefs for locally defined classes.

(And the answer to the aforementioned criticism of the ILAsm compiler is that the com-
piler does signature matching in the fastest possible way, without needing more sophisticated
and slower methods, as long as you use the class forward declaration.)

The need for the class forward declaration has been eliminated in version 2.0 of the
ILAsm compiler.

Summary
This chapter touched briefly on the most important features of the common language run-
time and ILAsm. You now know (in general terms) how the runtime functions, how a program
in ILAsm is written, and how to define the basic components (classes, fields, and methods).
You learned that the managed code can interoperate with the unmanaged (native) code and
what the common language runtime is doing to facilitate this interoperation.

In the next chapter, you will continue working with the simple OddOrEven sample to
learn some sophisticated features of the runtime and ILAsm.

CHAPTER 1 ■ SIMPLE SAMPLE22

Ch01_6463_CMP2 4/23/06 12:43 PM Page 22

Enhancing the Code

In this chapter, I’ll continue tweaking the simple sample; maybe I can make it better. There
are two aspects of “better” I will discuss in this chapter: first, reducing code size and, second,
protecting the code from unpleasant surprises. I’ll start with the code size.

Compacting the Code
The sample code presented in the previous chapter is compact. If you don’t believe me, carry
out a simple experiment: write a similar application in your favorite high-level Microsoft .NET
language, compile it to an executable (and make sure it runs!), disassemble the executable,
and compare the result to the sample offered in Chapter 1. Now let’s try to make the code even
more compact.

First, given what you know about field mapping and value types as placeholders, I don’t
need to continue employing this technique. If sscanf accepts string as the first argument, it
can just as well accept string as the second argument too. Second, I can use certain “short-
cuts” (which I’ll discuss later in this section) in the IL instruction set.

Let’s have a look at the simple sample with slight modifications (source file Simple1.il)
shown in Listing 2-1. I’ve marked the portions of interest with the CHANGE! comment.

Listing 2-1. OddOrEven Sample Application with Changes

//----------- Program header
.assembly extern mscorlib { auto }
.assembly OddOrEven { }
.module OddOrEven.exe
//----------- Class declaration
.namespace Odd.or {
.class public auto ansi Even

extends [mscorlib]System.Object {
//----------- Field declaration

.field public static int32 val
//----------- Method declaration

.method public static void check() cil managed {
.entrypoint
.locals init (int32 Retval)

AskForNumber:
ldstr "Enter a number" 23

C H A P T E R 2

■ ■ ■

Ch02_6463_CMP2 4/28/06 8:12 AM Page 23

call void [mscorlib]System.Console::WriteLine(string)
call string [mscorlib]System.Console::ReadLine()
ldstr "%d" // CHANGE!
ldsflda int32 Odd.or.Even::val
call vararg int32 sscanf(string,string,...,int32*) // CHANGE!
stloc.0 // CHANGE!
ldloc.0 // CHANGE!
brfalse.s Error // CHANGE!
ldsfld int32 Odd.or.Even::val
ldc.i4.1 // CHANGE!
and
brfalse.s ItsEven // CHANGE!
ldstr "odd!"
br.s PrintAndReturn // CHANGE!

ItsEven:
ldstr "even!"
br.s PrintAndReturn // CHANGE!

Error:
ldstr "How rude!"

PrintAndReturn:
call void [mscorlib]System.Console::WriteLine(string)
ldloc.0 // CHANGE!
brtrue.s AskForNumber // CHANGE!
ret

} // End of method
} // End of class

} // End of namespace
//----------- Calling unmanaged code
.method public static pinvokeimpl("msvcrt.dll" cdecl)

vararg int32 sscanf(string,string) cil managed { }

The program header, class declaration, field declaration, and method header look the
same. The first change comes within the method body, where the loading of the address of the
global field Format is replaced with the loading of a metadata string constant, ldstr "%d". As
noted earlier, you can abandon defining and using an ANSI string constant as the second
argument of the call to sscanf in favor of using a metadata string constant (internally repre-
sented in Unicode), relying on the marshaling mechanism provided by P/Invoke to do the
necessary conversion work.

Because I am no longer using an ANSI string constant, the declarations of the global field
Format, the placeholder value type used as the type of this field, and the data to which the field
was mapped are omitted. As you’ve undoubtedly noticed, I don’t need to explicitly declare a
metadata string constant in ILAsm—the mere mention of such a constant in the source code
is enough for the ILAsm compiler to automatically emit this metadata item.

Having thus changed the nature of the second argument of the call to sscanf, I need to
modify the signature of the sscanf P/Invoke thunk so that necessary marshaling can be pro-
vided. Hence, you’ll see changes in the signature of sscanf, both in the method declaration
and at the call site.

CHAPTER 2 ■ ENHANCING THE CODE24

Ch02_6463_CMP2 4/28/06 8:12 AM Page 24

Another set of changes results from replacing the local variable loading/storing instruc-
tions ldloc Retval and stloc Retval with the instructions ldloc.0 and stloc.0, respectively.
IL defines special operation codes for loading/storing the first four local variables on the list,
numbered 0 to 3. This is advantageous because the canonic form of the instruction (ldloc
Retval) compiles into the operation code (ldloc) followed by an unsigned integer indexing the
local variable (in this case 0), and the instructions ldloc.n compile into single-byte operation
codes without parameters.

You might also notice that all branching instructions (br, brfalse, and brtrue) in the
method check are replaced with the short forms of these instructions (br.s, brfalse.s, and
brtrue.s). A standard (long) form of an instruction compiles into an operation code followed
by a 4-byte parameter (in the case of branching instructions, offset from the current position),
whereas a short form compiles into an operation code followed by a 1-byte parameter. This
limits the range of branching to a maxima of 128 bytes backward and 127 bytes forward from
the current point in the IL stream, but in this case you can safely afford to switch to short
forms because the method is rather small.

Short forms that take an integer or unsigned integer parameter are defined for all types of
IL instructions. So even if you declare more than four local variables, you still could save a few
bytes by using the instructions ldloc.s and stloc.s instead of ldloc and stloc, as long as the
index of a local variable does not exceed 255.

The high-level language compilers, emitting the IL code, automatically estimate the
ranges and choose whether a long form or a short form of the instruction should be used in
each particular case. The ILAsm compiler, of course, does nothing of the sort. If you specify a
long or short instruction, the compiler takes it at face value—you are the boss, and you are
supposed to know better. But if you specify a short branching instruction and place the target
label out of range, the ILAsm compiler will diagnose an error.

Once, a colleague of mine came to me complaining that the IL assembler obviously could
not compile the code the ILDASM produced. The disassembler and the assembler are supposed
to work in absolute concert, so I was quite startled by this discovery. A short investigation uncov-
ered the grim truth. In an effort to work out a special method for automatic test program
generation, my colleague was compiling the initial programs written in Visual C# and Visual
Basic .NET, disassembling the resulting executables, inserting test-specific ILAsm segments, and
reassembling the modified code into new executables. The methods in the initial executables,
produced by Visual C# and Visual Basic .NET compilers, were rather small, so the compilers were
emitting the short branching instructions, which, of course, were shown in the disassembly as is.
And every time my colleague’s automatic utility inserted enough additional ILAsm code between
a short branching instruction and its destination, the branching instruction, figuratively speak-
ing, kissed its target label good-bye.

One more change to note in the sample: the instruction ldc.i4 1 was replaced with
ldc.i4.1. The logic here is the same as in the case of replacing ldloc Retval with ldloc.0—in
other words, a shortcut operation code to get rid of a 4-byte integer parameter. The shortcuts
ldc.i4.n exist for n from 0 to 8, and (–1) can be loaded using the operation code ldc.i4.m1.
The short form of the ldc.i4 instruction—ldc.i4.s—works for the integers in the byte range
(from –128 to 127).

Now copy the source file Simple1.il from the Apress Web site, compile it with the console
command ilasm simple1 into an executable (Simple1.exe), and ensure that it runs exactly as
Simple.exe does. Then disassemble both executables side by side using the console commands
ildasm simple.exe /bytes and ildasm simple1.exe /bytes. (The /bytes option makes the

CHAPTER 2 ■ ENHANCING THE CODE 25

Ch02_6463_CMP2 4/28/06 8:12 AM Page 25

disassembler show the actual byte values constituting the IL flow.) Find the check methods in
the tree views of both instances of ILDASM, and double-click them to open disassembly win-
dows, in which you can compare the two implementations of the same method to see whether
the code compaction worked.

Protecting the Code
Thus far, I could have been quite confident that nothing bad would happen when I called the
unmanaged function sscanf from the managed code, so I simply called it. But who knows
what terrible dangers lurk in the deep shadows of unmanaged code? I don’t. So I’d better take
steps to make sure the application behaves in an orderly manner. For this purpose, I can
employ the mechanism of exception handling, which is well known to C++ and Visual C# .NET
programmers.

Examine the light modifications of the sample (source file Simple2.il) shown in Listing 2-2.
As before, I’ve marked the modifications with the CHANGE! comment.

Listing 2-2. Simple2.il, Modified Again

//----------- Program header
.assembly extern mscorlib { auto }
.assembly OddOrEven { }
.module OddOrEven.exe
//----------- Class Declaration
.namespace Odd.or {
.class public auto ansi Even

extends [mscorlib]System.Object {
//------------ Field declaration

.field public static int32 val
//------------ Method declaration

.method public static void check() cil managed {
.entrypoint
.locals init (int32 Retval)

AskForNumber:
ldstr "Enter a number"
call void [mscorlib]System.Console::WriteLine(string)
.try { // CHANGE!
// Guarded block begins
call string [mscorlib]System.Console::ReadLine()
// pop // CHANGE!
// ldnull // CHANGE!
ldstr "%d"
ldsflda int32 Odd.or.Even::val
call vararg int32 sscanf(string,string,...,int32*)
stloc.0
leave.s DidntBlowUp // CHANGE!
// Guarded block ends

} // CHANGE!

CHAPTER 2 ■ ENHANCING THE CODE26

Ch02_6463_CMP2 4/28/06 8:12 AM Page 26

// CHANGE block begins! --->
catch [mscorlib]System.Exception
{ // Exception handler begins
pop
ldstr "KABOOM!"
call void [mscorlib]System.Console::WriteLine(string)
leave.s Return

} // Exception handler ends
DidntBlowUp:
// <--- CHANGE block ends!
ldloc.0
brfalse.s Error
ldsfld int32 Odd.or.Even::val
ldc.i4.1
and
brfalse.s ItsEven
ldstr "odd!"
br.s PrintAndReturn

ItsEven:
ldstr "even!"
br.s PrintAndReturn

Error:
ldstr "How rude!"

PrintAndReturn:
call void [mscorlib]System.Console::WriteLine(string)
ldloc.0
brtrue.s AskForNumber

Return: // CHANGE!
ret

} // End of method
} // End of class

} // End of namespace
//----------- Calling unmanaged code
.method public static pinvokeimpl("msvcrt.dll" cdecl)

vararg int32 sscanf(string,string) cil managed { }

What are these changes? One involves enclosing the “dangerous” part of the code in the
scope of the so-called try block (or guarded block), which prompts the runtime to watch for
exceptions thrown while executing this code segment. The exceptions are thrown if anything
out of order happens—for example, a memory access violation or a reference to an undefined
class or method.

.try {
// Guarded block begins
call string [mscorlib]System.Console::ReadLine()
ldstr "%d"
ldsflda int32 Odd.or.Even::val
call vararg int32 sscanf(string,string,...,int32*)

CHAPTER 2 ■ ENHANCING THE CODE 27

Ch02_6463_CMP2 4/28/06 8:12 AM Page 27

stloc.0
leave.s DidntBlowUp
// Guarded block ends

}

Note that the try block ends with the instruction leave.s DidntBlowUp. This instruction—
leave.s being a short form of leave—switches the computation flow to the location marked
with the label DidntBlowUp. You cannot use a branching instruction here because, according to
the rules of the common language runtime exception handling mechanism strictly enforced
by the JIT compiler, the only legal way out of a try block is via a leave instruction.

This limitation is caused by an important function performed by the leave instruction:
before switching the computation flow, it unwinds the stack (strips off all the items currently
on the stack), and if these items are references to object instances, it disposes of them. That is
why I need to store the value returned by the sscanf function in the local variable Retval
before using the leave instruction; if I tried to do it later, the value would be lost.

catch [mscorlib]System.Exception indicates I plan to intercept any exception thrown
within the protected segment and handle this exception:

{
...
leave.s DidntBlowUp
// Guarded block ends

}
catch [mscorlib]System.Exception
{ // Exception handler begins

pop
...

}

Because I am intercepting any exception, I specified a base managed exception type
([mscorlib]System.Exception), a type from which all managed exception types are derived.
Technically, I could call [mscorlib]System.Exception the “mother of all exceptions,” but the
proper term is somehow less colloquial: the “inheritance root of all exceptions.”

Mentioning another, more specific, type of exception in the catch clause—in this case,
[mscorlib]System.NullReferenceException—would indicate I am prepared to handle only this
particular type of exception and that exceptions of other types should be handled elsewhere.
This approach is convenient if you want to have different handlers for different types of excep-
tions (which is less error prone and is considered a better programming style), and it’s the
reason this mechanism is referred to as structured exception handling.

Immediately following the catch clause is the exception handler scope (the handler block):

catch [mscorlib]System.Exception
{ // Exception handler begins
pop
ldstr "KABOOM!"
call void [mscorlib]System.Console::WriteLine(string)
leave.s Return

} // Exception handler ends

CHAPTER 2 ■ ENHANCING THE CODE28

Ch02_6463_CMP2 4/28/06 8:12 AM Page 28

When an exception is intercepted and the handler block is entered, the only thing present
on the stack is always the reference to the intercepted exception—an instance of the exception
type. In implementing this handler, I don’t want to take pains analyzing the caught exception,
so I can simply get rid of it using the instruction pop. In this simple application, it’s enough to
know that an exception has occurred, without reviewing the details.

Then I load the string constant "KABOOM!" onto the stack, print this string by using the
console output method [mscorlib]System.Console::WriteLine(string), and switch to the
label Return by using the instruction leave.s. The rule “leave only by leave” applies to the
handler blocks as well as to the try blocks. I could not simply load the string "KABOOM!" onto
the stack and leave to PrintAndReturn; the leave.s instruction would remove this string from
the stack, leaving nothing with which to call WriteLine.

You might be wondering why, if I am trying to protect the call to the unmanaged function
sscanf, I included three preceding instructions in the try block? Why not include only the call
to sscanf in the scope of .try?

ldstr "Enter a number"
call void [mscorlib]System.Console::WriteLine(string)
.try {

// Guarded block begins
call string [mscorlib]System.Console::ReadLine()
ldstr "%d"
ldsflda int32 Odd.or.Even::val
call vararg int32 sscanf(string,string,..., int32*)
stloc.0
leave.s DidntBlowUp
// Guarded block ends

}

According to the exception handling rules, a guarded segment (a try block) can begin
only when the method stack is empty. The closest such moment before the call to sscanf was
immediately after the call to [mscorlib]System.Console::WriteLine(string), which took the
string "Enter a number" from the stack and put nothing back. Because the three instructions
immediately preceding the call to sscanf are loading the call arguments onto the stack, you
must open the guarded segment before any of these instructions are executed.

Perhaps you’re puzzled by what seems to be a rather strict limitation. Why can’t you begin
and end a try block anywhere you want, as you can in C++? Well, the truth is that you can do it
the same way you do it in C++, but no better.

The high-level language compilers work in such a way that every completed statement in
a high-level language is compiled into a sequence of instructions that begins and ends with
the stack empty. In C++, the try block would look like this:

try {
Retval = sscanf(System.Console::ReadLine(),

"%d", &val);
}

This feature of high-level language compilers is so universal that all high-level language
decompilers use these empty-stack points within the instruction sequence to identify the
beginnings and ends of completed statements.

CHAPTER 2 ■ ENHANCING THE CODE 29

Ch02_6463_CMP2 4/28/06 8:12 AM Page 29

The last task remaining is to test the protection. Copy the source file Simple2.il from the
Apress Web site into your working directory, and compile it with the console command ilasm
simple2 into the executable Simple2.exe. Test it to ensure it runs exactly as the previous sam-
ples do.

Now I’ll simulate A Horrible Disaster Within Unmanaged Code. Load the source file Sim-
ple2.il into any text editor, and uncomment the instructions pop and ldnull within the try block:

.try {
// Guarded block begins
call string [mscorlib]System.Console::ReadLine()
pop
ldnull
ldstr "%d"
ldsflda int32 Odd.or.Even::val
call vararg int32 sscanf(string,string,..., int32*)
stloc.0
leave.s DidntBlowUp
// Guarded block ends

}

The instruction pop removes from the stack the string returned by ReadLine, and ldnull
loads a null reference instead. The null reference is marshaled to the unmanaged sscanf as a
null pointer. Sscanf is not prepared to take it and will try to dereference the null pointer. The
platform operating system will throw the unmanaged exception Memory Access Violation,
which is intercepted by the common language runtime and converted to a managed excep-
tion of type System.NullReferenceException, which in turn is intercepted by the .try-catch
protection. The application will then terminate gracefully.

Recompile Simple2.il, and try to run the resulting executable. You will get nothing worse
than “KABOOM!” displayed on the console.

You can then modify the source code in Simple.il or Simple1.il, adding the same two
instructions, pop and ldnull, after the call to System.Console::ReadLine. Recompile the source
file to see how it runs without structured exception handling protection.

Summary
Now you know how to write more compact IL code and how to use managed exception han-
dling to protect it from crashes.

Managed exception handling is important in .NET programming because the managed
methods of the .NET Framework class library (and even separate IL instructions) routinely
throw exceptions instead of returning error codes.
In the next chapter, I will show you how to make IL programming a little less boring.

CHAPTER 2 ■ ENHANCING THE CODE30

Ch02_6463_CMP2 4/28/06 8:12 AM Page 30

Making the Coding Easier

I don’t know about you, but for me this endless typing and retyping of the same code again
and again is fun way below the average. Let’s see how ILAsm 2.0 can make this work less
tedious. There are three useful additions to the assembler syntax that can be exploited: alias-
ing, compilation control directives, and special keywords for the current class and its parent.

Aliasing
In the sample Simple2.il presented in the previous chapter, the methods of console input/
output were called four times (one time for input and three times for output). And every time
I had to type [mscorlib]System.Console::WriteLine or [mscorlib]System.Console::ReadLine.
In ILAsm 1.0 and 1.1 I had no choice, but in ILAsm 2.0 I can use aliasing, assigning new short
names to methods, classes, and so on.

Listing 3-1 shows the simple sample from the previous chapters with aliasing (source file
Simple3.il). And, by the way, while at it, let’s get rid of unnecessary default declarations.

Listing 3-1. Simple3.il with Aliasing

//----------- Program header
.assembly extern mscorlib { auto }
.assembly OddOrEven { }
.module OddOrEven.exe
//----------- Aliasing
.typedef [mscorlib]System.Console as TTY
.typedef method void TTY::WriteLine(string) as PrintLine
//----------- Class Declaration
.class public Odd.Or.Even {
//------------ Field declaration
.field public static int32 val

//------------ Method declaration
.method public static void check() {
.entrypoint
.locals init (int32 Retval)

AskForNumber:
ldstr "Enter a number"
call PrintLine
.try { 31

C H A P T E R 3

■ ■ ■

Ch03_6463_CMP2 4/28/06 8:16 AM Page 31

// Guarded block begins
call string TTY::ReadLine()
// pop
// ldnull
ldstr "%d"
ldsflda int32 Odd.or.Even::val
call vararg int32 sscanf(string,string,...,int32*)
stloc.0
leave.s DidntBlowUp
// Guarded block ends

}
catch [mscorlib]System.Exception
{ // Exception handler begins
pop
ldstr "KABOOM!"
call PrintLine
leave.s Return

} // Exception handler ends
DidntBlowUp:
ldloc.0
brfalse.s Error
ldsfld int32 Odd.or.Even::val
ldc.i4.1
and
brfalse.s ItsEven
ldstr "odd!"
br.s PrintAndReturn

ItsEven:
ldstr "even!"
br.s PrintAndReturn

Error:
ldstr "How rude!"

PrintAndReturn:
call PrintLine
ldloc.0
brtrue.s AskForNumber

Return:
ret

} // End of method
} // End of class
//------------ Calling unmanaged code
.method public static pinvokeimpl("msvcrt.dll" cdecl)

vararg int32 sscanf(string,string) { }

CHAPTER 3 ■ MAKING THE CODING EASIER32

Ch03_6463_CMP2 4/28/06 8:16 AM Page 32

Right after the program header, I have defined the aliases of class [mscorlib]System.Console
and of its method WriteLine(string):

//----------- Aliasing
.typedef [mscorlib]System.Console as TTY
.typedef method void TTY::WriteLine(string) as PrintLine

Aliases in ILAsm are introduced by the .typedef keyword—this is similar to the typedef
keyword in C. (Note that this is not related to the TypeDef mentioned in Chapter 1—an entry
in a metadata table that describes a class or value type.) Aliases can be defined for a class, a
method, a field, or a custom attribute. (Custom attributes are described in Chapter 16.) Once
an alias is introduced, it can be used anywhere instead of the aliased item. You have probably
noticed that the second aliasing directive uses the alias defined by the first aliasing directive.

When a method is being aliased, its definition starts with the keyword method and
includes the full name and signature of the aliased method. The same approach is used when
aliasing a field, but in this case, of course, the leading keyword is field. Aliasing the custom
attributes should not concern you at the moment (because I have not explained yet what a
custom attribute is), so I suggest waiting until Chapter 16.

The aliases are defined modulewide, which means once you define an alias, you can use it
anywhere in this module. It also means once you define an alias, you cannot redefine it within
this module. This is different from the C++ aliasing provided by the typedef directive, which
can be scoped to a class or a method.

The aliases must be defined lexically before they are used.
The alias names must be unique within the module; you cannot alias two different things

and name both of them, say, Foo. On the other hand, you can alias the same item (class,
method, field, or custom attribute) more than once. The following is perfectly legal:

.typedef [mscorlib]System.Console as TTY

.typedef [mscorlib]System.Console as CON

...
call void TTY::WriteLine(string)

...
call void CON::WriteLine(string)

An interesting feature of aliases is that they survive round-tripping (assembling and disas-
sembling). If you compile Simple3.il and then disassemble the resulting file Simple3.exe, you
will see the aliases TTY and PrintLine all present and accounted for. This is because the ILAsm
compiler stores all aliases in the metadata of the emitted module, and the disassembler looks
for the aliases and uses them.

You might also notice that I got rid of the .namespace directive and declared the class
Odd.Or.Even by its full name. This is another feature of ILAsm 2.0 that, in my opinion, makes
the programmer’s life easier, because this way the classes are defined and referenced uni-
formly. Besides, using the .namespace directive led to interesting questions such as, “If I define
a global method Z within namespace X.Y, should I refer to this method as X.Y::Z?” (The answer
is no, you refer to it as Z; namespaces are for the classes only.)

This does not mean, of course, that ILAsm 2.0 does not understand the .namespace direc-
tive. ILAsm 2.0 is fully backward compatible, which means it can compile the sources the
previous versions could compile.

CHAPTER 3 ■ MAKING THE CODING EASIER 33

Ch03_6463_CMP2 4/28/06 8:16 AM Page 33

Compilation Control Directives
Those of you who have programmed in C/C++ (and I suspect it is the majority of the readers of
this book) are probably holding nostalgic memories of useful preprocessor directives such as
#include, #define, #ifdef, and so on. Rejoice, my friends, for ILAsm 2.0 supports some of
those directives. No, it does not support all of them; there are way too many.

Listing 3-2 shows some light modifications of the sample (source file Simple4.il).

Listing 3-2. Simple4.il

// #define USE_MAPPED_FIELD
// #define BLOW_UP
//----------- Program header
.assembly extern mscorlib { auto }
.assembly OddOrEven { }
.module OddOrEven.exe
//----------- Aliasing
.typedef [mscorlib]System.Console as TTY
.typedef method void TTY::WriteLine(string) as PrintLine
//----------- Class Declaration
.class public Odd.Or.Even {
//------------ Field declaration
.field public static int32 val
//------------ Method declaration
.method public static void check() {
.entrypoint
.locals init (int32 Retval)

AskForNumber:
ldstr "Enter a number"
call PrintLine
.try {
// Guarded block begins
call string TTY::ReadLine()

#ifdef BLOW_UP
pop
ldnull

#endif

#ifdef USE_MAPPED_FIELD
ldsflda valuetype CharArray8 Format
ldsflda int32 Odd.or.Even::val
call vararg int32 sscanf(string,int8*,...,int32*)

#else
ldstr "%d"
ldsflda int32 Odd.or.Even::val
call vararg int32 sscanf(string,string,...,int32*)

#endif
stloc.0

CHAPTER 3 ■ MAKING THE CODING EASIER34

Ch03_6463_CMP2 4/28/06 8:16 AM Page 34

leave.s DidntBlowUp
// Guarded block ends

}
catch [mscorlib]System.Exception
{ // Exception handler begins
pop
ldstr "KABOOM!"
call PrintLine
leave.s Return

} // Exception handler ends
DidntBlowUp:
ldloc.0
brfalse.s Error
ldsfld int32 Odd.or.Even::val
ldc.i4.1
and
brfalse.s ItsEven
ldstr "odd!"
br.s PrintAndReturn

ItsEven:
ldstr "even!"
br.s PrintAndReturn

Error:
ldstr "How rude!"

PrintAndReturn:
call PrintLine
ldloc.0
brtrue.s AskForNumber

Return:
ret

} // End of method
} // End of class
#ifdef USE_MAPPED_FIELD
//----------- Global items
.field public static valuetype CharArray8 Format at FormatData
//----------- Data declaration
.data FormatData = bytearray(25 64 00 00 00 00 00 00)
//----------- Value type as placeholder
.class public explicit value CharArray8 { .size 8 }
//----------- Calling unmanaged code
.method public static pinvokeimpl("msvcrt.dll" cdecl)

vararg int32 sscanf(string,int8*) { }
#else
//------------ Calling unmanaged code
.method public static pinvokeimpl("msvcrt.dll" cdecl)

vararg int32 sscanf(string,string) { }
#endif

CHAPTER 3 ■ MAKING THE CODING EASIER 35

Ch03_6463_CMP2 4/28/06 8:16 AM Page 35

This sample shows how to use the conditional compilation directives #ifdef, #else, and
#endif. You need only to uncomment the directive #define USE_MAPPED_FIELD to switch back
to passing the format string to sscanf as a byte array (as in sample Simple.il from Chapter 1).
And if you uncomment the directive #define BLOW_UP, you will be able to simulate A Horrible
Disaster Within Unmanaged Code (as in the sample Simple2.il from Chapter 2).

The compilation control directives supported by the ILAsm 2.0 compiler include the
following:

#include "MyHeaderFile.il": Effectively inserts the contents of the file MyHeaderFile.il
at the present location. I say “effectively” because the compilation control directives of
ILAsm 2.0 are not in fact the preprocessor directives, so no intermediate preprocessed file
is created like during C/C++ compilation. Instead, the ILAsm compiler, having encoun-
tered an #include directive, suspends the parsing of the current source file and switches
to the included file. Once done with the included file, the compiler resumes the parsing
of the current file. Note that the name of the included file must be in quotes. The form
#include <MyHeaderFile.il> is not supported. The compiler looks for the included file
in the current directory and on the include path, which may be specified in the com-
mand-line option /INC=<include_path> or in the environment variable ILASM_INCLUDE.
Alternatively, you can specify the path to the included file in the #include directive itself.
In this case, the compiler does not search the include path even if it is specified. If the
included file is not found, the compiler aborts the compilation.

#define SYM1: Defines a compilation control symbol named SYM1. You can define the
compilation control symbols only once in the source code; there is no command-line
option to set these symbols (yes, I realize it’s an omission).

#define SYM2 "SomeText": Defines a substitution symbol named SYM2 with the content
"SomeText". The content must be in quotes always. The compiler will replace every occur-
rence of SYM2 in the source code with SomeText. The content of a substitution symbol can
be whatever you like, but it cannot be part of a syntactic unit (such as a number, a name,
or a keyword), only a full syntactic unit or a combination of those. For example, you could
write the following:

#define MyFld="int32 Odd.Or.Even::val"
...

ldflda MyFld

#undef SYM1: Undefines the compilation control symbol or substitution symbol named
SYM1. You cannot use SYM1 in the code lexically following this directive. But you can rede-
fine SYM1 by another #define directive and use it again after that.

#ifdef SYM: Compiles the following code if symbol SYM is defined.

#ifndef SYM: Compiles the following code if symbol SYM is not defined.

#else: I don’t think I need to explain this one.

#endif: Ends the #ifdef/#ifndef or #ifdef/#ifndef-#else block. You can nest the condi-
tional compilation blocks, just like in C/C++.

CHAPTER 3 ■ MAKING THE CODING EASIER36

Ch03_6463_CMP2 4/28/06 8:16 AM Page 36

Referencing the Current Class and Its Relatives
Does it not look silly that in a member method check, of class Odd.Or.Even, we have to address
this very class’s member field as Odd.Or.Even::val?

ILAsm 2.0 offers three special keywords to refer to current class, the parent of the current
class, and the encloser of the current class if the current class is nested (see Chapter 7 for
details).

The keyword .this means the current class (not the current instance of the class, like the
this keyword in C++ or C#). When used outside class scope, this keyword causes a compila-
tion error. In the sample’s code, instead of the following:

ldsflda int32 Odd.or.Even::val

you could use this:

ldsflda int32 .this::val

The keyword .base means the parent of the current class. This keyword must also be used
only within a class scope, and the class must have a parent (an explicit or implicit extends
clause). I haven’t used a reference to the parent of the Odd.Or.Even class in the samples, but
such references usually are numerous in code. For example, class Odd.Or.Even has no construc-
tor, because it has only static members, so you don’t need to instantiate it. But most classes
have constructors, and the first step the class’s constructor must take is to call the parent’s con-
structor. Even if you don’t need to do something special during the class construction, you still
need a default constructor if you plan to instantiate the class. The following example defines a
default constructor and is very useful in IL programming:

#define DEFLT_CTOR
".method public specialname void .ctor()

{ ldarg.0; call instance void .base::.ctor(); ret;}"

(Did you notice the semicolons? ILAsm 2.0 allows the semicolons to be used for source
readability, such as when you want to put several instructions on the same line. Semicolons
are not required and have no role except a cosmetic one.)

And after DEFLT_CTOR symbol has been defined, you can use it every time you need to
declare a default constructor of some class:

.class public A.B.C extends X.Y.Z
{
DEFLT_CTOR
...

}
.class public D.E extends [mscorlib]System.Object
{
DEFLT_CTOR
...

}

CHAPTER 3 ■ MAKING THE CODING EASIER 37

Ch03_6463_CMP2 4/28/06 8:16 AM Page 37

Could you use aliasing (the .typedef directive) to define DEFLT_CTOR? No, because the defini-
tion of DEFLT_CTOR contains .base, which is defined only in a class scope and means different
classes in different class scopes. This is the principal difference between .typedef and #define
directives: the first provides an alternative name for a certain metadata item (class, method,
field, custom attribute), and the second provides just “a named piece of text” to be inserted into
the source code and interpreted according to the context.

The keyword .nester denotes the enclosing class of a nested class. A nested class is a class
defined within the scope of another class (see Chapter 7 for details). This keyword can be used
only within the scope of a nested class.

Summary
Please don’t forget that the features discussed in this chapter are supported only in ILAsm 2.0.

These first three chapters did make for a quick start, didn’t they? Well, I promised you a
light cavalry raid into hostile territories, and you got just that. By now you should be able to
understand in general the text output the IL disassembler produces. I hope too you are inter-
ested in a more detailed and systematic discussion of what is going on inside the common
language runtime and how you can use ILAsm to describe it.

From now on, the operative words are detailed and systematic. No more cavalry charges!

CHAPTER 3 ■ MAKING THE CODING EASIER38

Ch03_6463_CMP2 4/28/06 8:16 AM Page 38

Underlying Structures

P A R T 2

■ ■ ■

Ch04_6463_CMP3 5/3/06 9:27 AM Page 39

Ch04_6463_CMP3 5/3/06 9:27 AM Page 40

The Structure of a
Managed Executable File

Chapter 1 introduced the managed executable file, known as a managed module and executed
in the environment of the common language runtime. In this chapter, I’ll show you the general
structure of such a file. The file format of a managed module is an extension of the standard
Microsoft Windows Portable Executable and Common Object File Format (PE/COFF). Thus,
formally, any managed module is a proper PE/COFF file, with additional features that identify
it as a managed executable file.

The file format of a managed module conforms to the Windows PE/COFF standard,
and the operating system treats the managed module as an executable. And the extended,
common language runtime–specific information allows the runtime to immediately seize
control over the module execution as soon as the operating system invokes the module.
Figure 4-1 shows the structure of a managed PE/COFF file.

Figure 4-1. The general structure of a managed executable file

PE / COFF Headers

(Information Consumed by the
Operating System)

CLR Header

(Information Consumed by the
Common Language Runtime)

CLR Data
(Metadata, IL Code, Managed
Structured Exeption Handling

Information, Managed Resources)

Native Data and Code
(If Any)

41

C H A P T E R 4

■ ■ ■

Ch04_6463_CMP3 5/3/06 9:27 AM Page 41

Since ILAsm produces only PE files, this chapter concentrates on managed PE files—
executables, also known as image files because they can be thought of as “memory images”—
rather than pure COFF object files. (Actually, only one of the current managed compilers,
Microsoft Visual C++, produces object files as an intermediate step to PE files.)

This analysis of the managed PE file structure employs the following common definitions:

File pointer: The location of an item within the file itself, before it is processed by the
loader. This location is a position (an offset) within the file as it is stored on disk.

Relative virtual address (RVA): The address of an item once it has been loaded into mem-
ory, with the base address of the image file subtracted from it—in other words, the offset
of an item within the image file loaded into memory. The RVA of an item almost always
differs from its position within the file on disk (the file pointer).

Virtual address (VA): The same as the RVA except that the base address of the image file is
not subtracted. The address is referred to as virtual because the operating system creates
a distinct virtual address space for each process, independent of physical memory. For
almost all purposes, a virtual address should be considered simply as an address. A virtual
address is not as predictable as an RVA because the loader might not load the image at its
preferred location if a conflict exists with any image file already loaded—a base address
conflict.

Section: The basic unit of code or data within a PE/COFF file. In addition to code and data
sections, an image file can contain a number of sections, such as .tls (thread local storage)
or .reloc (relocations), that have special purposes. All the raw data in a section must be
loaded contiguously.

Throughout this chapter (and indeed throughout the book), I use the term managed com-
piler to mean a compiler that targets the common language runtime and produces managed
PE files. The term does not necessarily imply that the compiler itself is a managed application.

PE/COFF Headers
Figure 4-2 illustrates the structure of operating system–specific headers of a PE file. The head-
ers include an MS-DOS header and stub, the PE signature, the COFF header, the PE header,
and section headers. The following sections discuss all these components and the data direc-
tory table in the PE header.

MS-DOS Header/Stub and PE Signature
The MS-DOS header and stub are present in image files only. Placed at the beginning of an
image file, they represent a valid application that runs under MS-DOS. (Isn’t that exciting?) The
default stub prints the message “This program cannot be run in DOS mode” when the image file
is run in MS-DOS. This is probably the least interesting part of operating system–specific head-
ers; the only relevant fact is that the MS-DOS header, at offset 0x3C, contains the file pointer to
the PE signature, which allows the operating system to properly execute the image file.

CHAPTER 4 ■ THE STRUCTURE OF A MANAGED EXECUTABLE F ILE42

Ch04_6463_CMP3 5/3/06 9:27 AM Page 42

Figure 4-2. The memory layout of operating system–specific headers

The PE signature that usually (but not necessarily) immediately follows the MS-DOS stub
is a 4-byte item, identifying the file as a PE format image file. The signature contains the char-
acters P and E, followed by 2 null bytes.

COFF Header
A standard COFF header is located immediately after the PE signature. The COFF header
provides the most general characteristics of a PE/COFF file, applicable to both object and
executable files. Table 4-1 describes the structure of the COFF header and the meaning of
its fields.

COFF Header
(20 Bytes)

PE Header
(224 Bytes)

Data Directory Table

Section Headers

PE Signature
(4 Bytes)

MS DOS Header
(64 Bytes)

MS DOS Stub
(64 Bytes)

CHAPTER 4 ■ THE STRUCTURE OF A MANAGED EXECUTABLE F ILE 43

Ch04_6463_CMP3 5/3/06 9:27 AM Page 43

Table 4-1. The Format of a COFF Header

Offset Size Field Name Description

0 2 Machine Number identifying the type of target machine.
(See Table 4-2.) If the managed PE file is intended for
various machine types, this field should be set to
IMAGE_FILE_MACHINE_I386 (0x014C). The IL
assembler has the command options /ITANIUM and
/X64 to specify IMAGE_FILE_MACHINE_IA64 and
IMAGE_FILE_MACHINE_AMD64 values, respectively.

2 2 NumberOfSections Number of entries in the section table, which
immediately follows the headers.

4 4 TimeDateStamp Time and date of file creation.

8 4 PointerToSymbolTable File pointer of the COFF symbol table. As this table is
never used in managed PE files, this field must be set to 0.

12 4 NumberOfSymbols Number of entries in the COFF symbol table. This field
must be set to 0 in managed PE files.

16 2 SizeOfOptionalHeader Size of the PE header. This field is specific to PE files; it
is set to 0 in COFF files.

18 2 Characteristics Flags indicating the attributes of the file. (See Table 4-3.)

The structure of the standard COFF header is defined in Winnt.h as follows:

typedef struct _IMAGE_FILE_HEADER {
WORD Machine;
WORD NumberOfSections;
DWORD TimeDateStamp;
DWORD PointerToSymbolTable;
DWORD NumberOfSymbols;
WORD SizeOfOptionalHeader;
WORD Characteristics;

} IMAGE_FILE_HEADER, *PIMAGE_FILE_HEADER;

The Machine types are also defined in Winnt.h, as listed in Table 4-2. Each type is named
IMAGE_FILE_MACHINE_XXX, which I will abbreviate to _XXX to avoid repetition.

Table 4-2. The Machine Field Values

Constant Value Description
(IMAGE_FILE_MACHINE…)

_UNKNOWN 0 Contents assumed to be applicable to any machine type—
for unmanaged PE files only.

_I386 0x014c Intel 386 or later. For pure managed PE files, contents are
applicable to any machine type.

_R3000 0x0162 MIPS little endian—the least significant byte precedes the
most significant byte. 0x0160 big endian—the most
significant byte precedes the least significant byte.

_R4000 0x0166 MIPS little endian.
Continued

CHAPTER 4 ■ THE STRUCTURE OF A MANAGED EXECUTABLE F ILE44

Ch04_6463_CMP3 5/3/06 9:27 AM Page 44

Table 4-2. Continued

Constant Value Description
(IMAGE_FILE_MACHINE…)

_R10000 0x0168 MIPS little endian.

_WCEMIPSV2 0x0169 MIPS little endian running Microsoft Windows CE 2.

_ALPHA 0x0184 Alpha AXP.

_SH3 0x01a2 SH3 little endian.

_SH3DSP 0x01a3 SH3DSP little endian.

_SH3E 0x01a4 SH3E little endian.

_SH4 0x01a6 SH4 little endian.

_ARM 0x01c0 ARM little endian.

_THUMB 0x01c2 ARM processor with Thumb decompressor.

_AM33 0x01d3 AM33 processor.

_POWERPC 0x01F0 IBM PowerPC little endian.

_POWERPCFP 0x01F1 IBM PowerPC little endian with floating-point unit (FPU).

_IA 64 0x0200 Intel IA64 (Itanium).

_MIPS16 0x0266 MIPS.

_ALPHA64 0x0284 ALPHA AXP64.

_AXP64 0x0284 ALPHA AXP64.

_MIPSFPU 0x0366 MIPS with FPU.

_MIPSFPU16 0x0466 MIPS16 with FPU.

_TRICORE 0x0520 Infineon.

_AMD64 0x8664 AMD X64 and Intel E64T architecture.

_M32R 0x9041 M32R little endian.

The Characteristics field of a COFF header contains flags that indicate attributes of the
PE/COFF file. These flags are defined in Winnt.h, as shown in Table 4-3. Notice that the table
refers to pure-IL managed PE files; pure IL indicates that the image file contains no embedded
native code.

The names of the flags all begin with IMAGE_FILE, which I will omit for clarity.

Table 4-3. The Characteristics Field Values

Flag (IMAGE_FILE…) Value Description

_RELOCS_STRIPPED 0x0001 Image file only. This flag indicates that the file
contains no base relocations and must be loaded at
its preferred base address. In the case of base
address conflict, the OS loader reports an error.
This flag should not be set for managed PE files.

_EXECUTABLE_IMAGE 0x0002 Flag indicates that the file is an image file (EXE or
DLL). This flag should be set for managed PE files.
If it is not set, this generally indicates a linker error.

Continued

CHAPTER 4 ■ THE STRUCTURE OF A MANAGED EXECUTABLE F ILE 45

Ch04_6463_CMP3 5/3/06 9:27 AM Page 45

Table 4-3. Continued

Flag (IMAGE_FILE…) Value Description

_LINE_NUMS_STRIPPED 0x0004 COFF line numbers have been removed. This flag
should be set for managed PE files because they do
not use the debug information embedded in the PE
file itself. Instead, the debug information is saved in
accompanying program database (PDB) files.

_LOCAL_SYMS_STRIPPED 0x0008 COFF symbol table entries for local symbols have
been removed. This flag should be set for managed
PE files, for the reason given in the preceding entry.

_AGGRESIVE_WS_TRIM 0x0010 Aggressively trim the working set. This flag should
not be set for pure-IL managed PE files.

_LARGE_ADDRESS_AWARE 0x0020 Application can handle addresses beyond the
2GB range. This flag should not be set for pure-IL
managed PE files of versions 1.0 and 1.1 but can be
set for v2.0 files.

_BYTES_REVERSED_LO 0x0080 Little endian. This flag should not be set for pure-IL
managed PE files.

_32BIT_MACHINE 0x0100 Machine is based on 32-bit architecture. This flag
is usually set by the current versions of code
generators producing managed PE files. Version 2.0
and newer, however, can produce 64-bit specific
images, which don’t have this flag set.

_DEBUG_STRIPPED 0x0200 Debug information has been removed from the
image file.

_REMOVABLE_RUN_FROM_SWAP 0x0400 If the image file is on removable media, copy and
run it from the swap file. This flag should not be set
for pure-IL managed PE files.

_NET_RUN_FROM_SWAP 0x0800 If the image file is on a network, copy and run it
from the swap file. This flag should not be set for
pure-IL managed PE files.

_SYSTEM 0x1000 The image file is a system file (for example, a device
driver). This flag should not be set for pure-IL
managed PE files.

_DLL 0x2000 The image file is a DLL rather than an EXE. It
cannot be directly run.

_UP_SYSTEM_ONLY 0x4000 The image file should be run on a uniprocessor
machine only. This flag should not be set for
pure-IL managed PE files.

_BYTES_REVERSED_HI 0x8000 Big endian. This flag should not be set for pure-IL
managed PE files.

The typical Characteristics value produced by existing PE file generators—the one
employed by the VC++ linker as well as the one used by all the rest of the Microsoft managed
compilers, including ILAsm—for an EXE image file is 0x010E (IMAGE_FILE_EXECUTABLE_
IMAGE | IMAGE_FILE_LINE_NUMS_STRIPPED | IMAGE_FILE_LOCAL_SYMS_STRIPPED |
IMAGE_FILE_32BIT_MACHINE).

For a DLL image file, this value is 0x210E (IMAGE_FILE_EXECUTABLE_IMAGE | IMAGE_
FILE_LINE_NUMS_STRIPPED | IMAGE_FILE_LOCAL_SYMS_STRIPPED | IMAGE_FILE_
32BIT_MACHINE | IMAGE_FILE_DLL).

CHAPTER 4 ■ THE STRUCTURE OF A MANAGED EXECUTABLE F ILE46

Ch04_6463_CMP3 5/3/06 9:27 AM Page 46

In version 2.0 of the common language runtime (CLR), the Characteristics value may have
no IMAGE_FILE_32BIT_MACHINE flag if the image is generated for a 64-bit target platform.

PE Header
The PE header, which immediately follows the COFF header, provides information for the OS
loader. Although this header is referred to as the optional header, it is optional only in the
sense that object files usually don’t contain it. For PE files, this header is mandatory.

The size of the PE header is not fixed. It depends on the number of data directories
defined in the header and is specified in the SizeOfOptionalHeader field of the COFF header.
The structure of the PE header is defined in Winnt.h as follows:

typedef struct _IMAGE_OPTIONAL_HEADER {
// Standard fields
WORD Magic;
BYTE MajorLinkerVersion;
BYTE MinorLinkerVersion;
DWORD SizeOfCode;
DWORD SizeOfInitializedData;
DWORD SizeOfUninitializedData;
DWORD AddressOfEntryPoint;
DWORD BaseOfCode;
DWORD BaseOfData;
// NT additional fields
DWORD ImageBase;
DWORD SectionAlignment;
DWORD FileAlignment;
WORD MajorOperatingSystemVersion;
WORD MinorOperatingSystemVersion;
WORD MajorImageVersion;
WORD MinorImageVersion;
WORD MajorSubsystemVersion;
WORD MinorSubsystemVersion;
DWORD Win32VersionValue;
DWORD SizeOfImage;
DWORD SizeOfHeaders;
DWORD CheckSum;
WORD Subsystem;
WORD DllCharacteristics;
DWORD SizeOfStackReserve;
DWORD SizeOfStackCommit;
DWORD SizeOfHeapReserve;
DWORD SizeOfHeapCommit;
DWORD LoaderFlags;
DWORD NumberOfRvaAndSizes;
IMAGE_DATA_DIRECTORY

DataDirectory[IMAGE_NUMBEROF_DIRECTORY_ENTRIES] ;
} IMAGE_OPTIONAL_HEADER32, *PIMAGE_OPTIONAL_HEADER32;

CHAPTER 4 ■ THE STRUCTURE OF A MANAGED EXECUTABLE F ILE 47

Ch04_6463_CMP3 5/3/06 9:27 AM Page 47

Table 4-4 describes the fields of the PE header.

Table 4-4. PE Header Fields

Offset 32/64 Size 32/64 Field Description

0 2 Magic “Magic number” identifying the state of
the image file. Acceptable values are
0x010B for a 32-bit PE file, 0x020B for a 64-
bit PE file, and 0x107 for a ROM image file.
Managed PE files must have this field set to
0x010B or 0x020B (version 2.0 and later
only, for 64-bit images).

2 1 MajorLinkerVersion Linker major version number. The VC++
linker sets this field to 8; the pure-IL file
generator employed by other compilers
does the same. In earlier versions, this field
was set to 7 and 6, respectively.

3 1 MinorLinkerVersion Linker minor version number.

4 4 SizeOfCode Size of the code section (.text) or the sum
of all code sections if multiple code
sections exist. The IL assembler always
emits a single code section.

8 4 SizeOfInitializedData Size of the initialized data section (held in
the field SizeOfRawData of the respective
section header) or the sum of all such
sections. The initialized data is defined
as specific values, stored in the disk
image file.

12 4 SizeOfUninitializedData Size of the uninitialized data section (.bss)
or the sum of all such sections. This data is
not part of the disk file and does not have
specific values, but the OS loader commits
memory space for this data when the file
is loaded.

16 4 AddressOfEntryPoint RVA of the entry point function. For
unmanaged DLLs, this can be 0. For
managed PE files, this value always points
to the common language runtime
invocation stub.

20 4 BaseOfCode RVA of the beginning of the file’s code
section(s).

24/– 4/– BaseOfData RVA of the beginning of the file’s data
section(s). This entry doesn’t exist in the
64-bit Optional header.

Continued

CHAPTER 4 ■ THE STRUCTURE OF A MANAGED EXECUTABLE F ILE48

Ch04_6463_CMP3 5/3/06 9:27 AM Page 48

Table 4-4. Continued

Offset 32/64 Size 32/64 Field Description

28/24 4/8 ImageBase Image’s preferred starting virtual
address; must be aligned on the
64KB boundary (0x10000). In ILAsm,
this field can be specified explicitly
by the directive .imagebase <integer
value> and/or the command-line
option /BASE=<integer value>. The
command-line option takes
precedence over the directive.

32 4 SectionAlignment Alignment of sections when loaded
in memory. This setting must be
greater than or equal to the value of
the FileAlignment field. The default
is the memory page size.

36 4 FileAlignment Alignment of sections in the disk
image file. The value should be a
power of 2, from 512 to 64,000 0x200
(to 0x10000). If SectionAlignment
is set to less than the memory page
size, FileAlignment must match
SectionAlignment. In ILAsm, this
field can be specified explicitly by
the directive .file alignment
<integer value> and/or the
command-line option
/ALIGNMENT=<integer value>.
The command-line option takes
precedence over the directive.

40 2 MajorOperatingSystemVersion Major version number of the
required operating system.

42 2 MinorOperatingSystemVersion Minor version number of the
required operating system.

44 2 MajorImageVersion Major version number of the
application.

46 2 MinorImageVersion Minor version number of the
application.

48 2 MajorSubsystemVersion Major version number of the
subsystem.

50 2 MinorSubsystemVersion Minor version number of the
subsystem.

52 4 Win32VersionValue Reserved.

56 4 SizeOfImage Size of the image file (in bytes),
including all headers. This field
must be set to a multiple of the
SectionAlignment value.

Continued

CHAPTER 4 ■ THE STRUCTURE OF A MANAGED EXECUTABLE F ILE 49

Ch04_6463_CMP3 5/3/06 9:27 AM Page 49

Table 4-4. Continued

Offset 32/64 Size 32/64 Field Description

60 4 SizeOfHeaders Sum of the sizes of the MS-DOS header
and stub, the COFF header, the PE header,
and the section headers, rounded up to a
multiple of the FileAlignment value.

64 4 CheckSum Checksum of the disk image file.

68 2 Subsystem User interface subsystem required to run
this image file. The values are defined in
Winnt.h and are as follows:
NATIVE (1): No subsystem required (for
example, a device driver).
WINDOWS_GUI (2): Runs in the Windows
GUI subsystem.
WINDOWS_CUI (3): Runs in Windows
console mode.
OS2_CUI (5): Runs in OS/2 1.x console mode.
POSIX_CUI (7): Runs in POSIX console mode.
NATIVE_WINDOWS (8): The image file is a
native Win9x driver.
WINDOWS_CE_GUI (9): Runs in the
Windows CE GUI subsystem.
In ILAsm, this field can be specified
explicitly by the directive .subsystem
<integer value> and/or the command-line
option /SUBSYSTEM=<integer value>. The
command-line option takes precedence
over the directive.

70 2 DllCharacteristics In managed files of v1.0, always set to 0. In
managed files of v1.1 and later, always set
to 0x400: no unmanaged Windows
structural exception handling.

72 4/8 SizeOfStackReserve Size of virtual memory to reserve
for the initial thread’s stack. Only the
SizeOfStackCommit field is committed; the
rest is available in one-page increments.
The default is 1MB for 32-bit images and
4MB for 64-bit images. In ILAsm, this field
can be specified explicitly by the directive
.stackreserve <integer value> and/or
the command-line option /STACK=<integer
value>. The command-line option takes
precedence over the directive.

76/80 4/8 SizeOfStackCommit Size of virtual memory initially committed
for the initial thread’s stack. The default is
one page (4KB) for 32-bit images and 16KB
for 64-bit images.

80/88 4/8 SizeOfHeapReserve Size of virtual memory to reserve
for the initial process heap. Only the
SizeOfHeapCommit field is committed; the
rest is available in one-page increments.
The default is 1MB for both 32-bit and
64bit images.

Continued

CHAPTER 4 ■ THE STRUCTURE OF A MANAGED EXECUTABLE F ILE50

Ch04_6463_CMP3 5/3/06 9:27 AM Page 50

Table 4-4. Continued

Offset 32/64 Size 32/64 Field Description

84/96 4/8 SizeOfHeapCommit Size of virtual memory initially committed
for the process heap. The default is 4KB
(one operating system memory page) for
32-bit images and 2KB for 64-bit images.

88/ 104 4 LoaderFlags Obsolete, set to 0.

92/ 108 4 NumberOfRvaAndSizes Number of entries in the DataDirectory
array; at least 16. Although it is theoretically
possible to emit more than 16 data
directories, all existing managed compilers
emit exactly 16 data directories, with the
16th (last) data directory never used
(reserved).

Data Directory Table
The data directory table starts at offset 96 in a 32-bit PE header and at offset 112 in a 64-bit PE
header. Each entry in the data directory table contains the RVA and size of a table or a string
that this particular directory entry describes; this information is used by the operating system.
The data directory table entry is an 8-byte structure defined in Winnt.h as follows:

typedef struct _IMAGE_DATA_DIRECTORY {
DWORD VirtualAddress;
DWORD Size;

} IMAGE_DATA_DIRECTORY, *PIMAGE_DATA_DIRECTORY;

The first field, named VirtualAddress, is, however, not a virtual address but rather an RVA.
The RVAs given in this table do not necessarily point to the beginning of a section, and the
sections containing specific tables do not necessarily have specific names. The second field is
the size in bytes.

Sixteen standard data directories are defined in the data directory table:

[0] Export Directory table address and size: The Export Directory table contains informa-
tion about four other tables, which hold data describing unmanaged exports of the PE
file. Among managed compilers, only the VC++ linker and ILAsm are capable of exposing
the managed methods exported by a managed PE file as unmanaged exports, to be con-
sumed by an unmanaged caller. See Chapter 18 for details.

[1] Import table address and size: This table contains data on unmanaged imports con-
sumed by the PE file. Among managed compilers, only the VC++ linker make nontrivial
use of this table, importing the unmanaged external functions used in the unmanaged
native code that is embedded within the current, managed PE file. Other compilers,
including the IL assembler, do not embed the unmanaged native code in the managed PE
files, so Import tables of the files produced by these compilers contain a single entry, that
of the CLR entry function.

[2] Resource table address and size: This table contains unmanaged resources embedded
in the PE file; managed resources aren’t part of this data.

CHAPTER 4 ■ THE STRUCTURE OF A MANAGED EXECUTABLE F ILE 51

Ch04_6463_CMP3 5/3/06 9:27 AM Page 51

[3] Exception table address and size: This table contains information on unmanaged
exceptions only.

[4] Certificate table address and size: The address entry points to a table of attribute certifi-
cates (used for the file authentication), which are not loaded into memory as part of the
image file. As such, the first field of this entry is a file pointer rather than an RVA. Each
entry of the table contains a 4-byte file pointer to the respective attribute certificate and
the 4-byte size of it.

[5] Base Relocation table address and size: The base relocations are discussed in detail
later in this chapter; see “Relocation Section.”

[6] Debug data address and size: A managed PE file does not carry embedded debug data;
the debug data is emitted into a PDB file, so this data directory either is all zero or points
to single 30-byte debug directory entry of type 2 (IMAGE_DEBUG_TYPE_CODEVIEW),
which in turn points to a CodeView-style header, containing path to the PDB file. IL
assembler and C# and VB .NET compilers emit this data into the .text section.

[7] Architecture data address and size: Architecture-specific data. This data directory is not
used (set to all zeros) for I386, IA64, or AMD64 architecture.

[8] Global pointer: RVA of the value to be stored in the global pointer register. The size
must be set to 0. This data directory is set to all zeros if the target architecture (for exam-
ple, I386 or AMD64) does not use the concept of a global pointer.

[9] TLS table address and size: Among managed compilers, only the VC++ linker and the IL
assembler are able to produce the code that would use the thread local storage data.

[10] Load Configuration table address and size: Data specific to Windows NT family of
operating system (for example, the GlobalFlag value).

[11] Bound Import table address and size: This table is an array of bound import descrip-
tors, each of which describes a DLL this image was bound up with at the time of the
image creation. The descriptors also carry the time stamps of the bindings, and if the
bindings are up-to-date, the OS loader uses these bindings as a “shortcut” for API import.
Otherwise, the loader ignores the bindings and resolves the imported APIs through the
Import tables.

[12] Import Address table address and size: The Import Address table (IAT) is referenced
from the Import Directory table (data directory 1).

[13] Delay import descriptor address and size: Contains an array of 32-byte ImgDelayDescr
structures, each structure describing a delay-load import. Delay-load imports are DLLs
described as implicit imports but loaded as explicit imports (via calls to the LoadLibrary
API). The load of delay-load DLLs is executed on demand—on the first call into such a
DLL. This differs from the implicit imports, which are loaded eagerly when the importing
executable is initialized.

[14] Common language runtime header address and size: The CLR header structure is
described in detail later in this chapter (see “Common Language Runtime Header”).

[15] Reserved: Set to all zeros.

CHAPTER 4 ■ THE STRUCTURE OF A MANAGED EXECUTABLE F ILE52

Ch04_6463_CMP3 5/3/06 9:27 AM Page 52

Section Headers
The table of section headers must immediately follow the PE header. Since none of the file
headers has a direct pointer to the section table, the location of this table is calculated as the
total size of the file headers plus 1.

The NumberOfSections field of the COFF header defines the number of entries in the
section header table. The section header indexing in the table is one-based, with the order of
the sections defined by the linker. The sections follow one another contiguously in the order
defined by the section header table, with (as you already know) starting RVAs aligned by the
value of the SectionAlignment field of the PE header.

A section header is a 40-byte structure defined in Winnt.h as follows:

typedef struct _IMAGE_SECTION_HEADER {
BYTE Name[8];
union {

DWORD PhysicalAddress;
DWORD VirtualSize;

} Misc;
DWORD VirtualAddress;
DWORD SizeOfRawData;
DWORD PointerToRawData;
DWORD PointerToRelocations;
DWORD PointerToLinenumbers;
WORD NumberOfRelocations;
WORD NumberOfLinenumbers;
DWORD Characteristics;

} IMAGE_SECTION_HEADER, *PIMAGE_SECTION_HEADER;

The fields contained in the IMAGE_SECTION_HEADER structure are as follows:

Name (8-byte ASCII string): Represents the name of the section. Section names start with a
dot (for instance, .reloc). If the section name contains exactly eight characters, the null ter-
minator is omitted. If the section name has fewer than eight characters, the array Name is
padded with null characters. Image files cannot have section names with more than eight
characters. In object files, however, section names can be longer. (Imagine a long-winded
file generator emitting a section named .myownsectionnobodyelsecouldevergrok.) In this
case, the name is placed in the string table, and the field contains the slash (/) character
in the first byte, followed by an ASCII string containing a decimal representation of the
respective offset in the string table.

PhysicalAddress/VirtualSize (4-byte unsigned integer): In image files, this field holds the
actual (unaligned) size in bytes of the code or data in this section.

VirtualAddress (4-byte unsigned integer): Despite its name, this field holds the RVA of the
beginning of the section.

SizeOfRawData (4-byte unsigned integer): In an image file, this field holds the size in bytes
of the initialized data on disk, rounded up to a multiple of the FileAlignment value speci-
fied in the PE header. If SizeOfRawData is less than VirtualSize, the rest of the section is
padded with null bytes when laid out in memory.

CHAPTER 4 ■ THE STRUCTURE OF A MANAGED EXECUTABLE F ILE 53

Ch04_6463_CMP3 5/3/06 9:27 AM Page 53

PointerToRawData (4-byte unsigned integer): This field holds a file pointer to the section’s
first page. In image files, this value should be a multiple of the FileAlignment value speci-
fied in the PE header.

PointerToRelocations (4-byte unsigned integer): This is a file pointer to the beginning of relo-
cation entries for the section. In image files, this field is not used and should be set to 0.

PointerToLinenumbers (4-byte unsigned integer): This field holds a file pointer to the
beginning of line-number entries for the section. In managed PE files, the COFF line
numbers are stripped, and this field must be set to 0.

NumberOfRelocations (2-byte unsigned integer): In managed image files, this field should
be set to 0.

NumberOfLinenumbers (2-byte unsigned integer): In managed image files, this field
should be set to 0.

Characteristics (4-byte unsigned integer): This field specifies the characteristics of an
image file and holds a combination of binary flags, described in Table 4-5.

The section Characteristics flags are defined in Winnt.h. Some of these flags are reserved,
and some are relevant to object files only. Table 4-5 lists the flags that are valid for PE files.
Names of all flags begin with IMAGE_SCN, which I will omit as usual; in other words,
IMAGE_SCN_SCALE_INDEX will become _SCALE_INDEX.

Table 4-5. The Section Characteristics Flags in PE Files

Flag (IMAGE_SCN...) Value Description

_SCALE_INDEX 0x00000001 TLS descriptor table index is scaled.

_CNT_CODE 0x00000020 Section contains executable code. In IL
assembler–generated PE files, only the .text
section carries this flag.

_CNT_INITIALIZED_DATA 0x00000040 Section contains initialized data.

_CNT_UNINITIALIZED_DATA 0x00000080 Section contains uninitialized data.

_LNK_INFO 0x00000200 Section contains comments or some other type of
auxiliary information.

_NO_DEFER_SPEC_EXC 0x00004000 Reset speculative exception handling bits in the
translation lookaside buffer (TLB) entries for this
section.

_LNK_NRELOC_OVFL 0x01000000 Section contains extended relocations.

_MEM_DISCARDABLE 0x02000000 Section can be discarded as needed.

_MEM_NOT_CACHED 0x04000000 Section cannot be cached.

_MEM_NOT_PAGED 0x08000000 Section cannot be paged.

_MEM_SHARED 0x10000000 Section can be shared in memory.

_MEM_EXECUTE 0x20000000 Section can be executed as code. In IL
assembler–generated PE files, only the .text
section carries this flag.

_MEM_READ 0x40000000 Section can be read.

_MEM_WRITE 0x80000000 Section can be written to. In PE files generated by
IL assembler, only the .sdata and .tls sections
carry this flag.

CHAPTER 4 ■ THE STRUCTURE OF A MANAGED EXECUTABLE F ILE54

Ch04_6463_CMP3 5/3/06 9:27 AM Page 54

The following flags are not allowed in the sections of managed files: IMAGE_SCN_SCALE_
INDEX, IMAGE_SCN_NO_DEFER_SPEC_EXC, IMAGE_SCN_LNK_NRELOC_OVFL, and
IMAGE_SCN_MEM_SHARED.

The IL assembler generates the following sections in a PE file:

.text: A read-only section containing the common language runtime header, the meta-
data, the IL code, managed exception handling information, and managed resources

.sdata: A read/write section containing data

.reloc: A read-only section containing relocations

.rsrc: A read-only section containing unmanaged resources

.tls: A read/write section containing thread local storage data

Common Language Runtime Header
The 15th directory entry of the PE header contains the RVA and size of the runtime header in
the image file. The runtime header, which contains all of the runtime-specific data entries and
other information, should reside in a read-only section of the image file. The IL assembler
puts the common language runtime header in the .text section.

Header Structure
The common language runtime header is defined in CorHdr.h—a header file distributed as
part of the Microsoft .NET Framework SDK—as follows:

typedef struct IMAGE_COR20_HEADER
{

ULONG cb;
USHORT MajorRuntimeVersion;
USHORT MinorRuntimeVersion;
// Symbol table and startup information
IMAGE_DATA_DIRECTORY MetaData;
ULONG Flags;
union {

DWORD EntryPointToken;
DWORD EntryPointRVA;

};

// Binding information
IMAGE_DATA_DIRECTORY Resources;
IMAGE_DATA_DIRECTORY StrongNameSignature;

// Regular fixup and binding information
IMAGE_DATA_DIRECTORY CodeManagerTable;
IMAGE_DATA_DIRECTORY VTableFixups;
IMAGE_DATA_DIRECTORY ExportAddressTableJumps;

IMAGE_DATA_DIRECTORY ManagedNativeHeader;
} IMAGE_COR20_HEADER;

CHAPTER 4 ■ THE STRUCTURE OF A MANAGED EXECUTABLE F ILE 55

Ch04_6463_CMP3 5/3/06 9:27 AM Page 55

Table 4-6 provides a closer look at the fields of the header.

Table 4-6. Common Language Runtime Header Fields

Offset Size Field Description

0 4 Cb Size of the header in bytes.

4 2 MajorRuntimeVersion Major number of the minimum version of
the runtime required to run the program.

6 2 MinorRuntimeVersion Minor number of the version of the
runtime required to run the program.

8 8 MetaData RVA and size of the metadata.

16 4 Flags Binary flags, discussed in the following
section. In ILAsm, you can specify this
value explicitly by the directive .corflags
<integer value> and/or the command-
line option /FLAGS=<integer value>. The
command-line option takes precedence
over the directive.

20 4 EntryPointToken/EntryPointRVA Metadata identifier (token) of the entry
point for the image file; can be 0 for DLL
images. This field identifies a method
belonging to this module or a module
containing the entry point method. In
images of version 2.0 and newer, this field
may contain RVA of the embedded native
entry point method.

24 8 Resources RVA and size of managed resources.

32 8 StrongNameSignature RVA and size of the hash data for this PE
file, used by the loader for binding and
versioning.

40 8 CodeManagerTable RVA and size of the Code Manager table.
In the existing releases of the runtime, this
field is reserved and must be set to 0.

48 8 VTableFixups RVA and size in bytes of an array of virtual
table (v-table) fixups. Among current
managed compilers, only the VC++ linker
and the IL assembler can produce this
array.

56 8 ExportAddressTableJumps RVA and size of an array of addresses of
jump thunks. Among managed compilers,
only the VC++ of versions pre-8.0 could
produce this table, which allows the
export of unmanaged native methods
embedded in the managed PE file. In v2.0
of CLR this entry is obsolete and must be
set to 0.

64 8 ManagedNativeHeader Reserved for precompiled images; set to 0.

CHAPTER 4 ■ THE STRUCTURE OF A MANAGED EXECUTABLE F ILE56

Ch04_6463_CMP3 5/3/06 9:27 AM Page 56

Flags Field
The Flags field of the common language runtime header holds a combination of the following
bit flags:

COMIMAGE_FLAGS_ILONLY (0x00000001): The image file contains IL code only, with no
embedded native unmanaged code except the start-up stub (which simply executes an
indirect jump to the CLR entry point). Common language runtime–aware operating sys-
tems (such as Windows XP and newer) ignore the start-up stub and invoke the CLR
automatically, so for all practical purposes the file can be considered pure IL. However,
setting this flag can cause certain problems when running under Windows XP and newer.
If this flag is set, the OS loader of Windows XP and newer ignores not only the start-up
stub but also the .reloc section, which in this case contains single relocation (or single pair
of relocations in IA64-specific images) for the CLR entry point. However, the .reloc section
can contain relocations for the beginning and end of the .tls section as well as relocations
for what is referred to as data on data (that is, data constants that are pointers to other
data constants). Among existing managed compilers, only the VC++ and the IL assembler
can produce these items. The VC++ of v7.0 and v7.1 (corresponding to CLR versions 1.0
and 1.1) never set this flag because the image file it generated was never pure IL. In v2.0
this situation has changed, and currently, the VC++ and IL assembler are the only two
capable of producing pure-IL image files that might require additional relocations in the
.reloc section. To resolve this problem, the IL assembler, if TLS-based data or data on data
is emitted, clears this flag and, if the target platform is 32-bit, sets the
COMIMAGE_FLAGS_32BITREQUIRED flag instead.

COMIMAGE_FLAGS_32BITREQUIRED (0x00000002): The image file can be loaded only
into a 32-bit process. This flag is set alone when native unmanaged code is embedded in
the PE file or when the .reloc section contains additional relocations or is set in combina-
tion with _ILONLY when the executable does not contain additional relocations but is in
some way 32-bit specific (for example, invokes an unmanaged 32-bit specific API or uses
4-byte integers to store pointers).

COMIMAGE_FLAGS_IL_LIBRARY (0x00000004): This flag is obsolete and should not be
set. Setting it—as the IL assembler allows, using the .corflags directive—will render your
module unloadable.

COMIMAGE_FLAGS_STRONGNAMESIGNED (0x00000008): The image file is protected
with a strong name signature. The strong name signature includes the public key and the
signature hash and is a part of an assembly’s identity, along with the assembly name, ver-
sion number, and culture information. This flag is set when the strong name signing
procedure is applied to the image file. No compiler, including ILAsm, can set this flag
explicitly.

COMIMAGE_FLAGS_NATIVE_ENTRYPOINT (0x00000010): The executable’s entry point
is an unmanaged method. The EntryPointToken/EntryPointRVA field of the CLR header
contains the RVA of this native method. This flag was introduced in version 2.0 of the CLR.

COMIMAGE_FLAGS_TRACKDEBUGDATA (0x00010000): The CLR loader and the JIT com-
piler are required to track debug information about the methods. This flag is not used.

CHAPTER 4 ■ THE STRUCTURE OF A MANAGED EXECUTABLE F ILE 57

Ch04_6463_CMP3 5/3/06 9:27 AM Page 57

EntryPointToken Field
The EntryPointToken field of the common language runtime header contains a token (meta-
data identifier) of either a method definition (MethodDef) or a file reference (File). A MethodDef
token identifies a method defined in the module (a managed PE file) as the entry point method.
A File token is used in one case only: in the runtime header of the prime module of a multi-
module assembly, when the entry point method is defined in another module (identified by the
file reference) of this assembly. In this case, the module identified by the file reference must
contain the respective MethodDef token in the EntryPointToken field of its runtime header.

EntryPointToken must be specified in runnable executables (EXE files). The IL assembler,
for example, does not even try to generate an EXE file if the source code does not define the
entry point. The CLR loader imposes limitations on the signature of the entry point method:
the method must return a signed or unsigned 4-byte integer or void, and it must have at most
one parameter of type string or string[] (vector of strings).

With nonrunnable executables (DLL files), it’s a different story. Pure-IL DLLs don’t need
the entry point method defined, and the EntryPointToken field in their runtime headers
should be set to 0.

Mixed-code DLLs—DLLs containing IL and embedded unmanaged code—generated by
the VC++ compiler and linker must run the unmanaged native function DllMain immediately
at the DLL invocation in order to perform the initialization necessary for the unmanaged
native components of the DLL. The signature of this unmanaged function must be as follows:

int DllMain(HINSTANCE, DWORD, void *);

To be visible from the managed code and the runtime, the function DllMain must be
declared as a platform invocation of an embedded native method (local P/Invoke, also known
in enlightened circles as IJW—It Just Works). See Chapter 18 for details about the interopera-
tion of managed and unmanaged code.

Starting with version 2.0, you can specify the unmanaged entry point method without
local platform invocation. In this case, indicated by setting flag
COMIMAGE_FLAGS_NATIVE_ENTRYPOINT, the field EntryPointRVA (alias of EntryPointTo-
ken) contains the RVA of the native entry point method.

The method referred to by the EntryPointToken/EntryPointRVA field of the common lan-
guage runtime header has nothing to do with the function to which the AddressOfEntryPoint
field of the PE header points. AddressOfEntryPoint always points to the runtime invocation stub,
which is invisible to the runtime, is not reflected in metadata and hence cannot have a token.

VTableFixups Field
The VTableFixups field of the CLR header is a data directory containing the RVA and the size
of the image file’s v-table fixup table. Managed and unmanaged methods use different data
formats, so when a managed method must be called from unmanaged code, the common lan-
guage runtime creates a marshaling thunk for it, which performs the data conversions, and
the address of this thunk is placed in the respective address table. If the managed method is
called from the unmanaged code embedded in the current managed PE file, the thunk address
goes to the file’s v-table. If the managed method is exported as unmanaged and is consumed
somewhere outside the managed PE file, the address of the respective v-table entry must also
go to the Export Address table. At loading time (and in the disk image file), the entries of this
v-table contain the respective method tokens.

CHAPTER 4 ■ THE STRUCTURE OF A MANAGED EXECUTABLE F ILE58

Ch04_6463_CMP3 5/3/06 9:27 AM Page 58

These v-table fixups represent the initializing information necessary for the runtime to
create the thunks. v-table fixup is defined in CorHdr.h as follows:

typedef struct _IMAGE_COR_VTABLEFIXUP {
ULONG RVA;
USHORT Count;
USHORT Type;

} IMAGE_COR_VTABLEFIXUP;

In this definition, RVA points to the location of the v-table slot containing the method
token(s). Count specifies the number of entries in the slot, 1 or greater if, for example, multi-
ple implementations of the same method exist, overriding one another. Type is a combination
of the following flags, providing the runtime with information about the slot and what to do
with it:

COR_VTABLE_32BIT (0x01): Each entry is 32 bits wide.

COR_VTABLE_64BIT (0x02): Each entry is 64 bits wide.

COR_VTABLE_FROM_UNMANAGED (0x04): The thunk created by the common language
runtime must provide data marshaling between managed and unmanaged code.

COR_VTABLE_CALL_MOST_DERIVED (0x10): This flag is not currently used.

Obviously, the first two flags are mutually exclusive. The slots of the v-table must follow
each other immediately—that is, the v-table must be contiguous.

The v-table is located in a read/write section because it should be fixed up after the image
has been loaded into memory. In contrast, the v-table in an unmanaged image is located in a
read-only section.

Among existing managed compilers, only the VC++ and the IL assembler can define the
v-table and its fixups.

StrongNameSignature Field
The StrongNameSignature field of the common language runtime header contains the RVA
and size of the strong name hash, which is used by the runtime to establish the authenticity of
the image file. After the image file has been created, it is hashed using the private encryption
keys provided by the producer of the image file, and the resulting hash blob is written into the
space allocated inside the image file.

If even a single byte in the image file is subsequently modified, the authenticity check
fails, and the image file cannot be loaded. The strong name signature does not survive a
round-tripping procedure; if you disassemble a strong-named module using the IL disassem-
bler and then reassemble it, the module must be strong name signed again.

The IL assembler puts the strong name signature in the .text section of the image file.

Relocation Section
The .reloc section of the image file contains the Fixup table, which holds entries for all fixups
in the image file. The RVA and size of the .reloc section are defined by the Base Relocation table
directory of the PE header. The Fixup table consists of blocks of fixups, each block holding the
fixups for a 4KB page. Blocks are 4-byte aligned.

CHAPTER 4 ■ THE STRUCTURE OF A MANAGED EXECUTABLE F ILE 59

Ch04_6463_CMP3 5/3/06 9:27 AM Page 59

Each fixup describes the location of a specific address within the image file as well as how the
OS loader should modify the address at this location when loading the image file into memory.

Each fixup block starts with two 4-byte unsigned integers: the RVA of the page containing
the addresses to be fixed up and the size of the block. The fixup entries for this page immediately
follow. Each entry is 16 bits wide, of which four most significant bits contain the type of reloca-
tion required. The remaining 12 bits contain the relocated address’s offset within the page.

To relocate an address, the OS loader calculates the difference (delta) between the pre-
ferred base address (the ImageBase field of the PE header) and the actual base address where
the image file has been loaded. This delta is then applied to the address according to the type
of relocation. If the image file is loaded at its preferred address, no fixups need be applied.

The following relocation types are defined in Winnt.h:

IMAGE_REL_BASED_ABSOLUTE (0): This type has no meaning in an image file, and the
fixup is skipped.

IMAGE_REL_BASED_HIGH (1): The high 16 bits of the delta are added to the 16-bit field at
the offset. The 16-bit field in this case is the high half of the 32-bit address being relocated.

IMAGE_REL_BASED_LOW (2): The low 16 bits of the delta are added to the 16-bit field at
the offset. The 16-bit field in this case is the low half of the 32-bit address being relocated.

IMAGE_REL_BASED_HIGHLOW (3): The delta is added to the 32-bit address at the offset.
Relocation of this type is equivalent to a combination of IMAGE_REL_BASED_LOW and
IMAGE_REL_BASED_HIGH relocations and is a preferred type of 32-bit address relocation.

IMAGE_REL_BASED_HIGHADJ (4): The high 16 bits of the delta are added to the 16-bit
field at the offset. The 16-bit field in this case is the high part of the 32-bit address being
relocated. The low 16 bits of the address are stored in the 16-bit word that follows this
relocation. A fixup of this type occupies two slots.

IMAGE_REL_BASED_MIPS_JMPADDR (5): The fixup applies to a MIPS jump instruction.

IMAGE_REL_BASED_SECTION (6): Reserved.

IMAGE_REL_BASED_REL32 (7): Reserved.

IMAGE_REL_BASED_MIPS_JMPADDR16 (9): The fixup applies to a MIPS16 jump function.

IMAGE_REL_BASED_IA64_IMM64 (9): This is the same type as
IMAGE_REL_BASED_MIPS_JMPADDR16.

IMAGE_REL_BASED_DIR64 (10): The delta is added to the 64-bit field at the offset.

IMAGE_REL_BASED_HIGH3ADJ (11): The fixup adds the high 16 bits of the delta to the
16-bit field at the offset. The 16-bit field is the high one-third of a 48-bit address. The low
32 bits of the address are stored in the 32-bit double word that follows this relocation. A
fixup of this type occupies three slots.

The only fixup type emitted by the existing managed compilers in 32-bit executables is
IMAGE_REL_BASED_HIGHLOW. In 64-bit executables, it is IMAGE_REL_BASED_DIR64.

CHAPTER 4 ■ THE STRUCTURE OF A MANAGED EXECUTABLE F ILE60

Ch04_6463_CMP3 5/3/06 9:27 AM Page 60

A 32-bit pure-IL PE file, as a rule, contains only one fixup in the .reloc section. This is for
the benefit of the common language runtime start-up stub, the only segment of native code in
a pure-IL image file. This fixup is for the image file’s IAT, containing a single entry: the CLR
entry point.

A 64-bit pure-IL PE file contains one fixup on X64 architecture and two fixups on Itanium
architecture (additional fixup needed for the global pointer).

Windows XP or newer, as a common language runtime–aware operating system, needs
neither the runtime start-up stub nor the IAT to invoke the runtime. Thus, if the common
language runtime header flags indicate that the image file is IL only
(COMIMAGE_FLAGS_ILONLY), the operating system ignores the .reloc section altogether.

This optimization plays a bad joke with some image files generated by the IL assembler,
which produces pure-IL image files but needs relocations executed if any data is located in
thread local storage or if data on data is defined. To have these relocations executed when the
image file is loaded under Windows XP, the IL assembler is forced to cheat and set the com-
mon language runtime header flags as if the image file contained embedded native code
(COMIMAGE_FLAGS_32BITREQUIRED for 32-bit target platform, or none for 64-bit target
platforms).

Other compilers don’t have these problems. Compilers generating pure-IL image files
(such as Visual C# and Visual Basic .NET) don’t define TLS-based data or data on data.

As the VC++ compiler and linker can produce mixed-code image files, the .reloc sections of
these image files can contain any number of relocations. But mixed-code image files never carry
IL-only common language runtime header flags, so their relocations are always executed.

Text Section
The .text section of a PE file is a read-only section. In a managed PE file, it contains metadata
tables, IL code, the Import tables, the common language runtime header, and an unmanaged
start-up stub for the CLR. In the image files generated by the IL assembler, this section also
contains managed resources, the strong name signature hash, the debug data, and unman-
aged export stubs.

Figure 4-3 summarizes the general structure of the .text section of an image file generated
by the IL assembler.

The IL assembler emits data to the .text section in a particular order. When the PE file gen-
erator is initialized during the IL assembler start-up, space is allocated in the .text section for
the Import Address table (which carries one lonely entry, for the entry point of the CLR) and
for the CLR header described earlier in this chapter.

While IL assembler is parsing the source code and forming metadata and IL structures in
memory, the .text section gets a temporary break; nothing is emitted to it until the parsing is
done and the IL assembler is ready to emit the PE file.

Then the IL assembler, if so ordered (by specifying the public key in the .assembly direc-
tive; see Chapter 6 for details), allocates sufficient space in the .text section for the strong
name signature. The strong name signature is a hash of the prime module encrypted with the
assembly publisher’s private key. The signature itself is emitted into allocated space later, as
the last step of the prime module generation.

Then comes the turn of method bodies, which include method headers, IL code, and
managed exception handling tables (see Chapter 10 for details).

CHAPTER 4 ■ THE STRUCTURE OF A MANAGED EXECUTABLE F ILE 61

Ch04_6463_CMP3 5/3/06 9:27 AM Page 61

Figure 4-3. Structure of a .text section emitted by the IL assembler

After the method bodies have been emitted, and if you ordered the generation of the PDB
file, which contains the debug data, the IL assembler emits the debug directory entry and
CodeView-style header containing the path to the PDB file.

Then the metadata, which is fully defined by then, is emitted to the .text section, followed
by managed resources (if any). Metadata format is described in detail in the next chapter, and
the managed resources are discussed in the “Resources” section later in this chapter.

After the metadata and managed resources, the unmanaged export stubs are emitted for
those managed methods that are exposed as unmanaged exports. Chapter 18 describes
exporting of managed methods to unmanaged clients.

The next item emitted (if present) to the .text section is the v-table fixup table (VTFixup
table) described earlier in this chapter.

And the last item emitted to the .text section is the unmanaged start-up stub of the CLR,
whose RVA is assigned to the AddressOfEntryPoint field of the PE header.

Import Address Table

CLR Header

IL Code and Managed Structured Exception
Handling Tables (Optional)

Strong Name Signature Hash (Optional)

Metadata

Managed Resources (Optional)

Unmanaged Export Stubs (Optional)

CLR Startup Stub

.text
Section

Debug Directory (Optional)

VTFixup Table (Optional)

CHAPTER 4 ■ THE STRUCTURE OF A MANAGED EXECUTABLE F ILE62

Ch04_6463_CMP3 5/3/06 9:27 AM Page 62

Data Sections
The data section (.sdata) of an image file generated by the IL assembler is a read/write section. It
contains data constants, the v-table described in the “V-Table” section, the unmanaged export
table, and the thread local storage directory structure. The data declared as thread-specific is
located in a different section, the .tls section.

Data Constants
The term data constants might be a little misleading. Located in a read/write section, data
constants can certainly be overwritten, so technically they can hardly be called constants.
The term, however, refers to the usage of the data rather than to the nature of the data. Data
constants represent the mappings of the static fields and usually contain data initializing the
mapped fields. (Chapter 1 described the peculiarities of this field mapping.)

Field mapping is a convenient way to initialize any static field with ANSI strings, blobs, or
structures. An alternative way to initialize static fields—and a more orthodox way in terms of
the common language runtime—is to do it explicitly by executing code in class constructors,
as discussed in Chapter 9. But this alternative is much more tedious, so no one can really
blame the managed compilers for resorting to field mapping for initialization. The VC++
compiler maps all the global fields, whether they will be initialized or not.

Mapping static fields to data has its caveats. Fields mapped to the data section are, on the
one hand, out of reach of runtime controlling mechanisms such as type control and garbage
collection and, on the other hand, wide open to unrestricted access and modification. This
causes the loader to prevent certain field types from being mapped; types of mapped fields
might contain no references to objects, vectors, arrays, or any nonpublic substructures. No
such problems arise if a class constructor is used for static field initialization. Philosophically
speaking, this is only natural: throughout the history of humanity, deviations from orthodoxy,
however tempting, have always brought some unpleasant complications.

V-Table
The v-table in a pure-managed module is used for exposing the managed methods for consump-
tion from the unmanaged code and consists of entries, each entry consisting of one or more slots.
The entries and slots of the v-table are defined in the v-table fixups discussed earlier in the sec-
tion “VTableFixups Field.” Each fixup specifies the number and width (4 or 8 bytes) of slots in
each entry. Each slot of the v-table contains a metadata token of the respective method, which at
execution time is replaced with the address of the method itself or the address of a marshaling
thunk providing unmanaged entry to the method. As these fixups are performed at execution
time, the v-table of a managed PE file must be located in a read/write section. The IL assembler
puts the v-table in the .sdata section, unlike the VTFixup table, which resides in the .text section.

V-tables of unmanaged image files are completely defined at link time and need base
relocation fixups only, performed by the OS loader. Since no changes are made to v-tables at
execution time (such as replacing method tokens with addresses in managed images),
unmanaged image files carry their v-tables in read-only sections.

CHAPTER 4 ■ THE STRUCTURE OF A MANAGED EXECUTABLE F ILE 63

Ch04_6463_CMP3 5/3/06 9:27 AM Page 63

Unmanaged Export Table
The unmanaged export table in an unmanaged image file occupies a separate section named
.edata. In image files generated by the IL assembler, the unmanaged export table resides in the
.sdata section, together with the v-table it references.

The unmanaged export table contains information about methods that unmanaged
image files can access through dynamic linking. The unmanaged export table is not a single
table but rather a contiguous set of five tables: the Export Directory table, the Export Address
table, the Name Pointer table, the Ordinal table, and the Export Name table. Figure 4-4 shows
the relationship between the export tables of a module YDD.DLL exporting the functions
Yabba, Dabba, and Doo.

Figure 4-4. Structure of unmanaged export tables

The unmanaged export information starts with the Export Directory table, which describes
the rest of the export information. It is a table with only one element, containing the locations
and sizes of other export tables. The structure of the sole row of the Export Directory table is
defined in Winnt.h as follows:

typedef struct _IMAGE_EXPORT_DIRECTORY {
DWORD Characteristics;
DWORD TimeDateStamp;
WORD MajorVersion;
WORD MinorVersion;
DWORD Name;
DWORD Base;
DWORD NumberOfFunctions;
DWORD NumberOfNames;
DWORD AddressOfFunctions;

Characteristics = 0
TimeDateStamp

MajorVersion
MinorVersion

Name
Base = 1

NumberOfFunctions = 3
NumberOfNames = 3

AddresOfFunctions
AddressOfNames

AddressOfNameOrdinals

YDD.DLL0

Dabba0Doo0Yabba0

132

Export Directory

Export Name Table

Name Pointer Table

Ordinal Table

Export Address table

Library Name

Index = Ordinal - Base

Pointers to Exported
Functions

CHAPTER 4 ■ THE STRUCTURE OF A MANAGED EXECUTABLE F ILE64

Ch04_6463_CMP3 5/3/06 9:27 AM Page 64

DWORD AddressOfNames;
DWORD AddressOfNameOrdinals;

} IMAGE_EXPORT_DIRECTORY,
*PIMAGE_EXPORT_DIRECTORY;

Briefly, the fields of IMAGE_EXPORT_DIRECTORY are the following:

Characteristics: Reserved. This field should be set to 0.

TimeDateStamp: The time and date the export data was generated.

MajorVersion: The major version number. This field and the MinorVersion field are for
information only; the IL assembler does not set them.

MinorVersion: The minor version number.

Name: The RVA of the ASCII string containing the name of the exporting module.

Base: The ordinal base (usually 1). This is the starting ordinal number for exports in the
image file.

NumberOfFunctions: The number of entries in the Export Address table.

NumberOfNames: The number of entries in the Export Name table.

AddressOfFunctions: The RVA of the Export Address table.

AddressOfNames: The RVA of the Export Name table.

AddressOfNameOrdinals: The RVA of the Name Pointer table.

The Export Address table contains the RVAs of exported entry points. The export ordinal
of an entry point is defined as its zero-based index within the Export Address table plus the
ordinal base (the value of the Base field of IMAGE_EXPORT_DIRECTORY structure).

In a managed file, the Export Address table contains the RVAs not of the exported entry
points (methods) themselves but rather of unmanaged export stubs giving access to these
entry points. (See “Text Section” earlier in this chapter.) Export stubs, in turn, contain refer-
ences to respective v-table slots.

An RVA in an Export Address table can be a forwarder RVA, identifying a reexported entry
point—that is, an entry point this module imports from another module and exports as its
own. In such a case, the RVA points to an ASCII string containing the import name. The import
name might be a DLL name and the name of the imported entry (SomeDLL.someFunc) or a
DLL name and the imported entry’s ordinal in this DLL (SomeDLL.#12).

The IL assembler does not allow reexport, so the entries in an Export Address table of an
image file generated by this compiler always represent the RVAs of unmanaged export stubs.

The Export Name table contains zero-terminated ASCII strings representing the export
names of the methods exported by the module. Strictly speaking, the Export Name table is not
a table but a sequence of zero-terminated strings. The export names in the Export Name table
are sorted alphabetically to facilitate binary searches of the entry points by name. The export
names might differ from the names under which the methods were declared in the module.
An exported method might have no exported name at all if it is being exported by ordinal only.
In this case, its ordinal is not included in the Ordinal table. The IL assembler does not allow
unnamed exports.

CHAPTER 4 ■ THE STRUCTURE OF A MANAGED EXECUTABLE F ILE 65

Ch04_6463_CMP3 5/3/06 9:27 AM Page 65

The Name Pointer table contains RVAs of the export names from the Export Name table.
The Ordinal table contains 2-byte indexes to the Export Address table. The Name Pointer

table and the Ordinal table form two parallel arrays and operate as one intermediate lookup
table, rearranging the entries so that they are lexically ordered by name. When an entry is to be
identified by name, the binary search is conducted in the Name Pointer table, and if it’s found
that the sought entry matches the name at address number N in the Name Pointer table, the
ordinal of this entry is taken from element number N of the Ordinal table. By this ordinal, the
address of the entry is retrieved from the Export Address table.

Chapter 18 examines unmanaged export information and the details of exposing man-
aged methods as unmanaged exports.

Thread Local Storage
ILAsm and VC++ allow you to define data constants belonging to thread local storage and to
map static fields to these data constants. TLS is a special storage class in which a data object
is not a stack variable but is nevertheless local to each separate thread. Consequently, each
thread can maintain a different value for such a variable.

The TLS data is described in the TLS directory, which the IL assembler puts in the .sdata
section. The structure of the TLS directory for 32-bit image files is defined in Winnt.h as follows:

typedef struct _IMAGE_TLS_DIRECTORY32 {
ULONG StartAddressOfRawData;
ULONG EndAddressOfRawData;
ULONG AddressOfIndex;
ULONG AddressOfCallBacks;
ULONG SizeOfZeroFill;
ULONG Characteristics;

} IMAGE_TLS_DIRECTORY32;

The structure of the TLS directory for a 64-bit image (IMAGE_TLS_DIRECTORY64) is simi-
lar, except the first four fields are 8-byte unsigned integers (ULONGLONG) instead of 4-byte
unsigned integers (ULONG). The fields of this structure are as follows:

StartAddressOfRawData: The starting virtual address (not an RVA) of the TLS data con-
stants. The TLS data constants plus uninitialized TLS data together form the TLS template.
The operating system makes a copy of the TLS template every time a thread is created,
thus providing each thread with its “personal” data constants and field mapping.

EndAddressOfRawData: The ending VA of the TLS data constants. The rest of the TLS data
(if any) is filled with zeros. The IL assembler allows no uninitialized TLS data, presuming
that TLS data constants represent the whole TLS template, so nothing is left for the zero fill.

AddressOfIndex: The VA of the 4-byte TLS index, located in the ordinary data section. The
IL assembler puts the TLS index in the .sdata section, immediately after the TLS directory
structure and the callback function pointer array terminator.

AddressOfCallBacks: The VA of a null-terminated array of TLS callback function pointers.
The array is null terminated, and as a result this field is never null and points to an all-
zero pointer if no callback functions are specified. The IL assembler does not support

CHAPTER 4 ■ THE STRUCTURE OF A MANAGED EXECUTABLE F ILE66

Ch04_6463_CMP3 5/3/06 9:27 AM Page 66

TLS callback functions, so the entire array of TLS callback function pointers consists of a
null terminator. This null terminator immediately follows the TLS directory structure in
the .sdata section.

SizeOfZeroFill: The size of the uninitialized part of the TLS template, filled with zeros
when a copy of the TLS template is being made. The IL assembler sets this field to 0.

Characteristics: Reserved. This field should be set to 0.

The StartAddressOfRawData, EndAddressOfRawData, AddressOfIndex, and
AddressOfCallBacks fields hold VAs rather than RVAs, so you need to define the base
relocations for them in the .reloc section.

The RVA and size of the TLS directory structure are stored in the 10th data directory (TLS)
of the PE header. TLS data constants, which form the TLS template, reside in the .tls section of
the image file.

Resources
You can embed two distinct kinds of resources in a managed PE file: unmanaged platform-
specific resources and managed resources specific to CLR. These two kinds of resources,
which have nothing in common, reside in different sections of a managed image file and are
accessed by different sets of APIs.

Unmanaged Resources
Unmanaged resources reside in the .rsrc section of the image file. The starting RVA and size of
embedded unmanaged resources are represented in the Resource data directory of the PE
header.

Unmanaged resources are indexed by type, name, and language and are binary sorted
by these three characteristics in that order. A set of Resource directory tables represents this
indexing as follows: each directory table is followed by an array of directory entries, which
contain the integer reference number (ID) or name of the respective level (the type, name, or
language level) and the address of the next-level directory table or of a data description (a leaf
node of the tree). Thanks to the use of three indexing characteristics, any data description can
be reached by analyzing at most three directory tables.

By the time the data description is reached, its type, name, and language are known from
the path the search algorithm traversed to arrive at the data description.

The .rsrc section has the following structure:

Resource directory tables and entries: As described previously.

Resource directory strings: Unicode (UTF-16) strings representing the string data
addressed by the directory entries. These strings are 2-byte aligned. Each string is pre-
ceded by a 2-byte unsigned integer representing the string’s length in 2-byte characters.

Resource data description: A set of records addressed by directory entries, containing the
size and location of actual resource data.

Resource data: Raw undelimited resource data, consisting of individual resource data
whose address and size are defined by data description records.

CHAPTER 4 ■ THE STRUCTURE OF A MANAGED EXECUTABLE F ILE 67

Ch04_6463_CMP3 5/3/06 9:27 AM Page 67

A Resource directory table structure is defined in Winnt.h as follows:

typedef struct _IMAGE_RESOURCE_DIRECTORY {
DWORD Characteristics;
DWORD TimeDateStamp;
WORD MajorVersion;
WORD MinorVersion;
WORD NumberOfNamedEntries;
WORD NumberOfIdEntries;

} IMAGE_RESOURCE_DIRECTORY, *PIMAGE_RESOURCE_DIRECTORY;

The roles of these fields should be evident, in light of the preceding discussion about
structuring unmanaged resources and the Resource directory tables. One exception might
be the Characteristics field, which is reserved and should be set to 0.

Name entries, which use strings to identify the type, name, or language, immediately
follow the Resource directory table. After them, ID entries are stored.

A Resource directory entry (either a name entry or an ID entry) is an 8-byte structure
consisting of two 4-byte unsigned integers, defined in Winnt.h as follows:

typedef struct _IMAGE_RESOURCE_DIRECTORY_ENTRY {
union {

struct {
DWORD NameOffset:31;
DWORD NameIsString:1;

};
DWORD Name;
WORD Id;

};
union {

DWORD OffsetToData;
struct {

DWORD OffsetToDirectory:31;
DWORD DataIsDirectory:1;

};
};

} IMAGE_RESOURCE_DIRECTORY_ENTRY,
*PIMAGE_RESOURCE_DIRECTORY_ENTRY;

If the top bit of the first 4-byte component is set, the entry is a name entry, and the
remaining 31 bits represent the name string offset; otherwise, the entry is an ID entry, and
16 less significant bits of it hold the ID value.

If the top bit of the second 4-byte component is set, the item, whose offset is represented
by the remaining 31 bits, is a next-level Resource directory table; otherwise, it is a Resource
data description.

CHAPTER 4 ■ THE STRUCTURE OF A MANAGED EXECUTABLE F ILE68

Ch04_6463_CMP3 5/3/06 9:27 AM Page 68

A Resource data description is a 16-byte structure defined in Winnt.h as follows:

typedef struct _IMAGE_RESOURCE_DATA_ENTRY {
DWORD OffsetToData;
DWORD Size;
DWORD CodePage;
DWORD Reserved;

} IMAGE_RESOURCE_DATA_ENTRY,
*PIMAGE_RESOURCE_DATA_ENTRY;

The fields OffsetToData and Size characterize the respective chunks of resource data that
constitute an individual resource. OffsetToData is specified relatively to the beginning of the
resource directory. CodePage is the ID of the code page used to decode the code point values
in the resource data. Usually this is the Unicode code page. Finally—no surprise here—the
Reserved field is reserved and must be set to 0.

The IL assembler creates the .rsrc section and embeds the unmanaged resources from the
respective .res file if this file is specified in command-line options. The assembler can embed
only one unmanaged resource file per module.

When the IL disassembler analyzes a managed PE file and finds the .rsrc section, it reads
the data and its structure from the section and emits the .res file containing all the unman-
aged resources embedded in the PE file.

Managed Resources
The Resources field of the CLR header contains the RVA and size of the managed resources
embedded in the PE file. It has nothing to do with the Resource directory of the PE header,
which specifies the RVA and size of unmanaged platform-specific resources.

In PE files created by the IL assembler, unmanaged resources reside in the .rsrc section of
the image file, whereas managed resources are located in the .text section, along with the meta-
data, the IL code, and so on. Managed resources are stored in the .text section contiguously.
Metadata carries ManifestResource records, one for each managed resource, containing the
name of the managed resource and the offset of the beginning of the resource from the starting
RVA specified in the Resources field of the CLR header. At this offset, a 4-byte unsigned integer
indicates the length in bytes of the resource. The resource itself immediately follows.

When the IL disassembler processes a managed image file and finds embedded managed
resources, it writes each resource to a separate file, named according to the resource name.

When the IL assembler creates a PE file, it reads all managed resources defined in the
source code as embedded from the file according to the resource names and writes them to
the .text section, each preceded by its specified length.

As an exercise, I offer you to open any managed executable (say, one of the simple sam-
ples) in the IL disassembler and select the View/Headers menu entry. You will see all headers
and their fields “live.”

CHAPTER 4 ■ THE STRUCTURE OF A MANAGED EXECUTABLE F ILE 69

Ch04_6463_CMP3 5/3/06 9:27 AM Page 69

Summary
Having discussed the structure of the managed image files and the ways the IL assembler goes
about generating these files, I’ll summarize the steps the IL assembler takes to create a man-
aged PE file. The PE file creation is performed in four phases.

Phase 1: Initialization
1. Internal buffers are initialized.

2. The empty template of a PE file is created in memory, including an MS-DOS header
and stub, a PE signature, a COFF header, and a PE header.

3. The Import Address table, and the CLR header are allocated in the .text section.

Phase 2: Source Code Parsing
1. Metadata is collected in internal buffers.

2. The method bodies (IL code and managed exception handling tables) are collected in
internal buffers.

3. Data constants are emitted to the .sdata and .tls sections.

Phase 3: Image Generation
1. Space for the strong name signature is allocated in the .text section.

2. Metadata is analyzed and rearranged.

3. Internal (to the module) references are resolved in the IL code.

4. Method bodies are emitted to the .text section.

5. The TLS directory table is emitted to the .sdata section.

6. The debug directory is emitted to the .text section.

7. Space for metadata is allocated in the .text section.

8. Space for embedded managed resources is allocated in the .text section.

9. Unmanaged export stubs are emitted to the .text section.

10. The VTFixup table is emitted to the .text section.

11. The v-table is emitted to the .sdata section.

12. Unmanaged export tables are emitted to the .sdata section.

13. Last changes in the metadata—the RVAs of mapped fields are fixed up.

14. Metadata is emitted into the preallocated space in the .text section.

15. Managed resources are emitted into the preallocated space in the .text section.

CHAPTER 4 ■ THE STRUCTURE OF A MANAGED EXECUTABLE F ILE70

Ch04_6463_CMP3 5/3/06 9:27 AM Page 70

16. The runtime start-up stub is emitted to the .text section.

17. Unmanaged resources are read from the .res file and emitted to the .rsrc section.

18. Necessary base relocations are emitted to the .reloc section.

Phase 4: Completion
1. The image file is written as a disk file.

2. The strong name signing procedure is applied to the file by invoking the strong name
utility (sn.exe).

The IL assembler allows you to explicitly set certain values in the image file headers, by
means of both source code directives and the compiler’s command-line options, as shown in
Table 4-7. In all the cases discussed in this chapter, the command-line options take prece-
dence over the respective source code directives.

Table 4-7. Directives and Command-Line Options for Setting Header Fields

Header Field Directive Command-Line Option

COFF Machine /ITANIUM, /X64 (default is I386)

PE Header type /PE64 (default is PE32)

PE ImageBase .imagebase <integer value> /BASE=<integer value>

PE SizeOfStackReserve .stackreserve <integer_value> /STACK=<integer value>

PE FileAlignment .file alignment <integer value> /ALIGNMENT=<integer value>

PE Subsystem .subsystem <integer value> /SUBSYSTEM=<integer value>

CLR Flags .corflags <integer value> /FLAGS=<integer value>

CHAPTER 4 ■ THE STRUCTURE OF A MANAGED EXECUTABLE F ILE 71

Ch04_6463_CMP3 5/3/06 9:27 AM Page 71

Ch04_6463_CMP3 5/3/06 9:27 AM Page 72

Metadata Tables Organization

This chapter provides an overview of metadata and how it is structured. It also describes
metadata validation. Later chapters will analyze individual metadata items based on the
foundation presented here. I understand your possible impatience—“When will this guy
quit stalling and get to the real stuff?”—but nevertheless I urge you not to skip this chapter.
Far from stalling, I’m simply approaching the subject systematically. It might look the same,
but the motivation is quite different, and that’s what matters.

What Is Metadata?
Metadata is, by definition, data that describes data. Like any general definition, however, this
one is hardly informative. In the context of the common language runtime, metadata means
a system of descriptors of all items that are declared or referenced in a module. The common
language runtime programming model is inherently object oriented, so the items represented
in metadata are classes and their members, with their accompanying attributes, properties,
and relationships.

From a pragmatic point of view, the role played by metadata is similar to that played by
type libraries in the COM world. At this general level, however, the similarities end, and the
differences begin. Metadata, which describes the structural aspect of a module or an assembly
in minute detail, is vastly richer than the data provided by type libraries, which carry only
information regarding the COM interfaces exposed by the module. The important difference is
that metadata is an integral part of a managed module, which means each managed module
always carries a complete, high-level, formal description of its logical structure.

Structurally, metadata is a normalized relational database. This means that metadata is
organized as a set of cross-referencing rectangular tables—as opposed to, for example, a hier-
archical database that has a tree structure. Each column of a metadata table contains either
data or a reference to a row of another table. Metadata does not contain any duplicate data
fields; each category of data resides in only one table of the metadata database. If another
table needs to employ the same data, it references the table that holds the data.

For example, as Chapter 1 explained, a class definition carries certain binary attributes
(flags). The behavior and features of methods of this class are affected by the class’s flags, so
it would be tempting to duplicate some of the class attributes, including flags, in a metadata
record describing one of the methods. But data duplication leads not only to increased data-
base size but also to the problem of keeping all the duplications consistent.

73

C H A P T E R 5

■ ■ ■

Ch05_6463_CMP2 4/28/06 8:33 AM Page 73

Instead, method descriptors are stored in such a way that the parent class can always be
found from a given method descriptor. Such referencing does require a certain amount of
searching, which is more expensive, but for typical .NET–based applications, processor speed
is not the problem—communication bandwidth and data integrity are.

If this arrangement seems less than efficient to you, think of how you would usually
access the metadata if you were the runtime’s class loader. Being a class loader, you would
want to load a whole class with all its methods, fields, and other members. And, as I men-
tioned, the class descriptor (record) carries a reference to the record of the method table that
represents the first method of this class. The end of the method records belonging to this class
is defined by the beginning of the next class’s method records or (for the last class) by the end
of the method table. It’s the same story with the field records.

Obviously, this technique requires that the records in the method table be sorted by their
parent class. The same applies to other table-to-table relationships (class-to-field, method-to-
parameter, and so on). If this requirement is met, the metadata is referred to as optimized or
compressed. Figure 5-1 shows an example of such metadata. The ILAsm compiler always emits
optimized metadata.

Figure 5-1. An example of optimized metadata

It is possible, however—perhaps as a result of sloppy metadata emission or of incremental
compilation—to have the child tables interleaved with regard to their owner classes. For exam-
ple, class record A might be emitted first, followed by class record B, the method records of class
B, and then the method records of class A; or the sequence might be class record A, then some of
the method records of class A, followed by class record B, the method records of class B, and
then the rest of the method records of class A.

In such a case, additional intermediate metadata tables are engaged, providing noninter-
leaved lookup tables sorted by the owner class. Instead of referencing the method records, class
records reference the records of an intermediate table (a pointer table), and those records in turn
reference the method records, as diagrammed in Figure 5-2. Metadata that uses such intermedi-
ate lookup tables is referred to as unoptimized or uncompressed.

#1: Method 1 of Class 1

#2: Method 2 of Class 1

#3: Method 3 of Class 1

#4: Method 4 of Class 1

#5: Method 1 of Class 2

#6: Method 2 of Class 2

#7: Method 3 of Class 2

#8: Method 1 of Class 3

#9: Method 2 of Class 3

#1: Class 1, methods start at #1

#2: Class 2, methods start at #5

#3: Class 3, methods start at #8

CHAPTER 5 ■ METADATA TABLES ORGANIZATION74

Ch05_6463_CMP2 4/28/06 8:33 AM Page 74

Figure 5-2. An example of unoptimized metadata

Two scenarios usually result in the emission of an uncompressed metadata structure: an
“edit-and-continue” scenario, in which metadata and the IL code of a module are modified
while the module is loaded in memory, and an incremental compilation scenario, in which
metadata and IL code are modified in “installments.”

Heaps and Tables
Logically, metadata is represented as a set of named streams, with each stream representing a
category of metadata. These streams are divided into two types: metadata heaps and meta-
data tables.

Heaps
A metadata heap is a storage of trivial structure, holding a contiguous sequence of items. Heaps
are used in metadata to store strings and binary objects. There are three kinds of metadata heaps:

String heap: This kind of heap contains zero-terminated character strings, encoded in UTF-8.
The strings follow each other immediately. The first byte of the heap is always 0, and as a
result the first string in the heap is always an empty string. The last byte of the heap must
be 0 as well (in other words, the last string in the heap must be zero-terminated just like
the others).

GUID heap: This kind of heap contains 16-byte binary objects, immediately following
each other. The size of the binary objects is fixed, so length parameters or terminators are
not needed.

Blob heap: This kind of heap contains binary objects of arbitrary size. Each binary object
is preceded by its length (in compressed form). Binary objects are aligned on 4-byte
boundaries.

#1: Class 1,
methods start at #1

#2: Class 2,
methods start at #5

#3: Class 3,
methods start at #8

#1: Method 1 of
Class 1

#2: Method 2 of
Class 1

#3: Method 1 of
Class 2

#4: Method 2 of
Class 2

#5: Method 1 of
Class 3

#6: Method 2 of
Class 3

#7: Method 3 of
Class 2

#8: Method 3 of
Class 1

#9: Method 4 of
Class 1

#1: MethodPtr 1
of Class 1

#2: MethodPtr 2
of Class 1

#3: MethodPtr 3
of Class 2

#4: MethodPtr 4
of Class 2

#5: MethodPtr 1
of Class 2

#6: MethodPtr 2
of Class 2

#7: MethodPtr 3
of Class 2

#8: MethodPtr 1
of Class 3

#9: MethodPtr 2
of Class 3

CHAPTER 5 ■ METADATA TABLES ORGANIZATION 75

Ch05_6463_CMP2 4/28/06 8:33 AM Page 75

The length compression formula is fairly simple. If the length (which is an unsigned inte-
ger) is 0x7F or less, it is represented as 1 byte; if the length is greater than 0x7F but no larger
than 0x3FFF, it is represented as a 2-byte unsigned integer with the most significant bit set.
Otherwise, it is represented as a 4-byte unsigned integer with two most significant bits set.
Table 5-1 summarizes this formula.

Table 5-1. The Length Compression Formula for the Blob

Value Range Compressed Size Compressed Value (Big Endian)

0–0x7F 1 byte <value>

0x80–0x3FFF 2 bytes 0x8000 | <value>

0x4000–0x1FFFFFFF 4 bytes 0xC0000000 | <value>

This compression formula is widely used in metadata. Of course, the compression works
only for numbers not exceeding 0x1FFFFFFF (536,870,911), but this limitation isn’t a problem
because the compression is usually applied to such values as lengths and counts.

General Metadata Header
The general metadata header consists of a storage signature and a storage header. The storage
signature, which must be 4-byte aligned, has the structure described in Table 5-2.

Table 5-2. Structure of the Metadata Storage Signature

Type Field Description

DWORD lSignature “Magic” signature for physical metadata, currently 0x424A5342,
or, read as characters, BSJB—the initials of four “founding
fathers” Brian Harry, Susan Radke-Sproull, Jason Zander,
and Bill Evans (I’d better make it “founders”; Susan might
object to be called a father), who started the runtime
development in 1998

WORD iMajorVer Major version (1)

WORD iMinorVer Minor version (1)

DWORD iExtraData Reserved; set to 0

DWORD iVersionString Length of the version string

BYTE[] pVersion Version string

The storage header follows the storage signature, aligned on a 4-byte boundary. Its struc-
ture is simple, as described in Table 5-3.

Table 5-3. Metadata Storage Header Structure

Type Field Description

BYTE fFlags Reserved; set to 0

BYTE [padding]

WORD iStreams Number of streams

CHAPTER 5 ■ METADATA TABLES ORGANIZATION76

Ch05_6463_CMP2 4/28/06 8:33 AM Page 76

The storage header is followed by an array of stream headers. Table 5-4 describes the
structure of a stream header.

Table 5-4. Metadata Stream Header Structure

Type Field Description

DWORD iOffset Offset in the file for this stream.

DWORD iSize Size of the stream in bytes.

char[32] rcName Name of the stream; a zero-terminated ASCII string no longer
than 31 characters (plus zero terminator). The name might be
shorter, in which case the size of the stream header is corre-
spondingly reduced, padded to the 4-byte boundary.

Six named streams can be present in the metadata:

#Strings: A string heap containing the names of metadata items (class names, method
names, field names, and so on). The stream does not contain literal constants defined or
referenced in the methods of the module.

#Blob: A blob heap containing internal metadata binary objects, such as default values,
signatures, and so on.

#GUID: A GUID heap containing all sorts of globally unique identifiers.

#US: A blob heap containing user-defined strings. This stream contains string constants
defined in the user code. The strings are kept in Unicode (UTF-16) encoding, with an
additional trailing byte set to 1 or 0, indicating whether there are any characters with
codes greater than 0x007F in the string. This trailing byte was added to streamline the
encoding conversion operations on string objects produced from user-defined string
constants. This stream’s most interesting characteristic is that the user strings are never
referenced from any metadata table but can be explicitly addressed by the IL code (with
the ldstr instruction). In addition, being actually a blob heap, the #US heap can store not
only Unicode strings but any binary object, which opens some intriguing possibilities.

#~: A compressed (optimized) metadata stream. This stream contains an optimized
system of metadata tables.

#-: An uncompressed (unoptimized) metadata stream. This stream contains an unopti-
mized system of metadata tables, which includes at least one intermediate lookup table
(pointer table).

The streams #~ and #- are mutually exclusive—that is, the metadata structure of the mod-
ule is either optimized or unoptimized; it cannot be both at the same time or be something in
between. If no items are stored in a stream, the stream is absent, and the iStreams field of the
storage header is correspondingly reduced. At least three streams are guaranteed to be pres-
ent: a metadata stream (#~ or #-), a string stream (#Strings), and a GUID stream (#GUID).
Metadata items must be present in at least a minimal configuration in even the most trivial
module, and these metadata items must have names and GUIDs.

CHAPTER 5 ■ METADATA TABLES ORGANIZATION 77

Ch05_6463_CMP2 4/28/06 8:33 AM Page 77

Figure 5-3 illustrates the general structure of metadata. In Figure 5-4, you can see the way
streams are referenced by other streams as well as by external “consumers” such as metadata
APIs and the IL code.

Figure 5-3. The general structure of metadata

Figure 5-4. Stream referencing

METADATA

String Stream

#String

Blob Stream

#Blob

GUID Stream

#GUID

Metadata APIIL Code

User String
Stream

#US

Metadata Tables Stream

#~ or #-

Tools, Compilers

Storage Signature

Storage Header

Stream Headers

String
Stream

#String

(String
Heap)

Blob
Stream

#Blob

(Blob
Heap)

GUID
Stream

#GUID

(GUID
Heap)

User
String

Stream

#US

(Blob
Heap)

Metadata Stream

#~ or #-

Metadata
Header

Table Record
Counts

Metadata
Tables

CHAPTER 5 ■ METADATA TABLES ORGANIZATION78

Ch05_6463_CMP2 4/28/06 8:33 AM Page 78

CHAPTER 5 ■ METADATA TABLES ORGANIZATION 79

Metadata Table Streams
The metadata streams #~ and #- begin with the header described in Table 5-5.

Table 5-5. Metadata Table Stream Header Structure

Size Field Description

4 bytes Reserved Reserved; set to 0.

1 byte Major Major version of the table schema (1 for v1.0 and v1.1; 2 for v2.0).

1 byte Minor Minor version of the table schema (0 for all versions).

1 byte Heaps Binary flags indicate the offset sizes to be used within the heaps.
A 4-byte unsigned integer offset is indicated by 0x01 for a string heap,
0x02 for a GUID heap, and 0x04 for a blob heap.
If a flag is not set, the respective heap offset is a 2-byte unsigned integer.
A #- stream can also have special flags set: flag 0x20, indicating that the
stream contains only changes made during an edit-and-continue
session, and flag 0x80, indicating that the metadata might contain items
marked as deleted.

1 byte Rid Bit width of the maximal record index to all tables of the metadata;
calculated at run time (during the metadata stream initialization).

8 bytes MaskValid Bit vector of present tables, each bit representing one table (1 if present).

8 bytes Sorted Bit vector of sorted tables, each bit representing a respective table (1 if
sorted).

This header is followed by a sequence of 4-byte unsigned integers indicating the number
of records in each table marked 1 in the MaskValid bit vector.

Like any database, metadata has a schema. The schema is a system of descriptors of
metadata tables and columns—in this sense, it is “meta-metadata.” A schema is not a part
of metadata, and it is not an attribute of a managed PE file. Rather, a metadata schema is
an attribute of the common language runtime and is hard-coded. It does not change unless
there’s a major overhaul of the runtime, and even then it changes incrementally (as it changed
between versions 1.0 and 2.0 of the runtime), by adding new tables and leaving the old tables
unchanged.

Each metadata table has a descriptor of the structure described in Table 5-6.

Table 5-6. Metadata Table Descriptor Structure

Type Field Description

pointer pColDefs Pointer to an array of column descriptors

BYTE cCols Number of columns in the table

BYTE iKey Index of the key column

WORD cbRec Size of a record in the table

Ch05_6463_CMP2 4/28/06 8:33 AM Page 79

Column descriptors, to which the pColDefs fields of table descriptors point, have the
structure described in Table 5-7.

Table 5-7. Metadata Table Column Descriptor Structure

Type Field Description

BYTE Type Code of the column’s type

BYTE oColumn Offset of the column

BYTE cbColumn Size of the column in bytes

Type, the first field of a column descriptor, is especially interesting. The metadata schema
of the existing releases of the common language runtime identifies the codes for column types
described in Table 5-8.

Table 5-8. Metadata Table Column Type Codes

Code Description

0–63 Column holds the record index (RID) in another table; the specific code value
indicates which table. RID is used as column type when the column can
reference records of only one table. The width of the column is defined by the
Rid field of the metadata stream header.

64–95 Column holds a coded token referencing another table; the specific code value
indicates the type of coded token. Tokens are references carrying the indexes of
both the table and the record being referenced. Token is used as a column type
when the column can reference records of more than one table. The table being
addressed and the index of the record are defined by the coded token value.

96 Column holds a 2-byte signed integer.

97 Column holds a 2-byte unsigned integer.

98 Column holds a 4-byte signed integer.

99 Column holds a 4-byte unsigned integer.

100 Column holds a 1-byte unsigned integer.

101 Column holds an offset in the string heap (the #Strings stream).

102 Column holds an offset in the GUID heap (the #GUID stream).

103 Column holds an offset in the blob heap (the #Blob stream).

The metadata schema defines 45 tables. Given the range of RID type codes, the common
language runtime definitely has room for growth. At the moment, the following tables are
defined:

[0] Module: The current module descriptor.

[1] TypeRef: Class reference descriptors.

[2] TypeDef: Class or interface definition descriptors.

[3] FieldPtr: A class-to-fields lookup table, which does not exist in optimized metadata
(#~ stream).

CHAPTER 5 ■ METADATA TABLES ORGANIZATION80

Ch05_6463_CMP2 4/28/06 8:33 AM Page 80

[4] Field: Field definition descriptors.

[5] MethodPtr: A class-to-methods lookup table, which does not exist in optimized
metadata (#~ stream).

[6] Method: Method definition descriptors.

[7] ParamPtr: A method-to-parameters lookup table, which does not exist in optimized
metadata (#~ stream).

[8] Param: Parameter definition descriptors.

[9] InterfaceImpl: Interface implementation descriptors.

[10] MemberRef: Member (field or method) reference descriptors.

[11] Constant: Constant value descriptors that map the default values stored in the #Blob
stream to respective fields, parameters, and properties.

[12] CustomAttribute: Custom attribute descriptors.

[13] FieldMarshal: Field or parameter marshaling descriptors for managed/unmanaged
interoperations.

[14] DeclSecurity: Security descriptors.

[15] ClassLayout: Class layout descriptors that hold information about how the loader
should lay out respective classes.

[16] FieldLayout: Field layout descriptors that specify the offset or ordinal of individual
fields.

[17] StandAloneSig: Stand-alone signature descriptors. Signatures per se are used in two
capacities: as composite signatures of local variables of methods and as parameters of the
call indirect (calli) IL instruction.

[18] EventMap: A class-to-events mapping table. This is not an intermediate lookup table,
and it does exist in optimized metadata.

[19] EventPtr: An event map–to–events lookup table, which does not exist in optimized
metadata (#~ stream).

[20] Event: Event descriptors.

[21] PropertyMap: A class-to-properties mapping table. This is not an intermediate
lookup table, and it does exist in optimized metadata.

[22] PropertyPtr: A property map–to–properties lookup table, which does not exist in
optimized metadata (#~ stream).

[23] Property: Property descriptors.

[24] MethodSemantics: Method semantics descriptors that hold information about which
method is associated with a specific property or event and in what capacity.

[25] MethodImpl: Method implementation descriptors.

CHAPTER 5 ■ METADATA TABLES ORGANIZATION 81

Ch05_6463_CMP2 4/28/06 8:33 AM Page 81

[26] ModuleRef: Module reference descriptors.

[27] TypeSpec: Type specification descriptors.

[28] ImplMap: Implementation map descriptors used for the platform invocation
(P/Invoke) type of managed/unmanaged code interoperation.

[29] FieldRVA: Field-to-data mapping descriptors.

[30] ENCLog: Edit-and-continue log descriptors that hold information about what
changes have been made to specific metadata items during in-memory editing. This
table does not exist in optimized metadata (#~ stream).

[31] ENCMap: Edit-and-continue mapping descriptors. This table does not exist in
optimized metadata (#~ stream).

[32] Assembly: The current assembly descriptor, which should appear only in the prime
module metadata.

[33] AssemblyProcessor: This table is unused.

[34] AssemblyOS: This table is unused.

[35] AssemblyRef: Assembly reference descriptors.

[36] AssemblyRefProcessor: This table is unused.

[37] AssemblyRefOS: This table is unused.

[38] File: File descriptors that contain information about other files in the current
assembly.

[39] ExportedType: Exported type descriptors that contain information about public
classes exported by the current assembly, which are declared in other modules of the
assembly. Only the prime module of the assembly should carry this table.

[40] ManifestResource: Managed resource descriptors.

[41] NestedClass: Nested class descriptors that provide mapping of nested classes to their
respective enclosing classes.

[42] GenericParam: Type parameter descriptors for generic (parameterized) classes and
methods.

[43] MethodSpec: Generic method instantiation descriptors.

[44] GenericParamConstraint: Descriptors of constraints specified for type parameters of
generic classes and methods.

The last three tables were added in version 2.0 of the common language runtime. They
did not exist in versions 1.0 and 1.1.

I’ll discuss the structural aspects of the various tables and their validity rules in later
chapters, along with the corresponding ILAsm constructs.

CHAPTER 5 ■ METADATA TABLES ORGANIZATION82

Ch05_6463_CMP2 4/28/06 8:33 AM Page 82

RIDs and Tokens
Record indexes and tokens are the unsigned integer values used for indexing the records in
metadata tables. RIDs are simple indexes, applicable only to an explicitly specified table, and
tokens carry the information identifying metadata tables they reference.

RIDs
A RID is a record identifier, which is simply a one-based row number in the table containing
the record. The range of valid RIDs stretches from 1 to the record count of the addressed table,
inclusive. RIDs are used in metadata internally only; metadata emission and retrieval APIs do
not use RIDs as parameters.

The RID column type codes (0–63) serve as zero-based table indexes. Thus, the type of
the column identifies the referenced table, while the value of the table cell identifies the refer-
enced record. This works fine as long as we know that a particular column always references
one particular table and no other. Now if we only could combine RID with table identification.

Tokens
Actually, we can. The combined identification entity, referred to as a token, is used in all meta-
data APIs and in all IL instructions. A token is a 4-byte unsigned integer whose most
significant byte carries a zero-based table index (the same as the internal metadata RID type).
The remaining 3 bytes are left for the RID.

There is a significant difference between token types and internal metadata RID types,
however: whereas internal RID types cover all metadata tables, the token types are defined for
only a limited subset of the tables, as noted in Table 5-9.

Table 5-9. Token Types and Their Referenced Tables

Token Type Value (RID | (Type << 24)) Referenced Table

mdtModule 0x00000000 Module

mdtTypeRef 0x01000000 TypeRef

mdtTypeDef 0x02000000 TypeDef

mdtFieldDef 0x04000000 Field

mdtMethodDef 0x06000000 Method

mdtParamDef 0x08000000 Param

mdtInterfaceImpl 0x09000000 InterfaceImpl

mdtMemberRef 0x0A000000 MemberRef

mdtCustomAttribute 0x0C000000 CustomAttribute

mdtPermission 0x0E000000 DeclSecurity

mdtSignature 0x11000000 StandAloneSig

mdtEvent 0x14000000 Event

mdtProperty 0x17000000 Property

mdtModuleRef 0x1A000000 ModuleRef
Continued

CHAPTER 5 ■ METADATA TABLES ORGANIZATION 83

Ch05_6463_CMP2 4/28/06 8:33 AM Page 83

Table 5-9. Continued

Token Type Value (RID | (Type << 24)) Referenced Table

mdtTypeSpec 0x1B000000 TypeSpec

mdtAssembly 0x20000000 Assembly

mdtAssemblyRef 0x23000000 AssemblyRef

mdtFile 0x26000000 File

mdtExportedType 0x27000000 ExportedType

mdtManifestResource 0x28000000 ManifestResource

mdtGenericParam 0x2A000000 GenericParam

mdtMethodSpec 0x2B000000 MethodSpec

mdtGenericParamConstraint 0x2C000000 GenericParamConstraint

The 22 tables that do not have associated token types are not intended to be accessed
from “outside,” through metadata APIs or from IL code. These tables are of an auxiliary or
intermediate nature and should be accessed indirectly only, through the references contained
in the “exposed” tables, which have associated token types.

The validity of these tokens can be defined simply: a valid token has a type from Table 5-9,
and it has a valid RID—that is, a RID in the range from 1 to the record count of the table of a
specified type.

An additional token type, quite different from the types listed in Table 5-9, is mdtString
(0x70000000). Tokens of this type are used to refer to the user-defined Unicode strings stored
in the #US stream.

Both the type component and the RID component of user-defined string tokens differ
from those of metadata table tokens. The type component of a user-defined string token
(0x70) has nothing to do with column types (the maximal column type is 103 = 0x67), which is
not surprising, considering that no column type corresponds to an offset in the #US stream.
As metadata tables never reference the user-defined strings, it’s not necessary to define a col-
umn type for the strings. In addition, the RID component of a user-defined string token does
not represent a RID because no table is being referenced. Instead, the 3 lower bytes of a user-
defined string token hold an offset in the #US stream. A side effect of this arrangement is that
you cannot have the #US stream much larger than 16MB, or more exactly, all your user-
defined strings except the last one must fit into 16MB short of 1B. You can make the last string
as long as you like, but it must start at offset below 224, or in other words, below the 16MB
boundary.

The definition of the validity of a user-defined string token is more complex. The RID
(or offset) component is valid if it is greater than 0 and if the string it defines starts at a 4-byte
boundary and is fully contained within the #US stream. The last condition is checked in the fol-
lowing way: the bytes at the offset specified by the RID component of the token are interpreted
as the compressed length of the string. (Don’t forget that the #US stream is a blob heap.) If the
sum of the offset and the size of compressed length brings us to a 4-byte boundary and if this
sum plus the calculated length are within the #US stream size, everything is fine and the token
is valid.

CHAPTER 5 ■ METADATA TABLES ORGANIZATION84

Ch05_6463_CMP2 4/28/06 8:33 AM Page 84

Coded Tokens
The discussion thus far has focused on the “external” form of tokens. You have every right to
suspect that the “internal” form of tokens, used inside the metadata, is different—and it is.

Why can’t the external form also be used as internal? Because the external tokens are
huge. Imagine 4 bytes for each token when we fight for each measly byte, trying to squeeze the
metadata into as small a footprint as possible. (Bandwidth! Don’t forget about the bandwidth!)
Compression? Alas, having the type component occupying the most significant byte, external
tokens represent very large unsigned integers and thus cannot be efficiently compressed, even
though their middle bytes are full of zeros. We need a fresh approach.

The internal encoding of tokens is based on a simple idea: a column must be given a token
type only if it might reference several tables. (Columns referencing only one table have a respec-
tive RID type.) But any such column certainly does not need to reference all the tables.

So our first task is to identify which group of tables each such column might reference
and form a set of such groups. Let’s assign each group a number, which will be a coded token
type of the column. The coded token types occupy a range from 64 to 95, so we can define up
to 32 groups.

Now, every group contains two or more table types. Let’s enumerate them within the
group and see how many bits we will need for this enumeration. This bit count will be a char-
acteristic of the group and hence of the respective coded token type. The number assigned to
a table within the group is called a tag.

This tag plays a role roughly equivalent to that of the type component of an external
token. But, unwilling to once again create large tokens full of zeros, we will this time put the
tag not in the most significant bits of the token but rather in the least significant bits. Then
let’s left-shift the RID n bits and add the left-shifted RID to the tag, where n is the bit width of
the tag. Now we’ve got a coded token. For example, an uncoded TypeSpec token 0x1B000123
will be converted into coded TypeDefOrRef token 0x0000048E.

What about the coded token size? We know which metadata tables form each group and
we know the record count of each table, so we know the maximal possible RID within the
group. Say, for example, that we would need m bits to encode the maximal RID. If we can fit
the maximal RID (m bits) and the tag (n bits) into a 2-byte unsigned integer (16 bits), we win,
and the coded token size for this group will be 2 bytes. If we can’t, we are out of luck and will
have to use 4-byte coded tokens for this group. No, we won’t even consider 3 bytes—it’s unbe-
coming.

To summarize, a coded token type has the following attributes:

• Number of referenced tables (part of the schema)

• Array of referenced table IDs (part of the schema)

• Tag bit width (part of the schema, derived from the number of referenced tables)

• Coded token size, either 2 or 4 bytes (computed at the metadata opening time from the
tag width and the maximal record count among the referenced tables)

CHAPTER 5 ■ METADATA TABLES ORGANIZATION 85

Ch05_6463_CMP2 4/28/06 8:33 AM Page 85

Table 5-10 lists the 13 coded token types defined in the metadata schema of the existing
releases of the common language runtime.

Table 5-10. Coded Token Types

Coded Token Type Tag

TypeDefOrRef (64): 3 referenced tables, tag size 2

TypeDef 0

TypeRef 1

TypeSpec 2

HasConstant (65): 3 referenced tables, tag size 2

Field 0

Param 1

Property 2

HasCustomAttribute (66): 22 referenced tables, tag size 5

Method 0

Field 1

TypeRef 2

TypeDef 3

Param 4

InterfaceImpl 5

MemberRef 6

Module 7

DeclSecurity 8

Property 9

Event 10

StandAloneSig 11

ModuleRef 12

TypeSpec 13

Assembly 14

AssemblyRef 15

File 16

ExportedType 17

ManifestResource 18

GenericParam (v2.0 only) 19

GenericParamConstraint (v2.0 only) 20

MethodSpec (v2.0 only) 21

HasFieldMarshal (67): 2 referenced tables, tag size 1

Field 0

Param 1
Continued

CHAPTER 5 ■ METADATA TABLES ORGANIZATION86

Ch05_6463_CMP2 4/28/06 8:33 AM Page 86

Table 5-10. Continued

Coded Token Type Tag

HasDeclSecurity (68): 3 referenced tables, tag size 2

TypeDef 0

Method 1

Assembly 2

MemberRefParent (69): 5 referenced tables, tag size 3

TypeDef 0

TypeRef 1

ModuleRef 2

Method 3

TypeSpec 4

HasSemantics (70): 2 referenced tables, tag size 1

Event 0

Property 1

MethodDefOrRef (71): 2 referenced tables, tag size 1

Method 0

MemberRef 1

MemberForwarded (72): 2 referenced tables, tag size 1

Field 0

Method 1

Implementation (73): 3 referenced tables, tag size 2

File 0

AssemblyRef 1

ExportedType 2

CustomAttributeType (74): 5 referenced tables, tag size 3

TypeRef (obsolete, must not be used) 0

TypeDef (obsolete, must not be used) 1

Method 2

MemberRef 3

String (obsolete, must not be used) 4

ResolutionScope (75): 4 referenced tables, tag size 2

Module 0

ModuleRef 1

AssemblyRef 2

TypeRef 3

TypeOrMethodDef (76) (v2.0 only): 2 referenced tables, tag size 1

TypeDef 0

Method 1

CHAPTER 5 ■ METADATA TABLES ORGANIZATION 87

Ch05_6463_CMP2 4/28/06 8:33 AM Page 87

The coded token type range (64–95) provides room to add another 19 types in the future,
should it ever become necessary.

Coded tokens are part of metadata’s internal affairs. The IL assembler, like all other com-
pilers, never deals with coded tokens. Compilers and other tools read and emit metadata
through the metadata import and emission APIs, either directly or through managed wrappers
provided in the .NET Framework class library—System.Reflection for metadata import and
System.Reflection.Emit for metadata emission. The metadata APIs automatically convert
standard 4-byte tokens to and from coded tokens. IL code also uses only standard 4-byte
tokens.

Nonetheless, the preceding definitions are useful to us for two reasons. First, we will need
them when we discuss individual metadata tables in later chapters. Second, these definitions
provide a good hint about the nature of relationships between the metadata tables.

Metadata Validation
This “good hint,” however, is merely a hint. The definitions in the preceding section provide
information about which tables you can reference from a column of a certain type. It does not
mean you should reference all the tables you can. Some of the groups of token types listed in
Table 5-10 are wider than is actually acceptable in the existing releases of the common language
runtime. For example, the MemberRefParent group, which describes the tables that can contain
the parents of a MemberRef record, includes the TypeDef table. But the metadata emission APIs
will not accept a TypeDef token as the parent token of a MemberRef; and even if such metadata
were somehow emitted, the loader would reject it.

Metadata emission APIs provide very few safeguards (most of them fairly trivial) as far as
metadata validity is concerned. Metadata is an extremely complex system, and literally hun-
dreds of validity rules need to be enforced.

High-level language compilers, such as VB .NET or C# compilers, provide a significant
level of protection against invalid metadata emission because they shield the actual metadata
specification and emission from programmers. The high-level languages are concept driven
and concept based, and it is the compiler’s duty to translate the language concepts to the
metadata structures and IL code constructs, so a compiler can be built to emit valid structures
and constructs. (Well, more or less.) On the other hand, ILAsm, like other assemblers, is a plat-
form-oriented language and allows a programmer to generate an enormously wide range of
metadata structures and IL constructs, only a fraction of which represent a valid subset.

In view of this bleak situation, we need to rely on external validation and verification
tools. (Speaking of “validation and verification” is not an exercise in tautology—in the CLR
lingo, the term validation is usually applied to metadata and verification to IL code.) One such
tool is the common language runtime itself. The loader tests metadata against many of the
validity rules, especially those whose violation could break the system. The runtime subsys-
tem responsible for JIT compilation performs IL code verification. These processes are
referred to as run-time validation and verification.

PEVerify, a stand-alone tool included in the .NET Framework SDK, offers more exhaustive
validation and verification. PEVerify employs two independent subsystems, MDValidator and
ILVerifier. MDValidator can also be invoked through the IL disassembler.

You can find information about PEVerify and the IL disassembler in the appendixes.
Later chapters discuss various validity rules along with the related metadata structures and IL
constructs.

CHAPTER 5 ■ METADATA TABLES ORGANIZATION88

Ch05_6463_CMP2 4/28/06 8:33 AM Page 88

Summary
Now that you know how the metadata is organized in principle, you are ready to examine the
particular metadata items and the tables representing them. All further considerations shall
concentrate on four metadata streams—#Strings, #Blob, #US, and #~—because the #GUID
stream is referenced in one metadata table only (the Module table) and the #- stream (unopti-
mized metadata) is never emitted by the ILAsm compiler.

Here’s some advice for those of you who wonder whether it would be a good idea to spoof
the metadata header to get access to the data beyond the metadata under the pretense of
manipulating the metadata: forget it. The CLR loader has safeguards analyzing the consis-
tency of the metadata headers and the metadata itself. If an inconsistency is detected, the
loader refuses to open the metadata streams. Tinkering with the metadata headers does not
lead to erroneous or unpredictable behavior of the module; instead, it renders the module
unloadable, period.

And on this cheerful note, let’s proceed to discussion of the “real” metadata items.

CHAPTER 5 ■ METADATA TABLES ORGANIZATION 89

Ch05_6463_CMP2 4/28/06 8:33 AM Page 89

Ch05_6463_CMP2 4/28/06 8:33 AM Page 90

Fundamental
Components

P A R T 3

■ ■ ■

Ch06_6463_CMP4 5/3/06 7:02 PM Page 91

Ch06_6463_CMP4 5/3/06 7:02 PM Page 92

Modules and Assemblies

This chapter discusses the organization, deployment, and execution of assemblies and mod-
ules. It also provides a detailed examination of the metadata segment responsible for assembly
and module identity and interaction: the manifest. As you might recall from Chapter 1, an
assembly can include several modules (managed PE files). Any module of a multimodule
assembly can—and does, as a rule—carry its own manifest, but only one module per assembly
carries the manifest that contains the assembly’s identity. This module is referred to as the
prime module. Thus, each assembly, whether multimodule or single-module, contains only
one prime module.

What Is an Assembly?
An assembly is a deployment unit, a building block of a managed application. Assemblies
are reusable, allowing different applications to use the same assembly. Assemblies carry a
full self-description in their metadata, including version information that allows the common
language runtime to use a specific version of an assembly for a particular application.

This arrangement eliminates what’s known as DLL Hell, the situation created when
upgrading one application renders another application inoperative because both happen to
use identically named DLL(s) of different versions.

Private and Shared Assemblies
Assemblies are classified as either private or shared. Structurally and functionally, these two
kinds of assemblies are the same, but they differ in how they are named and deployed and in
the level of version checks performed by the loader.

A private assembly is considered part of a particular application, not intended for use by
other applications. A private assembly is deployed in the same directory as the application or
in a subdirectory of this directory. This kind of deployment shields the private assembly from
other applications, which should not have access to it.

Being part of a particular application, a private assembly is usually created by the same
author (person, group, or organization) as other components specific to this application and
is thus considered to be primarily the author’s responsibility. Consequently, naming and ver-
sioning requirements are relaxed for private assemblies, and the common language runtime
does not enforce these requirements. The name of a private assembly must be unique within
the application.

93

C H A P T E R 6

■ ■ ■

Ch06_6463_CMP4 5/3/06 7:02 PM Page 93

A shared assembly is not part of a particular application and is designed to be used widely
by various applications. Shared assemblies are usually authored by groups or organizations
other than those responsible for the applications that use these assemblies. A prominent
example of shared assemblies is the set of assemblies constituting the .NET Framework class
library.

As a result of such positioning, the naming and versioning requirements for shared
assemblies are much stricter than those for private assemblies. Names of shared assemblies
must be globally unique. Additional assembly identification is provided by strong names,
which use cryptographic public/private key pairs to ensure the strong name’s uniqueness and
to prevent name spoofing. The central part of the strong name is the strong name signature
(mentioned in Chapter 5)—a hash of the assembly’s prime module encrypted with the pub-
lisher’s private key. Assembly metadata carries the publisher’s public key, which is used to
verify the strong name signature. A strong name also provides the consumer of the shared
assembly with information about the identity of the assembly publisher. If the common lan-
guage runtime cryptographic checks pass, the consumer can be sure that the assembly comes
from the expected publisher, assuming that the publisher’s private encryption key was not
compromised.

Shared assemblies are deployed into the machine-wide repository called global assembly
cache (GAC). The GAC stores multiple versions of shared assemblies side by side. The loader
looks for the shared assemblies in the GAC.

Under some circumstances, an application might need to deploy a shared assembly in its
directory to ensure that the appropriate version is loaded. In such a case, the shared assembly
is being used as a private assembly, so it is not in fact shared, whether it is strong named or not.

Application Domains As Logical Units of Execution
Operating systems and runtimes typically provide some form of isolation between applications
running on the system. This isolation is necessary to ensure that code running in one applica-
tion cannot adversely affect other, unrelated applications. In modern operating systems, this
isolation is achieved by using hardware-enforced process boundaries, where a process, occupy-
ing a unique virtual address space, runs exactly one application and scopes the resources that
are available for that process to use.

Managed code execution has similar needs for isolation. Such isolation can be provided
at a lower cost in a managed application, however, considering that managed applications run
under the control of the common language runtime and are verified to be type-safe.

The runtime allows multiple applications to be run in a single operating system process,
using a construct called an application domain to isolate the applications from one another.
Since all memory allocation requested by an application is done by the CLR, it is easy for the
CLR to give an application access to only those objects that were allocated by the application
and to block the application’s attempts to access objects allocated in another application
domain. In many respects, application domains are the CLR equivalent of an operating sys-
tem process.

Specifically, isolation in managed applications means the following:

• Different security levels can be assigned to each application domain, giving the host a
chance to run the applications with varying security requirements in one process.

CHAPTER 6 ■ MODULES AND ASSEMBLIES94

Ch06_6463_CMP4 5/3/06 7:02 PM Page 94

• Code running in one application cannot directly access code or resources from another
application. (Doing so could introduce a security hole.) An exception to this rule is the
base class library assembly of .NET Framework—Mscorlib—which is shared by all
application domains within the process. Mscorlib is not shared between the processes.

• Faults in one application cannot affect other applications by bringing down the entire
process.

• Each application has control over where the code loaded on its behalf comes from and
what version the code being loaded is. In addition, configuration information is scoped
by the application.

The following examples describe scenarios in which it is useful to run multiple applica-
tions in the same process:

• ASP.NET runs multiple Web applications in the same process. In ASP and Internet Infor-
mation Services (IIS), application isolation was achieved by process boundaries, which
proved too expensive to scale appropriately—it’s cheaper to run 20 application domains
in one process than to spawn 20 separate processes.

• Microsoft Internet Explorer runs code from multiple sites in the same process as the
browser code itself. Obviously, code from one site should not be able to affect code
from another site.

• Database engines need to run code from multiple user applications in the same
process.

• Application server products might need to run code from multiple applications in a
single process.

Hosting environments such as ASP.NET or Internet Explorer need to run managed code
on behalf of the user and take advantage of the application isolation features provided by
application domains. In fact, it is the host that determines where the application domain
boundaries lie and in what domain user code is run, as these examples show:

• ASP.NET creates application domains to run user code. Domains are created per appli-
cation as defined by the Web server.

• Internet Explorer by default creates one application domain per site (although develop-
ers can customize this behavior).

• In Shell EXE, each application launched from the command line runs in a separate
application domain occupying one process.

• Microsoft Visual Basic for Applications (VBA) uses the default application domain of
the process to run the script code contained in a Microsoft Office document.

• The Windows Foundation Classes (WFC) Forms Designer creates a separate application
domain for each form being built. When a form is edited and rebuilt, the old applica-
tion domain is shut down, the code is recompiled, and a new application domain is
created.

CHAPTER 6 ■ MODULES AND ASSEMBLIES 95

Ch06_6463_CMP4 5/3/06 7:02 PM Page 95

Since isolation demands that the code or resources of one application must not be directly
accessible from code running in another application, no direct calls are allowed between
objects in different application domains. Cross-domain communications are limited to either
copying objects or creating special proxy objects, which are the object’s “representatives” in
other domains, giving the code in other domains access to instance fields and methods of the
object. In regard to cross-domain communications, the objects fall into one of the following
three categories:

• Unbound objects are marshaled by value across domains. This means that the receiving
domain gets a copy of the object to play with instead of the original object.

• AppDomain-bound objects are marshaled by reference across domains, which means
that cross-domain access is always accomplished through proxies.

• Context-bound objects are also marshaled by reference across domains as well as
between contexts within the same domain. A context is a set of usage rules defining
an environment where the objects reside. The rules are enforced when an object is
entering or leaving the context.

The CLR relies on the verifiable type safety of the code (discussed in Chapter 13) to pro-
vide fault isolation between domains at a much lower cost than that incurred by the process
isolation used in operating systems. The isolation is based on static type verification, and as a
result, the hardware ring transitions or process switches are not necessary.

Manifest
The metadata that describes an assembly and its modules is referred to as a manifest. The
manifest carries the following information:

• Identity, including a simple textual name, an assembly version number, an optional
culture (if the assembly contains localized managed resources), and an optional public
key if the assembly is strong named. This information is defined in two metadata
tables: Module and Assembly (in the prime module only).

• Contents, including types and managed resources exposed by this assembly for exter-
nal use and the location of these types and resources. The metadata tables that contain
this information are ExportedType (in the prime module only) and ManifestResource.

• Dependencies, including other (external) assemblies this assembly references and, in the
case of a multimodule assembly, other modules of the same assembly. You can find the
dependency information in these metadata tables: AssemblyRef, ModuleRef, and File.

• Requested permissions, specific to the assembly as a whole. More specific requested
permissions might also be defined for certain types (classes) and methods. This infor-
mation is defined in the DeclSecurity metadata table. (Chapter 17 describes requested
permissions and the ways to declare them.)

• Custom attributes, specific to the manifest components. Custom attributes provide addi-
tional information used mostly by compilers and other tools. The CLR recognizes a limited
number of custom attributes. Custom attributes are defined in the CustomAttribute meta-
data table. (Refer to Chapter 16 for more information on this topic.)

CHAPTER 6 ■ MODULES AND ASSEMBLIES96

Ch06_6463_CMP4 5/3/06 7:02 PM Page 96

Figure 6-1 shows the mutual references that take place between the metadata tables
constituting the manifest.

Figure 6-1. Mutual references between the manifest’s metadata tables

Assembly Metadata Table and Declaration
The Assembly metadata table contains at most one record, which appears in the prime mod-
ule’s metadata. The table has the following column structure:

HashAlgId (4-byte unsigned integer): The ID of the hash algorithm used in this assembly to
hash the files. The value must be one of the CALG_* values defined in the header file Win-
crypt.h. The default hash algorithm is CALG_SHA (a.k.a. CALG_SHA1) (0x8004). Ecma
International/ISO specifications consider this algorithm to be standard, offering the best
widely available technology for file hashing.

MajorVersion (2-byte unsigned integer): The major version of the assembly.

Assembly
(Assembly Identity,

Prime Module
Only)

Module
(This Module

Identity)

ModuleRef
(Other Modules of

the Same
Assembly)

AssemblyRef
(Other Assemblies

Referenced in
This One)

File
(Other Files of the
Same Assembly)

ExportedType
(Types Exposed by
This Assembly and

Defined in Other Modules,
Prime Module Only)

ManifestResource
(Managed Resources

Defined In this
Assembly, Or Defined

or Used in This Module)

DeclSecurity
(Prime Module Only) CustomAttribute

CHAPTER 6 ■ MODULES AND ASSEMBLIES 97

Ch06_6463_CMP4 5/3/06 7:02 PM Page 97

MinorVersion (2-byte unsigned integer): The minor version of the assembly.

BuildNumber (2-byte unsigned integer): The build number of the assembly.

RevisionNumber (2-byte unsigned integer): The revision number of the assembly.

Flags (4-byte unsigned integer): Assembly flags indicating whether the assembly is strong
named (set automatically by the metadata emission API if PublicKey is present), whether
the JIT tracking and/or optimization is enabled (set automatically on assembly load), and
whether the assembly can be retargeted at run time to an assembly of a different version.
JIT tracking is the mapping of IL instruction offsets to addresses of native code produced
by the JIT compiler; this mapping is used during the debugging of the managed code.

PublicKey (offset in the #Blob stream): A binary object representing a public encryption
key for a strong-named assembly.

Name (offset in the #Strings stream): The assembly name, which must be nonempty and
must not contain a path or a filename extension (for example, mscorlib, System.Data).

Locale (offset in the #Strings stream): The culture (formerly known as locale) name, such as
en-US (American English) or fr-CA (Canadian French), identifying the culture of localized
managed resources of this assembly. The culture name must match one of hundreds of
culture names “known” to the runtime through the .NET Framework class library, but this
validity rule is rather meaningless: to use a culture, the specific language support must be
installed on the target machine. If the language support is not installed, it doesn’t matter
whether the culture is “known” to the runtime.

In ILAsm, the Assembly is declared in the following way (for example):

.assembly mscorlib
{
.publickey = (00 00 00 00 00 00 00 00 04 00 00 00 00 00 00 00)
.hash algorithm 0x00008004
.ver 2:0:0:0

}

The ILAsm syntax of the Assembly declaration is as follows:

.assembly <flags> <name> { <assemblyDecl>* }

where <flags> ::=

<none> // Assembly cannot be retargeted
| retargetable // Assembly can be retargeted

and <assemblyDecl> ::=

.hash algorithm <int32> // Set hash algorithm ID
| .ver <int32>:<int32>:<int32>:<int32> // Set version numbers
| .publickey = (<bytes>) // Set public encryption key
| .locale <quotedString> // Set assembly culture
| <securityDecl> // Set requested permissions
| <customAttrDecl> // Define custom attribute(s)

CHAPTER 6 ■ MODULES AND ASSEMBLIES98

Ch06_6463_CMP4 5/3/06 7:02 PM Page 98

In this declaration, <int32> denotes an integer number, at most 4 bytes in size. The notation
<bytes> represents a sequence of two-digit hexadecimal numbers, each representing 1 byte; this
form, bytearray, is often used in ILAsm to represent binary objects of arbitrary size. Finally,
<quotedString> denotes, in general, a composite quoted string—that is, a construct such as
"ABC"+"DEF"+"GHI". The concatenation with the plus sign is useful for defining very long
strings, although in this case we don’t need concatenation for strings such as en-US or nl-BE.

AssemblyRef Metadata Table and Declaration
The AssemblyRef (assembly reference) metadata table defines the external dependencies of
an assembly or a module. Both prime and nonprime modules can—and do, as a rule—contain
this table. The only assembly that does not depend on any other assembly, and hence has an
empty AssemblyRef table, is Mscorlib.dll, the root assembly of the .NET Framework class
library.

The column structure of the AssemblyRef table is as follows:

MajorVersion (2-byte unsigned integer): The major version of the assembly.

MinorVersion (2-byte unsigned integer): The minor version of the assembly.

BuildNumber (2-byte unsigned integer): The build number of the assembly.

RevisionNumber (2-byte unsigned integer): The revision number of the assembly.

Flags (4-byte unsigned integer): Assembly reference flags, which indicate whether the
assembly reference holds a full unhashed public key or a “surrogate” (public key token).

PublicKeyOrToken (offset in the #Blob stream): A binary object representing the public
encryption key for a strong-named assembly or a token of this key. A key token is an
8-byte representation of a hashed public key, and it has nothing to do with metadata
tokens.

Name (offset in the #Strings stream): The name of the referenced assembly, which must be
nonempty and must not contain a path or a filename extension.

Locale (offset in the #Strings stream): The culture name.

HashValue (offset in the #Blob stream): A binary object representing a hash of the meta-
data of the referenced assembly’s prime module. This value is ignored by the loader, so it
can safely be omitted.

In ILAsm, an AssemblyRef is declared in the following way (for example):

.assembly extern mscorlib
{
.publickeytoken = (B7 7A 5C 56 19 34 E0 89)
.ver 2:0:0:0

}

CHAPTER 6 ■ MODULES AND ASSEMBLIES 99

Ch06_6463_CMP4 5/3/06 7:02 PM Page 99

The ILAsm syntax for an AssemblyRef declaration is as follows:

.assembly extern <name> { <assemblyRefDecl>* }

where <assemblyRefDecl> ::=

| .ver <int32>:<int32>:<int32>:<int32> // Set version numbers
| .publickey = (<bytes>) // Set public encryption key
| .publickeytoken = (<bytes>) // Set public encryption key token
| .locale <quotedString> // Set assembly locale (culture)
| .hash = (<bytes>) // Set hash value
| <customAttrDecl> // Define custom attribute(s)

As you might have noticed, ILAsm does not provide a way to set the flags in the Assem-
blyRef declaration. The explanation is simple: the only flag relevant to an AssemblyRef is the
flag indicating whether the AssemblyRef carries a full unhashed public encryption key, and
this flag is set only when the .publickey directive is used.

When referencing a strong-named assembly, you are required to specify .publickeytoken
(or .publickey, which is rarely used in AssemblyRefs) and .ver. The only exception to this rule
among the strong-named assemblies is Mscorlib.dll.

If .locale is not specified, the referenced assembly is presumed to be “culture neutral.”
An interesting situation arises when you need to use two or more versions of the same

assembly side by side. An assembly is identified by its name, version, public key (or public key
token), and culture. It would be extremely cumbersome to list all these identifications every
time you reference an assembly: “I want to call method Bar of class Foo from assembly
SomeOtherAssembly, and I want the version number such-and-such, the culture nl-BE, and….”
Of course, if you didn’t need to use different versions side by side, you could simply refer to an
assembly by name.

ILAsm provides an AssemblyRef aliasing mechanism to deal with such situations. The
AssemblyRef declaration can be extended as shown here:

.assembly extern <name> as <alias> { <assemblyRefDecl>* }

and whenever you need to reference this assembly, you can use its <alias>, as shown in this
example:

.assembly extern SomeOtherAssembly as OldSomeOther
{ .ver 1:1:1:1 }
.assembly extern SomeOtherAssembly as NewSomeOther
{ .ver 1:3:2:1 }
...
call int32 [OldSomeOther]Foo::Bar(string)
...
call int32 [NewSomeOther]Foo::Bar(string)
...

The alias is not part of metadata. Rather, it is simply a language tool, needed to identify a
particular AssemblyRef among several identically named AssemblyRefs. The IL disassembler
generates aliases for AssemblyRefs whenever it finds identically named AssemblyRefs in the
module metadata.

CHAPTER 6 ■ MODULES AND ASSEMBLIES100

Ch06_6463_CMP4 5/3/06 7:02 PM Page 100

Autodetection of Referenced Assemblies
Version 2.0 of the IL assembler offers you a way to reference the assemblies without specifying
their version, public key token, and other attributes:

.assembly extern <name> as <alias> { auto }

When the keyword auto is specified, the ILAsm compiler queries the GAC and tries to find
an assembly with the specified name. If it succeeds, it reads the assembly attributes (version,
public key, culture) and puts these attributes into the generated AssemblyRef metadata
record.

Note that the autodetection feature works only for referenced assemblies installed in
the GAC.

The referenced assembly attributes may be partially specified and combined with
autodetection, thus narrowing the search; for example:

.assembly extern OtherAssembly { .ver 1:3:*:* auto }

The previous directive will prompt the IL assembler to query the GAC looking for an
assembly named OtherAssembly with the major version number equal to 1 and the minor
version number equal to 3 and with any build and revision numbers. If such an assembly is
found in the GAC, then its missing atrributes are retrieved and put into the respective entries
of the AssemblyRef record.

If more than one assembly matching the search criteria is found, the one with the highest
version is taken.

In this regard, the IL assembler differs from other managed compilers (VB, C#, VC++),
as those compilers require the specification of referenced assemblies via the file path instead
of querying the GAC. This might play a bad trick on a programmer, because the CLR loader
always tries to load the assemblies from the GAC first (as is described in the next section), and
in the unlikely event of a mismatch between referenced assemblies installed in the GAC and
those specified by the file path, the application will be executed against assemblies different
from those it was built against.

The autodetection feature was introduced in version 2.0 of the IL assembler.

The Loader in Search of Assemblies
When you define an AssemblyRef in the metadata, you expect the loader to find exactly this
assembly and load it into the application domain. Let’s have a look at the process of finding
an external assembly and binding it to the referencing application.

Given an AssemblyRef, the process of binding to that assembly is influenced by these
factors:

• The application base (AppBase), which is a URL to the referencing application location
(that is, to the directory in which your application is located). For executables, this is
the directory containing the EXE file. For Web applications, the AppBase is the root
directory of the application as defined by the Web server.

• Version policies specified by the application, by the publisher of the shared assembly
being referenced, or by the administrator.

CHAPTER 6 ■ MODULES AND ASSEMBLIES 101

Ch06_6463_CMP4 5/3/06 7:02 PM Page 101

• Any additional search path information given in the application configuration file.

• Any code base (CodeBase) locations provided in the configuration files by the applica-
tion, the publisher, or the administrator. The CodeBase is a URL to the location of the
referenced external assembly. There may be as many code bases as there are referenced
assemblies.

• Whether the reference is to a shared assembly with a strong name or to a private assem-
bly. Strong-named assemblies are first sought in the GAC.

As illustrated in Figure 6-2, the loader performs the following steps to locate a referenced
assembly:

1. Initiate the binding. Basically, this means taking the relevant AssemblyRef record from
the metadata and seeing what it holds—its external assembly name, whether it is
strong named, whether culture is specified, and so on.

2. Apply the version policies, which are statements made by the application, by the pub-
lisher of the shared assembly being referenced, or by the administrator. These
statements are contained in XML configuration files and simply redirect references to a
particular version (or set of versions) of an assembly to a different version.

3. The .NET Framework retrieves its configuration from a set of configuration files. Each
file represents settings that have different scopes. For example, the configuration file
supplied with the installation of the common language runtime has settings that can
affect all applications that use that version of the CLR. The configuration file supplied
with an application (application configuration file) has settings that affect only that
one application; this configuration file resides in the application directory. A publisher
policy file is supplied by the publisher of a shared assembly, and it contains informa-
tion about the assembly compatibility and redirects an assembly reference to a new
version of the shared component. A publisher policy file is usually issued when the
shared component is updated by its publisher. The publisher policy settings take
precedence over the settings of the application configuration file. The administrator
policy file, Machine.config, resides in the Configuration subdirectory of the CLR
installation directory. This file contains settings defined by the administrator for this
machine and takes precedence over any other configuration file. Overrides specified in
the Machine.config file affect all applications running on this machine and cannot be
in turn overridden.

4. If the referenced assembly is strong named (in other words, the AssemblyRef contains
non-null public key or public key token), then look up the assembly in the GAC. Other-
wise, since weak-named assemblies cannot be installed in GAC, this step is skipped. If
the assembly is found, which is the most common case, the search process is completed.

5. Check the CodeBase. Now that the common language runtime knows which version of
the assembly it is looking for, it begins the process of locating it. If the CodeBase has
been supplied (in the same XML configuration file), it points the CLR directly at the
executable to load; otherwise, the runtime needs to look in the AppBase (see the next
step). If the executable specified by the CodeBase matches the assembly reference, the
process of finding the assembly is complete, and the external assembly can be loaded.
In fact, even if the executable specified by the CodeBase does not match the reference,
the CLR stops searching. In this case, of course, the search is considered a failure, and
no assembly load follows.

CHAPTER 6 ■ MODULES AND ASSEMBLIES102

Ch06_6463_CMP4 5/3/06 7:02 PM Page 102

6. Probe the AppBase. The probing involves consecutive searching in the directories
defined by the AppBase, the private binary path (binpath) from the same XML configu-
ration file, the culture of the referenced assembly, and its name. The AppBase plus
directories specified in the binpath form a set of root directories: {<rootk>, k=1…N}.
If the AssemblyRef specifies the culture, the search is performed in directories
<rootk>/<culture> and then in <rootk>/<culture>/<name>; otherwise, the directories
<rootk> and then <rootk>/<name> are searched. When searching for a private assem-
bly, the process ignores the version numbers. If the assembly is not found by probing,
the binding fails.

Figure 6-2. Searching for a referenced assembly

Step 1: Initiate the binding

Step 2: Apply Version Policies
(Application, Publisher, Administrator)

Search in the CodeBase

Probe in the AppBase

Step 3: Is the Assembly
strong named?

Step 4: Is CodeBase
specified?

Found?

Search in the global assembly cache

Yes

Yes

Yes

Found?

Yes

CHAPTER 6 ■ MODULES AND ASSEMBLIES 103

Ch06_6463_CMP4 5/3/06 7:02 PM Page 103

In version 2.0 of the CLR running under a 64-bit operating system, the problems with
assembly binding are exacerbated by the possible presence of both 32-bit and 64-bit versions
of assemblies. To deal with the problem, the binding mechanism of the v2.0 assembly loader
uses the following classification of the assemblies:

• Platform-agnostic assemblies can be executed in native unemulated mode on a 32-bit
or 64-bit platform; they don’t contain any platform-specific details.

• 32-bit specific assemblies can be executed natively on 32-bit platforms; on 64-bit plat-
forms such assemblies require 32-bit emulation.

• Itanium-specific assemblies can be executed natively on Intel Itanium platform and
cannot be executed on any other platform.

• X64-specific assemblies can be executed natively on an AMD/Intel X64 platform and
cannot be executed on any other platform.

This classification is called Processor Architecture and is an additional part of full assem-
bly identity in version 2.0. The Processor Architecture is derived from the Machine entry of the
COFF header, the type of the Optional NT header, and the two least significant bits (flags
ILONLY and 32BITREQUIRED) of the CLR header flags (see Chapter 4 for details):

• Platform-agnostic assemblies have Machine = I386, 32-bit Optional header, and the two
least significant bits of CLR header flags set to ILONLY (0x1).

• 32-bit specific assemblies have the same Machine and Optional header and the two
least significant bits of CLR header flags set to 32BITREQUIRED|ILONLY (0x3),
32BITREQUIRED (0x2), or 0.

• Itanium-specific assemblies have Machine = IA64 and 64-bit Optional header; CLR
header flags play no role.

• X64-specific assemblies have Machine = AMD64 and 64-bit Optional header; CLR
header flags play no role.

You should be careful declaring your assembly platform agnostic. To be truly platform
agnostic, the assembly has to have no presumptions of pointer size, no unmanaged exports
or imports, no embedded native code, and no thread-local storage (.tls section), and it has to
reference no platform-specific assemblies or platform-specific unmanaged DLLs. The last
condition is the worst of them all, because it is transitive. Many times developers have written
an application (EXE) and declared it platform agnostic, only to discover that it crashed on
64-bit platforms: the application, being platform agnostic, created a 64-bit process and then
tried to load a 32-bit specific referenced assembly into the 64-bit process. Kaboom! Or it tried
to load a platform-agnostic assembly A, which in turn referenced assembly B, and B just hap-
pened to P/Invoke a 32-bit unmanaged DLL (see Chapter 18). Kaboom! The bright side of it is
that such problems are usually discovered right away, not after the application has been
shipped.

Version 2.0 of the runtime considers all assemblies produced for versions 1.0 and 1.1 as
32-bit specific assemblies. It is only fair: versions 1.0 and 1.1 of the runtime did not support
64-bit platforms. The assemblies produced for versions 1.0 and 1.1 are identified by the meta-
data stream header (see Chapter 5); the version specified in this header is 1.0 for v1.0 and v1.1
assemblies and is 2.0 for v2.0 assemblies.

CHAPTER 6 ■ MODULES AND ASSEMBLIES104

Ch06_6463_CMP4 5/3/06 7:02 PM Page 104

Module Metadata Table and Declaration
The Module metadata table contains a single record that provides the identification of the
current module. The column structure of the table is as follows:

Generation (2-byte unsigned integer): Used only at run time, in edit-and-continue mode.

Name (offset in the #Strings stream): The module name, which is the same as the name of
the executable file with its extension but without a path. The length should not exceed
512 bytes in UTF-8 encoding, counting the zero terminator.

Mvid (offset in the #GUID stream): A globally unique identifier, assigned to the module as
it is generated.

EncId (offset in the #GUID stream): Used only at run time, in edit-and-continue mode.

EncBaseId (offset in the #GUID stream): Used only at run time, in edit-and-continue
mode.

Since only one entry of the Module record can be set explicitly (the Name entry), the
module declaration in ILAsm is quite simple:

.module <name>

ModuleRef Metadata Table and Declaration
The ModuleRef metadata table contains descriptors of other modules referenced in the cur-
rent module. The set of “other modules” includes both managed and unmanaged modules.

The relevant managed modules are the other modules of the current assembly. In ILAsm,
they should be declared explicitly, and their declarations should be paired with File declara-
tions (discussed in the following section). IL assembler does not verify whether the referenced
modules are present at compile time.

The unmanaged modules described in the ModuleRef table are simply unmanaged DLLs
containing methods called from the current module using the platform invocation mecha-
nism—P/Invoke, discussed in Chapter 18. These ModuleRef records usually are not paired
with File records. They need not be explicitly declared in ILAsm because in ILAsm the DLL
name is part of the P/Invoke specification, so the IL assembler emits respective ModuleRef
records automatically.

There is one reason, however, to pair a ModuleRef record referring to an unmanaged
module with a File record: you should do that if you want this unmanaged DLL to be part of
your deployment. In this case the unmanaged DLL will reside together with managed modules
constituting your assembly, and it does not have to be on the path to be discovered.

A ModuleRef record contains only one entry, the Name entry, which is an offset in the
#Strings stream. The ModuleRef declaration in ILAsm is not much more sophisticated than
the declaration of Module:

.module extern <name>

As in the case of Module, <name> in ModuleRef is the name of the executable file with its
extension but without a path, not exceeding 512 bytes in UTF-8 encoding.

CHAPTER 6 ■ MODULES AND ASSEMBLIES 105

Ch06_6463_CMP4 5/3/06 7:02 PM Page 105

File Metadata Table and Declaration
The File metadata table describes other files of the same assembly that are referenced in the
current module. In single-module assemblies, this table is empty (unless you want to specify
unmanaged DLLs as part of your deployment, as was described earlier). The table has the fol-
lowing column structure:

Flags (4-byte wide bitfield): Binary flags characterizing the file. This entry is mostly reserved
for future use; the only flag currently defined is ContainsNoMetaData (0x00000001). This flag
indicates that the file in question is not a managed PE file but rather a pure resource file.

Name (offset in the #Strings stream): The filename, subject to the same rules as the names
in Module and ModuleRef. This is the only occurrence of data duplication in the metadata
model: the File name matches the name used in the ModuleRef with which this File
record is paired. However, since the names in both records are not physical strings but
rather offsets in the string heap, the string data might not actually be duplicated; instead,
both records might reference the same string in the heap. This doesn’t mean there is no
data duplication: the offsets are definitely duplicated.

HashValue (offset in the #Blob stream): The blob representing the hash of the file, used to
authenticate the files in a multifile assembly. Even in a strong-named assembly, the strong
name signature resides only in the prime module and covers only the prime module.
Nonprime modules in an assembly are authenticated by their hash values.

The File declaration in ILAsm looks like the following:

.file <flag> <name> .hash = (<bytes>)

where <flag> ::=

<none> // The file is a managed PE file
| nometadata // The file is a pure resource file

If the hash value is not explicitly specified, the IL assembler finds the named file and com-
putes the hash value using the hash algorithm specified in the Assembly declaration. If the file
is not available at compile time, the HashValue entry of the respective File record is set to 0.

The File declaration can also carry the .entrypoint directive, as shown in this example:

.file MainClass.dll
.hash = (01 02 03 04 05 06 …)
.entrypoint

This sort of File declaration can occur only in the prime module of a multimodule assem-
bly and only when the entry point method is defined in a nonprime module of the assembly.
This clause of the File declaration does not affect the metadata, but it puts the appropriate file
token in the EntryPointToken entry of the common language runtime header. See Chapter 4
for details about EntryPointToken and the CLR header.

CHAPTER 6 ■ MODULES AND ASSEMBLIES106

Ch06_6463_CMP4 5/3/06 7:02 PM Page 106

The prime module of an assembly, especially a runnable application (EXE), must have a
valid token in the EntryPointToken field of the CLR header; and this token must be either a
Method token, if the entry point method is defined in the prime module, or a File token. In the
latter case, the loader loads the relevant module and inspects its common language runtime
header, which must contain a valid Method token in the EntryPointToken field.

Managed Resource Metadata and Declaration
A resource is nonexecutable data that is logically deployed as part of an application. The data
can take any number of forms such as strings, images, persisted objects, and so on. As Chapter
4 described, resources can be either managed or unmanaged (platform specific). These two
kinds of resources have different formats and are accessed using managed and unmanaged
APIs, respectively.

An application often must be customized for different cultures. A culture is a set of
preferences based on a user’s language, sublanguage, and cultural conventions. In the .NET
Framework, the culture is described by the CultureInfo class from the .NET Framework class
library. A culture is used to customize operations such as formatting dates and numbers, sort-
ing strings, and so on.

You might also need to customize an application for different countries or regions. A
region defines a set of standards for a particular country or region of the world. In the .NET
Framework, the class library describes a region using the RegionInfo class. A region is used to
customize operations such as formatting currency symbols.

Localization of an application is the process of connecting the application’s executable code
with the application’s resources that have been customized for specific cultures. Although a cul-
ture and a region together constitute a locale, localization is not concerned with customizing an
application to a specific region. The .NET Framework and the common language runtime do
not support the localization of component metadata, instead relying solely on the managed
resources for this task.

The .NET Framework uses a hub-and-spoke model for packaging and deploying resources.
The hub is the main assembly, which contains the executable code and the resources for a single
culture (referred to as the neutral culture). The neutral culture is the fallback culture for the
application. Each spoke connects to a satellite assembly that contains the resources for a single
culture. Satellite assemblies do not contain code.

The advantages of this model are obvious. First, resources for new cultures can be added
incrementally after an application is deployed. Second, an application needs to load only
those satellite assemblies that contain the resources needed for a particular run.

The resources used in or exposed by an assembly can reside in one of the following
locations:

• In separate resource file(s) in the same assembly. Each resource file can contain one or
more resources. The metadata descriptors of such files carry the nometadata flag.

• Embedded in managed modules of the same assembly.

• In another (external) assembly.

CHAPTER 6 ■ MODULES AND ASSEMBLIES 107

Ch06_6463_CMP4 5/3/06 7:02 PM Page 107

The resource data is not directly used or validated by the deployment subsystem or the
loader, so it can be of any kind.

All resource data embedded in a managed PE file resides in a contiguous block inside
the .text section. The Resources data directory in the CLR header provides the RVA and size
of embedded managed resources. Each individual resource is preceded by a 4-byte unsigned
integer holding the resource’s length in bytes. Figure 6-3 shows the layout of embedded
managed resources.

Figure 6-3. The layout of embedded managed resources

 #2: Name = ResB.bmp Offset = 0x0020

 #3: Name = ResC.wav Offset = 0x0200

 #1: Name = ResA Offset = 0x0000

Managed PE File

Resources Data Directory

CLR Header

Metadata

Length

Length

Length

Resource #1

Resource #2

Resource #2

Resource #3

Resource #3

Resource #3

ManifestResource Table

CHAPTER 6 ■ MODULES AND ASSEMBLIES108

Ch06_6463_CMP4 5/3/06 7:02 PM Page 108

The ManifestResource metadata table, describing the managed resources, has the follow-
ing column structure:

Offset (4-byte unsigned integer): Location of the resource within the managed resource
segment to which the Resources data directory of the CLR header points. This is not an
RVA; rather, it is an offset within the managed resource segment.

Flags (4-byte wide bitfield): Binary flags indicating whether the managed resource is pub-
lic (accessible from outside the assembly) or private (accessible from within the current
assembly only).

Name (offset in the #Strings stream): Nonempty name of the resource, unique within the
assembly.

Implementation (coded token of type Implementation): Token of the respective AssemblyRef
record if the resource resides in another assembly or of the respective File record if the
resource resides in another file of the current assembly. If the resource is embedded in the
current module, this entry is set to 0. If the resource is imported from another assembly,
the offset need not be specified; the loader will ignore it.

ILAsm syntax for the declaration of a managed resource is as follows:

.mresource <flag> <name> { <mResourceDecl>* }

where <flag> ::= public | private and <mResourceDecl> ::=

.assembly extern <alias> // Resource is imported from another
// assembly

| .file <name> at <int32> // Resource resides in another
// file of this assembly;
// <int32> is the offset

| <customAttrDecl> // Define custom attribute for this resource

The default flag value is private.
The directives .assembly extern and .file in the context of a managed resource declara-

tion refer to the resource’s Implementation entry and are mutually exclusive. If Implementation
references the AssemblyRef or File before it has been declared, the ILAsm compiler will diagnose
an error.

If the Implementation entry is empty, the resource is presumed embedded in the current
module. In this case, the IL assembler creates the PE file, loads the resource from the file
according to the resource’s name, and writes it into the .text section of the PE file, automati-
cally setting the Offset entry of the ManifestResource record. When the IL disassembler
disassembles a PE file into a text file, the embedded managed resources are saved into binary
files named after these resources, which allows the IL assembler to easily pick them up if the
PE file needs to be reassembled.

There is a little catch there: names of managed resources may contain characters inap-
propriate for filenames. In such cases, the managed resources cannot be saved under their
true names; on the other hand, you cannot change the resource names, because the resources
are addressed by these names in the application. To deal with this situation, version 2.0 of
ILAsm offers aliasing of the managed resources similar to aliasing of referenced assemblies:

.mresource <flag> <name> as <filename> { <mResourceDecl>* }

CHAPTER 6 ■ MODULES AND ASSEMBLIES 109

Ch06_6463_CMP4 5/3/06 7:02 PM Page 109

The previous directive prompts the IL assembler to load the resource from file <filename>
and create the respective ManifestResource metadata record with name <name>. The IL disas-
sembler v2.0, when saving the managed resources to files, analyzes the names of the resources
and if it finds colon, semicolon, comma, or backslash characters, it creates an alias for the
resource, replacing these characters with exclamation mark, commercial “at” (@), ampersand
(&), and currency sign ($), respectively. Then the resource is saved in the alias-named file.

ILAsm does not offer any language constructs to address the managed resources because
IL lacks the means to do so. Managed APIs provided by the .NET Framework class library—
specifically, the System.Resources.ResourceManager class—are used to load and manipulate
managed resources.

ExportedType Metadata Table and Declaration
The ExportedType metadata table contains information about the public classes (visible out-
side the assembly) that are declared in nonprime modules of the assembly. Only the prime
module’s manifest can carry this table.

This table is needed because the loader expects the prime module of an assembly to hold
information about all classes exported by the assembly. The union of the classes defined in
the prime module and those in the ExportedType table gives the loader the full picture.

On the other hand, the intersection of the classes defined in the prime module and those
in the ExportedType table must be nil. As a result, the ExportedType table can be nonempty
only in the prime module of a multimodule assembly: if there are no nonprime modules, then
all classes defined by this assembly reside in the prime module itself.

In version 2.0, the ExportedType table serves an additional function: it contains so-called
class forwarders, which are close conceptually to reexports in the unmanaged world or a postal
address forwarding in everyday life. A forwarder indicates to which assembly class such-and-such
(which used to reside in this assembly) has been moved. The forwarding mechanism, obviously,
allows you to refactor your multiassembly product without the need for all your customers to
rebuild their applications.

The ExportedType table has the following column structure:

Flags (4-byte wide bitfield): Binary flags indicating whether the exported type is a forwarder
(forwarder) and the accessibility of the exported type. The accessibility flags we are inter-
ested in are public and nested public; other accessibility flags—identical to the class
accessibility flags discussed in Chapter 7—are syntactically admissible but are not used to
define true exported types. Other flags can be present in pseudo-ExportedTypes only, which
the loader can use to resolve unscoped type references in multimodule assemblies.

Some explanation is in order. Any time a type (class) is referenced in a module, the resolu-
tion scope should be provided to indicate where the referenced class is defined (in the
current module, in another module of this assembly, or in another assembly). If the resolu-
tion scope is not provided, the referenced type should be declared in the current module.
However, if this type cannot be found in the module referencing it and if the manifest of the
prime module carries a identically named pseudo-ExportedType record indicating where
the type is actually defined, the loader is nevertheless able to resolve the type reference.

CHAPTER 6 ■ MODULES AND ASSEMBLIES110

Ch06_6463_CMP4 5/3/06 7:02 PM Page 110

None of the current Microsoft managed compilers, excluding the IL assembler, uses this
rather bizarre technique. The IL assembler has to, for obvious reasons.

TypeDefId (4-byte unsigned integer): An uncoded token referring to a record of the
TypeDef table of the module where the exported class is defined. This is the only occasion
in the entire metadata model in which a module’s metadata contains an explicit value of a
metadata token from another module. This token is used as something of a hint for the
loader and can be omitted without any ill effects. If the token is supplied, the loader
retrieves the specific TypeDef record from the respective module’s metadata and checks
the full name of ExportedType against the full name of TypeDef. If the names match, the
loader has found the class it was looking for; if the names do not match or if the token was
not supplied in the first place, the loader finds the needed TypeDef by its full name. My
advice: never specify a TypeDefId token explicitly when programming in ILAsm. This
shortcut works only for automatic tools such as the Assembly Linker (AL) and only under
certain circumstances.

TypeName (offset in the #Strings stream): Exported type’s name; must be nonempty.

TypeNamespace (offset in the #Strings stream): Exported type’s namespace; can be empty.
Class names and namespaces are discussed in Chapter 7.

Implementation (coded token of type Implementation): Token of the File record indicating
the file of the assembly where the exported class is defined or the token of another
ExportedType, if the current one is nested in another one. The forwarders have Assem-
blyRef tokens as Implementation, which, in my humble opinion, makes the forwarder
flag redundant: the forwarding nature of an exported type can be deduced from its Imple-
mentation being an AssemblyRef.

The exported types are declared in ILAsm as follows:

.class extern <flag> <namespace>.<name> { <expTypeDecl> * }

where <flag> ::= public | nested public | forwarder and where <expTypeDecl> ::=

.file <name> // File where exported class is defined
| .class extern <namespace>.<name> // Enclosing exported type
| .class <int32> // Set TypeDefId explicitly (don't do that!)
| .assembly extern <name> // Forwarder
| <customAttrDecl> // Define custom attribute for this ExportedType

The directives .assembly extern, .file, and .class extern define the Implementation
entry and are mutually exclusive. As in the case of the .mresource declaration, respective
AssemblyRef, File, or ExportedType must be declared before being referenced by the Imple-
mentation entry.

It is fairly obvious that if Implementation is specified as .class extern, we are dealing
with a nested exported type, and Flags must be set to nested public. Inversely, if Implementa-
tion is specified as .file, we are dealing with a top-level unnested class, and Flags must be set
to public.

CHAPTER 6 ■ MODULES AND ASSEMBLIES 111

Ch06_6463_CMP4 5/3/06 7:02 PM Page 111

Order of Manifest Declarations in ILAsm
The general rule in ILAsm (and not only in ILAsm) is “declare, then reference.” In other words, it’s
always safer, and in some cases outright required, to declare a metadata item before referencing
it. There are times when you can reference a yet-undeclared item—for example, calling a method
that is defined later in the source code. But you cannot do this in the manifest declarations.

If we reexamine Figure 6-1, which illustrates the mutual references between the manifest
metadata tables, we can discern the following list of dependencies:

• Exported types reference external assemblies, files, and enclosing exported types.

• Manifest resources reference files and external assemblies.

• Every manifest item can have associated custom attributes, and custom attributes ref-
erence external assemblies and (rarely) external modules. (See Chapter 16 for details.)

To comply with the “declare, then reference” rule, the following sequence of declarations
is recommended for ILAsm programs, with the manifest declarations preceding all other dec-
larations in the source code:

1. AssemblyRef declarations (.assembly extern), because of the custom attributes. The
reference to the assembly Mscorlib should lead the pack because most custom attrib-
utes reference this assembly.

2. ModuleRef declarations (.module extern), again because of the custom attributes.

3. Assembly declaration (.assembly). The ILAsm compiler takes different paths in compil-
ing Mscorlib.dll and compiling other assemblies, so it is better to let it know which
path to take as soon as possible. In version 2.0 you can also use special keyword
.mscorlib, indicating that you are compiling Mscorlib.dll. This keyword is best placed
at the beginning of the program. However, this is less important if you are not compil-
ing Mscorlib.dll; by default the compiler assumes that it is compiling a “conventional”
module.

4. File declarations (.file) because ExportedType and ManifestResource declarations
might reference them.

5. ExportedType declarations (.class extern), with enclosing ExportedType declarations
preceding the nested ExportedType declarations.

6. ManifestResource declarations (.mresource).

Remember that only the manifests of prime modules carry Assembly and ExportedType
declarations.

Single-Module and Multimodule Assemblies
A single-module assembly consists of a sole prime module. Manifests of single-module
assemblies as a rule carry neither File nor ExportedType tables: there are no other files to
declare, and all types are defined in the prime module. However, you might want to declare a
File record for an unmanaged DLL you want to be part of the deployment, or your single-
module assembly might use type forwarding via the ExportedType table.

CHAPTER 6 ■ MODULES AND ASSEMBLIES112

Ch06_6463_CMP4 5/3/06 7:02 PM Page 112

The advantages of single-module assemblies include lower overhead, easier deployment,
and slightly greater security. Overhead is lower because only one set of headers and metadata
tables must be read, transmitted, and analyzed. Assembly deployment is simpler because only
one PE file must be deployed. And the level of security can be slightly higher because the prime
module of the assembly can be protected with a strong name signature, which is extremely diffi-
cult to counterfeit and virtually guarantees the authenticity of the prime module. Nonprime
modules are authenticated only by their hash values (referenced in File records of the prime
module) and are theoretically easier to spoof.

Manifests of the modules of a multimodule assembly carry File tables, and the manifest
of the prime module of such an assembly might or might not carry ExportedType tables,
depending on whether any public types are defined in nonprime modules.

The advantages of multimodule assemblies include easier development and…lower over-
head. (No, I am not pulling your leg.) Both advantages stem from the obvious modularity of
the multimodule assemblies.

Multimodule assemblies are easier to develop because if you distribute the functionality
among the modules well, you can develop the modules independently and then incrementally
add to the assembly. (I didn’t say that a multimodule assembly was easier to design.)

Lower overhead at run time results from the way the loader operates: it loads the modules
only when they are referenced. So if only part of your assembly’s functionality is engaged in a
certain execution session, only part of the modules constituting your assembly might be loaded.
Of course, you cannot count on any such effect if the functionality is spread all over the modules
and if classes defined in different modules cross-reference each other.

A well-known technique for building a multimodule assembly from a set of modules is
based on a “spokesperson” approach: the modules are analyzed, and an additional prime
module is created, carrying nothing but the manifest and (maybe) a strong name signature.
Such a prime module carries no functionality or positive definitions of its own whatsoever—it
is only a front for functional modules, a “spokesperson” dealing with the loader on behalf of
the functional modules. The Assembly Linker tool, distributed with the .NET Framework, uses
this technique to build multimodule assemblies from sets of nonprime modules.

Summary of Metadata Validity Rules
In this section, I’ll summarize the validity rules for metadata contained in a manifest. Since
some of these rules have a direct bearing on how the loader functions, the respective checks
are performed at run time. Other rules describe “well-formed” metadata; violating one of
these rules might result in rather peculiar effects during the program execution, but it does
not represent a crash or security breach hazard, so the loader does not perform these checks.
You can find the complete set of metadata validity rules in Partition II of the ECMA/ISO stan-
dard; the sections that follow here review the most important of them.

ILAsm does allow you to generate invalid metadata. Thus, it’s extremely important to care-
fully check your modules after compilation.

To find out whether any of the metadata in a module is invalid, you can run the PEVerify
utility, included in the .NET Framework SDK, using the option /MD (metadata validation).
Alternatively, you can invoke the IL disassembler. Choose View, MetaInfo, and Validate, and
then press Ctrl+M. Both utilities use the Metadata Validator (MDValidator), which is built into
the common language runtime.

CHAPTER 6 ■ MODULES AND ASSEMBLIES 113

Ch06_6463_CMP4 5/3/06 7:02 PM Page 113

Assembly Table Validity Rules
• The record count of the table must be no more than 1. This is not checked at run time

because the loader ignores all Assembly records except the first one. (I will mark all
metadata validity rules checked by the loader with a “[run time]” label.)

• The Flags entry must have bits set only as defined in the CorAssemblyFlags enumera-
tion in CorHdr.h. For the version 2.0 of the common language runtime, the valid mask
is 0xC101, and only one bit (0x0100, retargetable) can be specified explicitly.

• The Locale entry must be set to 0 or must refer to a nonempty string in the string heap
that matches a known culture name. You can obtain a list of known culture names by
using a call to the CultureInfo.GetCultures method, from the .NET Framework class
library.

• [run time] If Locale is not set to 0, the referenced string must be no longer than 1,023
characters plus the zero terminator.

• [run time] The Name entry must refer to a nonempty string in the string heap. The
name must be the module filename excluding the extension, the path, and the drive
letter.

• [run time] The PublicKey entry must be set to 0 or must contain a valid offset in the
#Blob stream.

AssemblyRef Table Validity Rules
• The Flags entry can have only the least significant bit set (corresponding to the
afPublicKey value; see the CorAssemblyFlags enumeration in CorHdr.h).

• [run time] The PublicKeyOrToken entry must be set to 0 or must contain a valid offset
in the #Blob stream.

• The Locale entry must comply with the same rules as the Locale entry of the Assembly
table (discussed in the preceding section).

• The table must not have duplicate records with simultaneously matching Name,
Locale, PublicKeyOrToken, and all Version entries.

• [run time] The Name entry must refer to a nonempty string in the string heap. The
name must be the prime module filename excluding the extension, the path, and
the drive letter.

Module Table Validity Rules
• [run time] The record count of the table must be at least 1.

• The record count of the table must be exactly 1. This is not checked at run time because
the loader uses the first Module record and ignores the others.

• [run time] The Name entry must refer to a nonempty string in the string heap, no
longer than 511 characters plus the zero terminator. The name must be the module
filename including the extension and excluding the path and the drive letter.

CHAPTER 6 ■ MODULES AND ASSEMBLIES114

Ch06_6463_CMP4 5/3/06 7:02 PM Page 114

• The Mvid entry must refer to a nonzero GUID in the #GUID stream. The value of the
Mvid entry is generated automatically and cannot be specified explicitly in ILAsm.

ModuleRef Table Validity Rules
• [run time] The Name entry must refer to a nonempty string in the string heap, no

longer than 511 characters plus the zero terminator. The name must be a filename
including the extension and excluding the path and the drive letter.

File Table Validity Rules
• The Flags entry can have only the least significant bit set (corresponding to the

ffContainsNoMetaData value; see the CorFileFlags enumeration in CorHdr.h).

• [run time] The Name entry must refer to a nonempty string in the string heap, no
longer than 511 characters plus the zero terminator. The name must be a filename
including the extension and excluding the path and the drive letter.

• [run time] The string referenced by the Name entry must not match S[N][[C]*], where

S ::= con | aux | lpt | prn | nul | com
N ::= 0..9
C ::= $ | :

• [run time] The HashValue entry must hold a valid offset in the #Blob stream.

• The table must not contain duplicate records whose Name entries refer to matching
strings.

• The table must not contain duplicate records whose Name entries refer to strings
matching this module’s name.

ManifestResource Table Validity Rules
• [run time] The Implementation entry must be set to 0 or must hold a valid AssemblyRef

or File token.

• [run time] If the Implementation entry does not hold an AssemblyRef token, the Offset
entry must hold a valid offset within limits specified by the Resources data directory of
the common language runtime header of the target file (if the target file is not a pure-
resource file with no metadata).

• [run time] The Flags entry must hold either 1 or 2—mrPublic or mrPrivate, respectively.

• [run time] The Name entry must refer to a nonempty string in the string heap.

• The table must not contain duplicate records whose Name entries refer to matching
strings.

CHAPTER 6 ■ MODULES AND ASSEMBLIES 115

Ch06_6463_CMP4 5/3/06 7:02 PM Page 115

ExportedType Table Validity Rules

• There must be no rows with TypeName and TypeNamespace matching Name and
Namespace, respectively, of any row of the TypeDef table.

• The Flags entry must hold either one of the visibility flags (0x0–0x7) of the enumeration
CorTypeAttr (see CorHdr.h) or a forwarder flag (0x00200000).

• [run time] The Implementation entry must hold a valid ExportedType or File or
AssemblyRef token. In the last case, the forwarder flag must be set.

• [run time] The Implementation entry must not hold an ExportedType token pointing to
this record.

• If the Implementation entry holds an ExportedType token, the Flags entry must hold a
nested visibility value in the range 2–7.

• If the Implementation entry holds a File token, the Flags entry must hold the
tdNonPublic or tdPublic visibility value (0 or 1).

• [run time] The TypeName entry must refer to a nonempty string in the string heap.

• [run time] The TypeNamespace entry must be set to 0 or must refer to a nonempty
string in the string heap.

• [run time] The combined length of the strings referenced by TypeName and
TypeNamespace must not exceed 1022 bytes in UTF-8 encoding.

• The table must not contain duplicate records whose Implementation entry holds a
File or AssemblyRef token and whose TypeName and TypeNamespace entries refer to
matching strings.

• The table must not contain duplicate records whose Implementation entries hold the
same ExportedType token and whose TypeName entries refer to matching strings.

CHAPTER 6 ■ MODULES AND ASSEMBLIES116

Ch06_6463_CMP4 5/3/06 7:02 PM Page 116

Namespaces and Classes

As earlier chapters have discussed, the common language runtime computational model is
inherently object oriented. The concept of class—or, to use more precise runtime terminology,
the concept of a type—is the central principle around which the entire computational model
is organized. The type of an item—a variable, a constant, a parameter, and so on—defines
both data representation and the behavioral features of the item. Hence, one type can be sub-
stituted for another only if both these aspects are equivalent for both types—for instance, a
derived type can be interpreted as the type from which it is derived.

The Ecma International/ISO standard specification of the common language infrastruc-
ture divides types into value types and reference types, depending on whether an item type
represents a data item itself or a reference (an address or a location indicator) to a data item.

Reference types include object types, interface types, and pointer types. Object types—
classes—are types of self-describing values, either complete or partial. Types with partial
self-describing values are called abstract classes. Interface types are always types of partial
self-describing values. Interfaces usually represent subsets of behavioral features exposed by
classes; a class is said to implement the respective interface. Pointer types are simply refer-
ences to items, indicating item locations.

This is what the Ecma International/ISO specification says, and I am not going to argue
the fine points of the theory, such as why classes and interfaces are self-describing and value
types are not or why the way of passing the items between functional units—by value or by
reference—all of a sudden becomes the inherent attribute of the items themselves.

The common language runtime object model supports only single type inheritance, and
multiple inheritance is simulated through the implementation of one or more interfaces. As a
result, the runtime object model is absolutely hierarchical, with the System.Object class at the
root of the tree (see Figure 7-1). Interface types, however, are not part of the type hierarchy
because they are inherently incomplete and have no implementation of their own.

117

C H A P T E R 7

■ ■ ■

Ch07_6463_CMP4 5/3/06 7:04 PM Page 117

Figure 7-1. The common language runtime type hierarchy

The interfaces play an interesting role: they serve as promissory notes of a class. When
class X is derived from class Y, X inherits all members of Y, so inheritance directly affects the
structure of the derived class. But when you say that class X implements interface IY, you
promise only that class X will expose all the methods described in IY, which might be viewed
as a constraint imposed on class X. Class X does not inherit anything from the interface IY it
implements, except a “debt” of implementing the methods of IY.

All types (except interfaces) are derived eventually from System.Object. This chapter exam-
ines types and their declarations, dividing the types into five categories: classes, interfaces, value
types, enumerations, and delegates. These categories are not mutually exclusive—for example,
delegates are classes, and enumerations are value types—but the types of each category have
distinct features.

Class Metadata
From a structural point of view, all five categories of types have identical metadata representa-
tions. Thus, we can talk about class metadata, or type metadata, in a general sense.

Class metadata is grouped around two distinct concepts: type definition (TypeDef) and
type reference (TypeRef). TypeDefs and related metadata describe the types declared in the
current module, whereas TypeRefs describe references to types that are declared somewhere
else. Since it obviously takes more information to adequately define a type than to refer to one
already defined, TypeDefs and related metadata are far more complex than TypeRefs.

When defining a type, you should supply the following information:

• The full name of the type being defined

• Flags indicating special features the type should have

System.Object

System.Value Type

System.Enum

Value Types

System.Delegate

System.MulticastDelegate

Enumerators

Delegates

Classes

CHAPTER 7 ■ NAMESPACES AND CLASSES118

Ch07_6463_CMP4 5/3/06 7:04 PM Page 118

• The type from which this type is derived

• The interfaces this type implements

• How the loader should lay out this type in memory

• Whether this type is nested in another type—and if so, in which one

• Where fields and methods of this type (if any) can be found

When referencing a type, only its name and resolution scope need be specified. The resolu-
tion scope indicates where the definition of the referenced type can be found: in this module,
in another module of this assembly, or in another assembly. In the case of referencing the
nested types, the resolution scope is another TypeRef.

Figure 7-2 shows the metadata tables that engage in type definition and referencing but
not the tables related to the identification of type members—fields and methods, for example,
and their attributes. The arrows denote cross-table referencing by means of metadata tokens.
In the following sections, you’ll have a look at all the metadata tables involved.

Figure 7-2. Metadata tables that engage in type definition and referencing

TypeDef TypeRef

NestedClass

ClassLayout

InterfaceImpl

AssemblyRef ModuleRef

ModuleTypeSpec

GenericParam GenericParam
Constraint

CHAPTER 7 ■ NAMESPACES AND CLASSES 119

Ch07_6463_CMP4 5/3/06 7:04 PM Page 119

I must point out that three tables in the lower part of Figure 7-2 (TypeSpec, GenericParam,
and GenericParamConstraint) and their associated links have entered the picture (no pun
intended) in version 2.0 only. They are related to generic types and will be discussed in
Chapter 11.

TypeDef Metadata Table
The TypeDef table is the main table containing type definition information. Each record in
this table has six entries:

• Flags (4-byte unsigned integer). Binary flags indicating special features of the type. The
TypeDef flags are numerous and important, so this chapter discusses them separately;
see “Class Attributes.”

• Name (offset in the #Strings stream). The name of the type. This entry must not be empty.
Remember class Odd.or.Even from Chapter 1? Odd.or.Even was its full name. The Name
of that class was Even—part of the full name to the right of the rightmost dot.

• Namespace (offset in the #Strings stream). The namespace of the type, part of the full
name to the left of the rightmost dot. Class Odd.or.Even from Chapter 1 had Namespace
Odd.or. The Namespace entry can be empty, if the full name of the class does not contain
dots. The namespace and the name constitute the full name of the type.

• Extends (coded token of type TypeDefOrRef). A token of the type’s parent—that is, of the
type from which this type is derived. This entry must be set to 0 for all interfaces and for
one class, the type hierarchy root class System.Object. For all other types, this entry
should carry a valid reference to the TypeDef, TypeRef, or TypeSpec table. The TypeSpec
table can be referenced only if the parent type is an instantiation of a generic type (see
Chapter 11).

• FieldList (record index [RID] in the Field table). An index to the Field table, marking
the start of the field records belonging to this type.

• MethodList (RID in the Method table). An index to the Method table, marking the start
of the method records belonging to this type.

TypeRef Metadata Table
The TypeRef metadata table has a much simpler structure than the TypeDef table, because it
needs to carry only data necessary to identify the referenced type unambiguously, so the CLR
loader could resolve the reference at run time. Each record in this table has three entries:

• ResolutionScope (coded token of type ResolutionScope). An indicator of the location of
the type definition. This entry is set to 0 if the referenced type is defined somewhere in
the current assembly or to 4 (compressed token 1—the Module token) if the referenced
type is defined in the same module. Besides these two rather special cases, in general
ResolutionScope can be a token referencing the ModuleRef table if the type is defined in
another module of the same assembly, a token referencing the AssemblyRef table if the
type is defined in another assembly, or a token referencing the TypeRef table if the type is
nested in another type. Having TypeRefs for the types defined in the same module does
not constitute a metadata error, but it is redundant and should be avoided if possible.

CHAPTER 7 ■ NAMESPACES AND CLASSES120

Ch07_6463_CMP4 5/3/06 7:04 PM Page 120

• Name (offset in the #Strings stream). The name of the referenced type. This entry must
not be empty.

• Namespace (offset in the #Strings stream). The namespace of the referenced type. This
entry can be empty. The namespace and the name constitute the full name of the type.

InterfaceImpl Metadata Table
If the defined type implements one or several interfaces, the corresponding TypeDef record is
referenced by one or several records of the InterfaceImpl metadata table. This table serves as a
lookup table (describing not some metadata entities but rather relations between entities
described in other tables), providing information about “what is implementing what,” and it is
ordered by implementing type. The InterfaceImpl table has only two entries in each record:

• Class (RID in the TypeDef table). An index in the TypeDef table, indicating the imple-
menting type.

• Interface (coded token of type TypeDefOrRef). A token of the implemented type, which
can reside in the TypeDef, TypeRef, or TypeSpec table. The TypeSpec table can be refer-
enced only if the implemented interface is an instantiation of a generic interface (see
Chapter 11). The implemented type must be marked as an interface.

NestedClass Metadata Table
If the defined type is nested in another type, its TypeDef record is referenced in another lookup
table: the NestedClass metadata table. (For more information about nesting, see “Nested
Types” later in this chapter.) Like the InterfaceImpl table, the NestedClass table is a lookup
table, and records of which describe some “links” between other tables. Being a lookup table,
the NestedClass table has only two entries per record:

• NestedClass (RID in the TypeDef table). An index of the nested type (the nestee).

• EnclosingClass (RID in the TypeDef table). An index of the type in which the current
type is nested (the encloser, or nester).

Since types of both entries are RIDs in the TypeDef table, the nested type and its encloser
cannot be defined in different modules or assemblies.

ClassLayout Metadata Table
Usually, the loader has its own ideas about how to lay out the type being loaded: it may add
fillers between the fields of the class for alignment, or even shuffle the fields. Certain types,
however, must be laid out in a specific manner (for example, suppose you want to introduce a
value type describing a COFF header, which has a very definite structure and layout, or you
want to create such a simple thing as a union), and they carry metadata information regarding
these specifics.

The ClassLayout metadata table provides additional information about the packing order
and total size of the type. In Chapter 1, for example, when I declared a “placeholder” type
without any internal structure, I used such additional information—the total size of the type.

CHAPTER 7 ■ NAMESPACES AND CLASSES 121

Ch07_6463_CMP4 5/3/06 7:04 PM Page 121

A record in the ClassLayout metadata table has three entries:

• PackingSize (2-byte unsigned integer). The alignment factor in bytes. This entry must
be set to 0 or to a power of 2, from 1 to 128. If this entry is not zero, its value will be used
as the alignment factor for fields instead of a “natural” alignment characteristic of the
field types (“natural” alignment usually coincides with the size of the type or nearest
greater power of 2). For example, if PackingSize is set to 2, and you have two fields—a
byte and a pointer—then your layout will include a byte (first field), another byte (filler),
and a pointer; the pointer in this case will be 2-byte aligned, which is a bad thing on
almost all processor architectures. If, however, the PackingSize value is greater than
the “natural” alignment of a field, the “natural” alignment is used; if, for example,
PackingSize is set to 2, and you have two 1-byte fields, then your layout will include
just 2 bytes (first field, second field) without any filler between them.

• ClassSize (4-byte unsigned integer). The total requested layout size of the type. If the
type has instance fields and the summary size of these fields, aligned by PackingSize, is
different from ClassSize, the loader allocates the larger of the two sizes for the type.

• Parent (RID in the TypeDef table). An index of the type definition record to which this
layout belongs. The ClassLayout table should not contain any duplicate records with
the same Parent entry value.

Namespace and Full Class Name
It is time to talk seriously about names in the common language runtime and ILAsm. So far, in
Chapter 6, you’ve encountered only names that were in fact filenames and hence had to con-
form to well-known filename conventions. From now on, however, you’ll need to deal with
names in general, so it is important to know the rules.

ILAsm Naming Conventions
Names in ILAsm are either simple or composite. Composite names are composed of simple
names and special connection symbols such as a dot. For example, System and Object are sim-
ple names, and System.Object is a composite name. The length of either kind of name in ILAsm
is not limited syntactically, but metadata rules impose certain limitations on the name length.

The simplest form of a simple name is an identifier, which in ILAsm must begin with an
alphabetic character or one of the following characters:

#, $, @, _

and continue with alphanumeric characters or one of the following:

?, $, @, _, `

(The last symbol is not an apostrophe; it is a backtick.)

CHAPTER 7 ■ NAMESPACES AND CLASSES122

Ch07_6463_CMP4 5/3/06 7:04 PM Page 122

These are examples of valid ILAsm identifiers:

• Object

• _Never_Say_Never_Again_

• men@work

• GType`1

■Caution One obvious limitation on ILAsm identifiers is that an ILAsm identifier must not match any of the
(rather numerous) ILAsm keywords.

The common language runtime accepts a wide variety of names with very few limitations.
Certain names—for example, .ctor (an instance constructor), .cctor (a class constructor,
a.k.a. type initializer), and _Deleted* (a metadata item marked for deletion during an edit-
and-continue session)—are reserved for internal use by the runtime. Generally, however, the
runtime is liberal about names. As long as a name serves its purpose—identifying a metadata
item unambiguously—and cannot be misinterpreted, it is perfectly fine. This liberalism, of
course, includes names beginning with wrong (from the ILAsm point of view) symbols and
names continuing with wrong symbols, not to mention the names that happen to match
ILAsm keywords.

To cover this variety, ILAsm offers an alternative way to present a simple name: as a
single-quoted literal. For example, these are valid ILAsm simple names:

• '123'

• 'Space Between'

• '&%!'

One of the most frequently encountered kinds of composite names is the dotted name, a
name composed of simple names separated by a dot:

<dotted_name> ::= <simple_name>[.<simple_name>*]

Examples of dotted names include the following:

• System.Object

• '123'.'456'.'789'

• Foo.Bar.'&%!'

CHAPTER 7 ■ NAMESPACES AND CLASSES 123

Ch07_6463_CMP4 5/3/06 7:04 PM Page 123

Namespaces
Simply put, namespaces are the common prefixes of the full names of classes. The full name of
a class is a dotted name; the last simple name it contains is the class name, and the rest is the
namespace of the class.

It takes longer, perhaps, to explain what namespaces are not. Namespaces are not meta-
data items—they do not have an associated metadata table, and they cannot be referenced by
tokens. Namespaces also have no direct bearing on assemblies. The name of an assembly
might or might not match in full or in part the namespace(s) used in the assembly. One
assembly might use several namespaces, and the same namespace can be used in different
assemblies (an assembly using a namespace means an assembly defining classes with names
belonging to this namespace).

So why does the metadata model even bother with namespaces and class names instead
of simply using the full class names? The answer is simple: economy of space. Let’s suppose
you define two classes with the full names Foo.Bar and Foo.Baz. Since the names are different,
in the full-name model you would have to store two full names in the string heap:
Foo.Bar\0Foo.Baz\0. But if you split the full names into namespaces and names, you need to
store only Foo\0Bar\0Baz\0. This is quite a difference when you consider the number of possi-
ble classes.

Namespaces in ILAsm are declared in the following way:

.namespace MyNamespace
{

...
// Classes declared here
// Have full name "MyNamespace.<simple_name>"

}

Namespaces can be nested, as shown here:

.namespace MyNamespace
{

...
// Classes declared here
// Have full name "MyNamespace.<simple_name>"
.namespace X
{
...
// Classes declared here
// Have full name "MyNamespace.X.<simple_name>"

}
}

or they can be unnested. This is how the IL disassembler versions 1.0 and 1.1 used to represent
namespaces in the disassembly text:

.namespace MyNamespace
{

...

CHAPTER 7 ■ NAMESPACES AND CLASSES124

Ch07_6463_CMP4 5/3/06 7:04 PM Page 124

// Classes declared here
// Have full name "MyNamespace.<simple_name>"

}
.namespace MyNamespace.X
{

...
// Classes declared here
// Have full name "MyNamespace.X.<simple_name>"

}

In version 2.0, it is recommended that you use full class names instead of the specifica-
tion of namespaces, and the IL disassembler version 2.0 follows this pattern. The .namespace
directive is still recognized by the IL assembler for backward-compatibility reasons.

Full Class Names
As the preceding section explained, a full class name in general case is a dotted name, com-
posed of the class’s namespace and the name of the class. The loader resolves class references
by their full names and resolution scopes, so the general rule is that no classes with identical
full names must be defined in the same module. For multimodule assemblies, an additional
(less strict) rule prohibits defining public classes—classes visible outside the assembly—with
identical full names in the same assembly.

In ILAsm, a class is always referenced by its full name, even if it is referenced from within
the same namespace. This makes class referencing context independent.

ILAsm v1.0 and v1.1 did not allow dotted names as class names, but you could bypass this
restriction by quoting the dotted name, thus turning it into a simple name and avoiding a syn-
tax error:

.namespace X
{

.class public 'Y.Z'
{

...
}

}

And a class is always referenced by its full name, so a class with a dotted name will not
pose any resolution problems (it will be referenced as X.Y.Z anyway), and the module will
compile and work. But if you disassemble the module, you’ll find that the left part of the dot-
ted name of the class has migrated to the namespace, courtesy of the metadata emission API:

.namespace X.Y
{

.class public Z
{

...
}

}

CHAPTER 7 ■ NAMESPACES AND CLASSES 125

Ch07_6463_CMP4 5/3/06 7:04 PM Page 125

Although this is not what you intended, it has no dire consequences—just a case of mild
confusion. If you know and expect this effect and don’t get confused that easily, you can even
forgo the namespace declarations altogether and declare classes by their full names, to match
the way they are referenced:

.class public 'X.Y.Z'{

...
}

That’s exactly how it is done in ILAsm v2.0, only without single quotes around the full
class name, because ILAsm v2.0 allows dotted names as class or method names.

The reason for switching from the namespace/name model of class declaration to the
full-name model in ILAsm v2.0 is twofold. First, this way, the classes are declared and refer-
enced uniformly by their full names. Second, this resolves the problem of naming the nested
classes: if namespace A contains declaration of class B, which contains declaration of nested
class C, what is the full name of the nested class? A.C? A.B.C? (Actually, it’s C, because the
encloser’s namespace has nothing to do with the nested class’s namespace.)

The common language runtime imposes a limitation on the full class name length, speci-
fying that it should not exceed 1,023 bytes in UTF-8 encoding. The ILAsm compiler, however,
does not enforce this limitation. Single quotes, should they be used for simple names in
ILAsm, are a purely lexical tool and don’t make it to the metadata; thus, they don’t contribute
to the total length of the full class name.

Class Attributes
An earlier section (“Class Metadata”) listed the various pieces of information included in a
type definition. In the simplest case, when only the TypeDef metadata table is involved, the
ILAsm syntax for a type definition is as follows:

.class <flags> <dotted_name> extends <class_ref> {
...

}

The <dotted_name> value specified in the .class directive defines the TypeDef’s Namespace
and Name entries, <class_ref> specified in the extends clause defines the Extends entry, and
<flags> defines the Flags entry.

Flags
The numerous TypeDef flags can be divided into several groups, as described here.

• Visibility flags (binary mask 0x00000007):

• private (0x00000000). The type is not visible outside the assembly. This is the
default.

• public (0x00000001). The type is visible outside the assembly.

CHAPTER 7 ■ NAMESPACES AND CLASSES126

Ch07_6463_CMP4 5/3/06 7:04 PM Page 126

• nested public (0x00000002). The nested type has public visibility.

• nested private (0x00000003). The nested type has private visibility; it is not visible
outside the enclosing class.

• nested family (0x00000004). The nested type has family visibility—that is, it is visi-
ble to descendants of the enclosing class only.

• nested assembly (0x00000005). The nested type is visible within the assembly only.

• nested famandassem (0x00000006). The nested type is visible to the descendants of
the enclosing class residing in the same assembly.

• nested famorassem (0x00000007). The nested type is visible to the descendants of
the enclosing class either within or outside the assembly and to every type within
the assembly with no regard to “lineage.”

• Layout flags (binary mask 0x00000018):

• auto (0x00000000). The type fields are laid out automatically, at the loader’s discre-
tion. This is the default.

• sequential (0x00000008). The loader shall preserve the order of the instance fields.

• explicit (0x00000010). The type layout is specified explicitly, and the loader shall
follow it. (See Chapter 9 for information about field declaration.)

• Type semantics flags (binary mask 0x000005A0):

• interface (0x00000020). The type is an interface. If this flag is not specified, the
type is presumed to be a class or a value type; if this flag is specified, the default
parent (the class that is assumed to be the parent if the extends clause is not speci-
fied, usually [mscorlib]System.Object) is set to nil.

• abstract (0x00000080). The class is abstract—for example, it has abstract member
methods. As such, this class cannot be instantiated and can be used only as a par-
ent of another type or types. This flag is invalid for value types.

• sealed (0x00000100). No types can be derived from this type. All value types and
enumerations must carry this flag.

• specialname (0x00000400). The type has a special name. How special it is depends
on the name itself. This flag indicates to the metadata API and the loader that the
name has a meaning in which they might be interested—for instance, _Deleted*.

• Type implementation flags (binary mask 0x00103000):

• import (0x00001000). The type (a class or an interface) is imported from a COM
type library.

• serializable (0x00002000). The type can be serialized into sequential data by the
serializer provided in the Microsoft .NET Framework class library.

CHAPTER 7 ■ NAMESPACES AND CLASSES 127

Ch07_6463_CMP4 5/3/06 7:04 PM Page 127

• beforefieldinit (0x00100000). The type can be initialized (its .cctor run) any time
before the first access to a static field. If this flag is not set, the type is initialized
before the first access to one of its static fields or methods or before the first
instantiation of the type. I discuss this flag and its effect on type initialization in
more detail in Chapter 10.

• String formatting flags (binary mask 0x00030000):

• ansi (0x00000000). When interoperating with native methods, the managed strings
are by default marshaled to and from ANSI strings. Managed strings are instances
of the System.String class defined in the .NET Framework class library. Marshaling
is a general term for data conversion on the managed and unmanaged code
boundaries. (See Chapter 18 for detailed information.) String formatting flags
specify only default marshaling and are irrelevant when marshaling is explicitly
specified. This flag, ansi, is the default flag for a class and hence represents a
“default default” string marshaling.

• unicode (0x00010000). By default, managed strings are marshaled to and from Uni-
code (UTF-16).

• autochar (0x00020000). The default string marshaling is defined by the underlying
platform.

• Reserved flags (binary mask 0x0004080):

• rtspecialname (0x00000800). The name is reserved by the common language run-
time and has a special meaning. This flag is legal only in combination with the
specialname flag. The keyword rtspecialname has no effect in ILAsm and is pro-
vided for informational purposes only. The IL disassembler uses this keyword to
show the presence of this reserved flag. Reserved flags cannot be set at will—this
flag, for example, is set automatically by the metadata emission API when it emits
an item with the specialname flag set and the name recognized as specific to the
common language runtime, for example .ctor or .cctor.

• <no keyword> (0x00040000). The type has declarative security metadata associated
with it. This flag is set by the metadata emission API when respective declarative
security metadata is emitted.

• Semantics pseudoflags (no binary mask). These are not true binary flags that define the
Flags entry of a TypeDef record but rather are lexical pseudoflags modifying the default
parent of the class:

• value. The type is a value type. The default parent is System.ValueType.

• enum. The type is an enumeration. The default parent is System.Enum.

Class Visibility and Friend Assemblies
Flag public means that the class is visible and can be referenced outside the assembly where
it is declared. Flag private means the opposite, so probably a more proper name for this flag
would be assembly. In version 2.0 of the common language runtime, it is possible to declare
certain assemblies “friends” of the current assembly by using custom attribute

CHAPTER 7 ■ NAMESPACES AND CLASSES128

Ch07_6463_CMP4 5/3/06 7:04 PM Page 128

System.Runtime.CompilerServices.InternalsVisibleToAttribute. If assembly A declares
assembly B as its “friend,” then all classes and members inside A that have assemblywide visi-
bility and accessibility become visible and accessible to assembly B. At the same time, these
classes and members remain invisible and inaccessible to other assemblies.

There are significant differences between “friend” assemblies of the managed world and
friend classes and functions of unmanaged C++. First, in the managed world the granularity
of friendship does not go below the assembly level, while in unmanaged C++ the friendship
is defined at the class or function level. Second, in unmanaged C++ a friend class or method
has full access to all members of this class, including private members, while in the managed
world a friend assembly has access only to internal (assemblywide) classes and members but
not to private or protected ones.

Class References
The nonterminal symbol <class_ref> in the extends clause represents a reference to a type
and translates into a TypeDef, a TypeRef, or a TypeSpec (if the parent is an instantiation of a
generic type). The general syntax of a class reference is as follows:

<class_ref> ::= [<resolution_scope>]<full_type_name>

where

<resolution_scope> ::= [<assembly_ref_alias>]
| [.module <module_ref_name>]

Note that the square brackets in the definition of <resolution_scope> are syntactic elements;
they do not indicate that any portion of the definition is optional.

The previous syntax does not describe instantiations of generic types, which are presented
in Chapter 11.

Here are a few examples of class references:

[mscorlib]System.ValueType // Type is defined in another assembly
[.module Second.dll]Foo.Bar // Type is defined in another module
Foo.Baz // Type is defined in this module

If the resolution scope of a class reference points to an external assembly or module, the
class reference is translated into a TypeRef metadata token, with the full type name providing
values for the Name and Namespace entries and the resolution scope providing an AssemblyRef
or a ModuleRef token for the ResolutionScope entry.

If the resolution scope is not defined—that is, if the referenced type is defined somewhere
in the current module—the class reference is translated into the respective TypeDef token.

Parent of the Type
Having resolved the class reference to a TypeRef or TypeDef token, I thus provided the value for
the Extends entry of the TypeDef record under construction. This token references the type’s
parent—that is, the type from which the current type is derived.

The type referenced in the extends clause must not be sealed and must not be an inter-
face; otherwise, the loader will fail to load the type. When a type is sealed, no types can be
derived from it.

CHAPTER 7 ■ NAMESPACES AND CLASSES 129

Ch07_6463_CMP4 5/3/06 7:04 PM Page 129

If the extends clause is omitted, the ILAsm compiler assigns a default parent depending
on the flags specified for the type:

• interface. No parent. The interfaces are not derived from other types.

• value. The parent is [mscorlib]System.ValueType.

• enum. The parent is [mscorlib]System.Enum.

• None of the above. The parent is [mscorlib]System.Object.

If the extends clause is present, the value and enum flags are ignored, and the interface
flag causes a compilation error. This difference in ILAsm’s reaction to erroneous flags can be
easily explained: the value and enum are pseudoflags, like hints for the IL assembler, while the
interface flag is a true metadata flag, and in combination with extends clause it represents
invalid metadata.

If the type layout is specified as sequential or explicit, the type’s parent must also have
the corresponding layout, unless the parent is [mscorlib]System.Object,
[mscorlib]System.ValueType, or [mscorlib]System.Enum. The rationale is that the type might
inherit fields from its parent, and the type cannot have a mixed layout—that is, it cannot have
some fields laid out automatically and some laid out explicitly or sequentially. However, an
autolayout type can be derived from a type having any layout; in this case, information about
the parent’s field layout plays no role in laying out the instance fields of the derived type.

Interface Implementations
If the type being defined implements one or more interfaces, the type declaration has an addi-
tional clause, the implements clause, as shown here:

.class <flags> <dotted_name>
extends <class_ref>
implements <class_refs> {

...
}

The nonterminal symbol <class_refs> simply means a comma-separated list of class ref-
erences:

<class_refs> ::= <class_ref>[,<class_ref>*]

For example:

.class public MyNamespace.MyClass
extends MyNamespace.MyClassBase
implements MyNamespace.IOne,

MyNamespace.ITwo,
MyNamespace.IThree {
...

}

CHAPTER 7 ■ NAMESPACES AND CLASSES130

Ch07_6463_CMP4 5/3/06 7:04 PM Page 130

The types referenced in the implements clause must be interfaces. A type implementing
an interface must provide the implementation for all of the interface’s instance methods. The
only exception to this rule is an abstract class.

The implements clause of a type declaration creates as many records in the InterfaceImpl
metadata table as there are class references listed in this clause. In the preceding example,
three InterfaceImpl records would be created.

And, while an interface cannot extend any type, including another interface, it certainly
can implement one or more other interfaces. I discussed the difference between one type
extending (inheriting from) another type and a type implementing an interface earlier in this
chapter.

Class Layout Information
To provide additional information regarding type layout (field alignment, total type size, or
both), you need to use the .pack and .size directives, as shown in this example:

.class public value explicit MyNamespace.MyStruct {
.pack 4
.size 1024
...

}

These directives, obviously enough, set the entries PackingSize and ClassSize, respec-
tively, of the ClassLayout record associated with a given class.

The .pack and .size directives appear within the scope of the type declaration, in any
order. If .pack is not specified, the field alignment defaults to 1. If .pack or .size is specified, a
ClassLayout record is created for this TypeDef.

Integer values specified in a .pack directive must be 0 or a power of 2, in the range 20 to 27

(1 to 128). Breaking this rule results in a compilation error. When the value is 0, the field align-
ment defaults to the “natural” value defined by the type of the field—the size of the type or the
nearest greater power of 2.

Class layout information should not be specified for the autolayout types. Formally, defin-
ing the class layout information for an autolayout type represents invalid metadata. In reality,
however, it is simply a waste of metadata space; when the loader encounters an autolayout
type, it never checks to see whether this type has a corresponding ClassLayout record.

Interfaces
An interface is a special kind of type, defined in Partition I of the Ecma International/ISO
standard as “a named group of methods, locations, and other contracts that shall be imple-
mented by any object type that supports the interface contract of the same name.” In other
words, an interface is not a “real” type but merely a named descriptor of methods and proper-
ties exposed by other types—an IOU note of a type. Conceptually, an interface in the common
language runtime is similar to a COM interface—or at least the general idea is the same.

CHAPTER 7 ■ NAMESPACES AND CLASSES 131

Ch07_6463_CMP4 5/3/06 7:04 PM Page 131

Not being a real type, an interface is not derived from any other type, and other types
cannot be derived from an interface. But an interface can “implement” other interfaces. This
is not a true implementation, of course. When I say that “interface IA implements interfaces IB
and IC,” I mean only that the contracts defined by IB and IC are subcontracts of the contract
defined by IA.

As a descriptor of items (methods, properties, events) exposed by other types, an interface
cannot offer its own implementation of these items and thus is, by definition, an abstract type.
When you define an interface in ILAsm, you can omit the keyword abstract because the com-
piler adds this flag automatically when it encounters the keyword interface.

For the same reason, an interface cannot have instance fields, because a declaration of a
field is the field’s implementation. However, an interface must offer the implementation of its
static members—the items shared by all instances of a type—if it has any. Bear in mind, of
course, that the definition of static as “shared by all instances” is general for all types and does
not imply that interfaces can be instantiated. They cannot be. Interfaces are inherently
abstract and cannot even have instance constructors.

Static members (fields, methods) of an interface are not part of the contract defined by the
interface and have no bearing on the types that implement the interface. A type implementing
an interface must implement all instance members of the interface, but it has nothing to do with
the static members of the interface. Static members of an interface can be accessed directly like
static members of any type, and you don’t need an “instance” of an interface (meaning an
instance of a class implementing this interface) for that.

The nature of an interface as a descriptor of items exposed by other types requires that
the interface itself and all its instance members must be public, which makes reasonable
sense—I am, after all, talking about exposed items.

Interfaces have several limitations. One is obvious: since an interface is not a real type, it
does not have layout. It simply doesn’t make sense to talk about the packing size or total size
of a contract descriptor.

Another limitation stems from the fact that the instance methods declared by an interface
must be virtual, because they are implemented elsewhere, namely, by the class implementing
the interface. Chapter 10 discusses the virtual methods and their implementation in details.

Yet another limitation is not so obvious: interfaces should not be sealed. This might sound
contradictory because, as just noted, no types can be derived from interfaces—which is pre-
cisely the definition of sealed. The logic behind this limitation is as follows: since a sealed type
cannot extend any other type, its virtual methods cannot be overridden and become simple
instance methods; and, as you may recall, an interface may provide implementation only of its
static methods, so these instance (formerly known as virtual) methods are left unimple-
mented.

From this logic stems a more general rule, applicable to all types, that dictates an abstract
type should not be sealed unless it has only static members. At least that is what the Ecma Inter-
national/ISO specification says. I personally think that the correct formulation of a general rule
would be that an abstract type cannot be sealed unless it has no abstract (unimplemented)
virtual methods. And a type may be declared abstract even if it contains no abstract methods.
You may just not want this particular type to ever be instantiated. There is quite a difference
between “no instance members” and “no abstract virtual methods,” don’t you agree?

On the other hand, what is the use of the instance members of a type if you cannot
instantiate this type (it’s abstract) or derive something “instantiatable” from it (it’s sealed)? So
maybe the Ecma International/ISO spec is right—the abstract types with only nonabstract
instance members could be declared sealed, but they should not be declared sealed.

CHAPTER 7 ■ NAMESPACES AND CLASSES132

Ch07_6463_CMP4 5/3/06 7:04 PM Page 132

Instance methods of an interface, however, are all abstract virtual by definition, so there is
no “should”/“could” dilemma.

Value Types
Value types are the closest thing in the common language runtime model to C++ structures.
These types are values with either a trivial structure (for example, a 4-byte integer) or a com-
plex structure. When you declare a variable of a class type, you don’t automatically create a
class instance. You create only a reference to the class, initially pointing at nothing. But when
you declare a variable of value type, the instance of this value type is allocated immediately,
by the variable declaration itself, because a value type is primarily a data structure. As such, a
value type must have instance fields or size defined. A zero-size value type (with no instance
fields and no total size specified) represents invalid metadata; however, as in many other cases,
the loader is more forgiving than the official metadata validity rules: when it encounters a
zero-size value type, the loader assigns it a 1-byte size by default.

Value types are the types passed by value, as opposed to the reference types passed by ref-
erence. It means that the code a = b;, when a and b are value types, is translated into copying
the contents of b into a, and when a and b are reference types, it is translated into copying the
reference to some class instance from b to a. So in the end we wind up with two identical
instances in the case of a and b being of a value type and with two identical references to the
same instance in the case of a and b being of a reference type.

Although an instance of a value type is created at the moment a variable having this value
type is declared, the default instance constructor method (should it be defined for the value
type in question) is not called at this moment. (See Chapter 10 for information about the
instance constructor method.) Declaring a variable creates a “blank” instance of the value
type, and if this value type has a default instance constructor, it should be called explicitly.

Please don’t ask me why the runtime does not execute the instance constructor of a value
type (if available) automatically when it allocates the instance of this type—this question is of
the same rhetorical nature as “why does runtime ignore the default values specified for fields
and parameters?” (See Chapters 9 and 10 for details.) The correct answer is “because the run-
time is built this way.”

Boxed and Unboxed Values
As a data structure, a value type must sometimes be represented as an object to satisfy the
requirements of certain generic APIs, which expect object references as input parameters. The
common language runtime provides the means to produce a class representation of a value
type and to extract a value type (data structure) from its class representation. These opera-
tions, called boxing and unboxing, respectively, are defined for every value type.

Recall from the beginning of this chapter that types can be classified as either value types
or reference types. Simply put, boxing transforms a value type into a reference type (an object
reference), and unboxing does just the opposite. You can box any value type and get an object
reference, but this does not mean, however, that you can unbox any object and get a value
type: in the .NET type system, every value type has its reference-type “hat,” but not vice versa.
Why that is so, when it is obviously possible to extract the data part from any reference type
that has it, is another of those rhetoric questions.

CHAPTER 7 ■ NAMESPACES AND CLASSES 133

Ch07_6463_CMP4 5/3/06 7:04 PM Page 133

When we declare a value type variable, we create a data structure. When we box this vari-
able, an object (a class instance) is created whose data part is an exact bit copy of the data
structure. Then we can deal with this instance the same way we would deal with an ordinary
object—for example, we could use it in a call to a method, which takes an object reference as a
parameter. It is important to understand that the “original” instance of a value type does not
go anywhere after it has been boxed. Its copy does. And what happens to this copy is not
reflected back to the original instance of the value type. This effect is known as a problem of
mutability of the boxed value types. It is up to the author of the code to propagate possible
changes inflicted upon the boxed instance of the value type back to the original instance.

When a boxed value type is being unboxed, no instance copying is involved. The unbox-
ing operation simply produces a managed pointer to the data part of the object to which it is
applied.

Instance Members of Value Types
Value types, like other types, can have static and instance members, including methods and
fields. To access an instance member of a class, you need to provide the instance pointer
(known in C++ as this). In the case of a value type, you simply use a managed reference as
an instance pointer.

Let’s suppose, for example, that you have a variable of type 4-byte integer. (What can be
more trivial than that, except maybe type fewer-byte integer?) This value type is defined as
[mscorlib]System.Int32 in the .NET Framework class library. Instead of boxing this variable
and getting a reference to an instance of System.Int32 as the class, you can simply take the ref-
erence to this variable and call the instance methods of this value type, say, ToString(), which
returns a string representation of the integer in question:

...

.locals init (int32 J) // Declare variable J as value type

...
ldc.i4 12345
stloc J // J = 12345
...
ldloca J // Get managed reference to J as instance pointer
// Call method of this instance
call instance string [mscorlib]System.Int32::ToString()
...

Can value types have virtual methods? Yes, they can. However, to call the virtual methods
of a value type, you have to box this value type first. I must clarify, though, that you need to
box the value type only if you are calling its virtual method as a virtual method, through the
virtual table dispatch, using the callvirt instruction (methods and method call instructions
are discussed in Chapters 10, 12, and 13). If you are calling a virtual method of a value type as
simply an instance method, using the call instruction, you don’t need to box the value type.
That’s why I didn’t need to box the variable J in the previous code snippet before calling the
ToString() method despite that ToString() is a virtual method.

CHAPTER 7 ■ NAMESPACES AND CLASSES134

Ch07_6463_CMP4 5/3/06 7:04 PM Page 134

Derivation of Value Types
All value types are derived from the [mscorlib]System.ValueType class. More than that, anything
derived from [mscorlib]System.ValueType is a value type by definition, with one important
exception: the [mscorlib]System.Enum class, which is a parent of all enumerations (discussed
in the next section).

Unlike C++, in which derivation of a structure from another structure is commonplace,
the common language runtime object model does not allow any derivations from value types.
All value types must be sealed. (And you probably thought I was too lazy to draw further deri-
vation branches from value types in Figure 7-1!) As to why all value types must be sealed, I am
afraid it’s another one of those rhetorical questions.

Enumerations
Enumerations (a.k.a. enumeration types, a.k.a. enums) make up a special subset of value
types. All enumerations are derived from the [mscorlib]System.Enum class, which is the only
reference type derived from [mscorlib]System.ValueType. Enums are possibly the most primi-
tive of all types that have some structure, and the rules regarding them are the most restrictive.

Unlike other value types in their boxed form, enumerators don’t show any of the charac-
teristics of a “true class.” Enums can have only fields as members—no methods, properties, or
events. Enums cannot implement interfaces; since enums cannot have methods, the question
of implementing interfaces is moot.

Here is an example of a simple enumeration:

.class public enum Color
{

.field public specialname int32 __value

.field public static literal valuetype Color Red = int32(1)

.field public static literal valuetype Color Green = int32(2)

.field public static literal valuetype Color Blue = int32(3)
}

Even with the fields the enums have no leeway: an enum must have exactly one instance
field and at least one static field. The instance field of an enum represents the value of the cur-
rent instance of the enum and must be of integer, Boolean, or character type. The type of the
instance field is the underlying type of the enum. The enum itself as a value type is completely
interchangeable with its underlying type in all operations except boxing. If an operation, other
than boxing, expects a Boolean variable as its argument, a variable of a Boolean-based enu-
meration type can be used instead, and vice versa. A boxing operation, however, always results
in a boxed enum and not in a boxed underlying type.

The static fields represent the values of the enum itself and have the type of the enum.
As values of the enum, these fields must be not only static (shared by all instances of the type)
but also literal—they represent constants defined in the metadata. The literal fields are not
true fields because they do not occupy memory allocated by the loader when the enum is
loaded and laid out. (Chapter 9 discusses this and other aspects of fields.)

CHAPTER 7 ■ NAMESPACES AND CLASSES 135

Ch07_6463_CMP4 5/3/06 7:04 PM Page 135

Generally speaking, you can think of an enumeration as a restriction of its underlying
type to a predefined, finite set of values (however, the CLR does not enforce this restriction).
As such, an enumeration obviously cannot have any specific layout requirements and must
have the auto layout flag set.

Delegates
Delegates are a special kind of reference type, designed with the specific purpose of represent-
ing function pointers. All delegates are derived from the [mscorlib]System.MulticastDelegate
type, which in turn is derived from the [mscorlib]System.Delegate type. The delegates them-
selves are sealed (just like the value types), so no types can be derived from them.

Limitations imposed on the structure of a delegate are as strict as those imposed on the
enumerator structure. Delegates have no fields, events, or properties. They can have only
instance methods, either two or four of them, and the names and signatures of these methods
are predefined.

Two mandatory methods of a delegate are the instance constructor (.ctor) and Invoke.
The instance constructor returns void (as all instance constructors do) and takes two parame-
ters: the object reference to the type defining the method being delegated and the function
pointer to the managed method being delegated. (See Chapter 10 for details about instance
constructors.)

This leads to a question: if you can get a function pointer per se, why do you need delegates
at all? Why not use the function pointers directly? You could, but then you would need to intro-
duce fields or variables of function pointer types to hold these pointers—and function pointer
types are considered a security risk (because the pointer value can be modified after it was
acquired from a particular function) and deemed unverifiable. If a module is unverifiable, it
can be executed only from a local drive in full trust mode, when all security checks are disabled.
Another drawback is that managed function pointers cannot be marshaled to unmanaged func-
tion pointers when calling unmanaged methods, whereas delegates can be. (See Chapter 18 for
information on managed and unmanaged code interoperation.)

Delegates are secure, verifiable, and type-safe representations of function pointers first of
all because the function pointers in delegate representation cannot be tampered with and as
such are preferable over function pointer types. Besides, delegates can offer additional useful
features, as I’ll describe in a moment.

The second mandatory method (Invoke) must have the same signature as the delegated
method. Two mandatory methods (.ctor and Invoke) are sufficient to allow the delegate to be
used for synchronous calls, which are the usual method calls when the calling thread is blocked
until the called method returns. The first method (.ctor) creates the delegate instance and binds
it to the delegated method. The Invoke method is used to make a synchronous call of the dele-
gated method.

Delegates also can be used for asynchronous calls, when the called method is executed
on a separate thread created by the common language runtime for this purpose and does not
block the calling thread. So that it can be called asynchronously, a delegate must define two
additional methods, BeginInvoke and EndInvoke.

BeginInvoke is a thread starter. It takes all the parameters of the delegated method plus two
more: a delegate of type [mscorlib]System.AsyncCallback representing a callback method that is
invoked when the call completes, and an object you choose to indicate the final status of the call

CHAPTER 7 ■ NAMESPACES AND CLASSES136

Ch07_6463_CMP4 5/3/06 7:04 PM Page 136

thread. BeginInvoke returns an instance of the interface [mscorlib]System.IAsyncResult, carry-
ing the object you passed as the last parameter. Remember that since interfaces, delegates, and
objects are reference types, when I say “takes a delegate” or “returns an interface,” I actually
mean a reference.

If you want to be notified immediately when the call is completed, you must specify the
AsyncCallback delegate. The respective callback method is called upon the completion of the
asynchronous call. This event-driven technique is the most widely used way to react to the
completion of the asynchronous calls.

You might choose another way to monitor the status of the asynchronous call thread:
polling from the main thread. The returned interface has the method bool get_IsCompleted(),
which returns true when the asynchronous call is completed. You can call this method from
time to time from the main thread to find out whether the call is finished.

You can also call another method of the returned interface, get_AsyncWaitHandle, which
returns a wait handle, an instance of the [mscorlib]System.Threading.WaitHandle class. After
you get the wait handle, you can monitor it any way you please (similar to the use of the Win32
APIs WaitForSingleObject and WaitForMultipleObjects). If you are curious, disassemble
Mscorlib.dll and take a look at this class.

If you have chosen to employ a polling technique, you can forgo the callback function and
specify null instead of the System.AsyncCallback delegate instance.

The EndInvoke method takes the [mscorlib]System.IAsyncResult interface, returned by
BeginInvoke, as its single argument and returns void. This method waits for the asynchronous
call to complete, blocking the calling thread, so calling it immediately after BeginInvoke is
equivalent to a synchronous call using Invoke. EndInvoke must be called eventually in order to
clear the corresponding runtime threading table entry, but it should be done when you know
that the asynchronous call has been completed.

All four methods of a delegate are virtual, and their implementation is provided by the
CLR itself—the user does not need to write the body of these methods. When defining a dele-
gate, we can simply declare the methods without providing implementation for them, as
shown here:

.class public sealed MyDelegate
extends [mscorlib]System.MulticastDelegate

{
.method public hidebysig instance

void .ctor(object MethodsClass,
native unsigned int MethodPtr)

runtime managed { }

.method public hidebysig virtual instance
int32 Invoke(void* Arg1, void* Arg2)

runtime managed { }

.method public hidebysig newslot virtual instance
class [mscorlib]System.IAsyncResult

BeginInvoke(void* Arg1, void* Arg2,
class [mscorlib]System.AsyncCallback callBkPtr,
object) runtime managed { }

CHAPTER 7 ■ NAMESPACES AND CLASSES 137

Ch07_6463_CMP4 5/3/06 7:04 PM Page 137

.method public hidebysig newslot virtual instance
void EndInvoke(class [mscorlib]System.IAsyncResult res)

runtime managed { }
}

Nested Types
Nested types are types (classes, interfaces, value types) that are defined within other types.
However, being defined within another type does not make the nested type anything like the
member classes or Java inner classes. The instance pointers (this) of a nested type and its
enclosing type are in no way related. A nested class does not automatically get access to the
this pointer of its enclosing class when the instance of the enclosing class is created.

In addition, instantiating the enclosing class does not involve instantiating the class(es)
nested in it. The nested classes must be instantiated separately. Instantiating a nested class
does not require the enclosing class to be instantiated.

Type nesting is not about membership and joint instantiation; rather, it’s all about visibility.
As explained earlier in “Class Attributes,” nested types at any level of nesting have their own spe-
cific visibility flags. When one type is nested in another type, the visibility of the nested type is
“filtered” by the visibility of the enclosing type. If, for example, a class whose visibility is set to
nested public is nested in a private class, this nested class will not be visible outside the assem-
bly despite its own specified visibility.

This visibility filtering works throughout all levels of nesting. The final visibility of a
nested class is defined by its own declared visibility and then is limited in sequence by the
visibilities of all classes enclosing it, directly or indirectly.

Nested classes are defined in ILAsm the same way they are defined in other languages—
that is, the nested classes are declared within the lexical scope of their encloser declaration:

.class public MyNameSpace.Encl {
...
.class nested public Nestd1 {

...

.class nested family Nestd2 {
...

}
}

}

According to this declaration, the Nestd2 class is nested in the Nestd1 class, which in turn
is nested in MyNameSpace.Encl, which is not a nested class.

Full names of the nested classes are not in any way affected by the names of their enclosers:
neither the namespace nor the name of the encloser automatically becomes (or is required to
be) part of the nested class’s full name. The full name of a nested class must be unique within the
encloser scope, meaning that a class cannot have two identically named classes nested in it.

CHAPTER 7 ■ NAMESPACES AND CLASSES138

Ch07_6463_CMP4 5/3/06 7:04 PM Page 138

Since the nested classes are identified by their full name and their encloser (which is in
turn identified by its scope and full name), the nested classes are referenced in ILAsm as a
concatenation of the encloser reference, nesting symbol / (forward slash), and full name of the
nested class:

<nested_class_ref> ::= <encloser_ref> / <full_type_name>

where

<encloser_ref> ::= <nested_class_ref> | <class_ref>

and <class_ref> has already been defined earlier as follows:

<class_ref> ::= [<resolution_scope>]<full_type_name>

According to these definitions, classes Nestd1 and Nestd2 will be referenced respectively
as MyNameSpace.Encl/Nestd1 and MyNameSpace.Encl/Nestd1/Nestd2. Names of nested classes
must be unique within their nester, as opposed to the full names of top-level classes, which
must be unique within the module or (for public classes) within the assembly.

Unlike C#, which uses a dot delimiter for all hierarchical relationships without discrimi-
nation—so that One.Two.Three might mean “class Three of namespace One.Two” or “class Three
nested in class Two of namespace One” or even “field Three of class Two nested in class One”—
ILAsm uses different delimiters for different hierarchies. A dot is used for the full class name
hierarchy; a forward slash (/) indicates the nesting hierarchy; and a double colon (::), as in
“classic” C++, denotes the class-member relationship. I used the qualifier “classic” because the
managed version of Visual C++ uses a double colon instead of a dot delimiter in dotted names,
so it has the same ambiguity problem as C#, only instead of the ambiguous One.Two.Three, it
uses the equally ambiguous One::Two::Three. That’s a huge difference indeed.

Thus far, the discussion has focused mainly on what nested classes are not. One more
important negative to note is that nested classes have no effect on the layout of their enclosers.
If you want to declare a substructure of a structure, you must declare a nested value type (sub-
structure) within the enclosing value type (structure) and then define a field of the substructure
type:

.class public value Struct {
...
.class nested public value Substruct {

...
}
.field public valuetype Struct/Substruct Substr

}

Now I need to say something positive about nested classes. Members of a nested class
have access to all members of the enclosing class without exception, including access to pri-
vate members. In this regard, the nesting relationship is even stronger than inheritance and
stronger than the member class relationship in C++, where member classes don’t have access
to private members of their owner. Of course, to get access to the encloser’s instance mem-
bers, the nested type members should first obtain the instance pointer to the encloser. This
“full disclosure” policy works one-way only; the encloser has no access to private members of
the nested class.

CHAPTER 7 ■ NAMESPACES AND CLASSES 139

Ch07_6463_CMP4 5/3/06 7:04 PM Page 139

Nested types can be used as base classes for other types that don’t need to be nested:

.class public X {
...
.class nested public Y {

...
}

}
.class public Z extends X/Y {

...
}

Of course, class Z, derived from a nested class (Y), does not have any access rights to
private members of the encloser (X). The “full disclosure” privilege is not inheritable.

A nested class can be derived from its encloser. In this case, it retains access to the
encloser’s private members, and it also acquires an ability to override the encloser’s virtual
methods. The enclosing class cannot be derived from any of its nested classes.

■Note A metadata validity rule states that a nested class must be defined in the same module as its
encloser. In ILAsm, however, the only way to define a nested class is to declare it within the encloser’s
lexical scope, which means you could not violate this validity rule in ILAsm even if you tried.

Class Augmentation
In ILAsm, as in Visual Basic and C#, all members, attributes, and nested classes of a class are
declared within the lexical scope of that class. However, ILAsm allows you to reopen a once-
closed class scope and define additional items:

.class public X extends Y implements IX,IY {
...

}
...
// Later in the source, possibly in another source file...
.class X {

... // More items defined
}

This reopening of the class scope is known as class augmentation. A class can be aug-
mented any number of times throughout the source code, and the augmenting segments can
reside in different source files. The following simple safety rules govern class augmentation:

• The class must be fully defined within the module—in other words, you cannot aug-
ment a class that is defined somewhere else. (Wouldn’t that be nice? Good-bye,
security—fare thee well!)

• Class flags, the extends clause, and the implements clause must be fully defined at the
lexically first opening of class scope, because these attributes are ignored in augment-
ing segments.

CHAPTER 7 ■ NAMESPACES AND CLASSES140

Ch07_6463_CMP4 5/3/06 7:04 PM Page 140

• None of the augmenting segments can contain duplicate item declarations. If you
declare field int32 X in one segment and then declare it in another segment, the ILAsm
compiler will not appreciate that you probably have the same field in mind and will
read it as an attempt to define two identical fields in the same class, which is not
allowed.

• The augmenting segments are not explicitly numbered, and the class is augmented
according to the sequence of augmenting segments in the source code. This means
the sequence of class item declarations will change if you swap augmenting segments,
which in turn might affect the class layout.

A good strategy for writing an ILAsm program in versions 1.0 and 1.1 was to use forward
class declaration, explained in the Chapter 1. This strategy allows you to declare all classes of
the current module, including nested ones, without any members and attributes, and to
define the members and attributes in augmenting segments. This way, the IL assembler gets
the full picture of the module’s type declaration structure before any type is referenced. By the
time locally declared types are referenced, they all are already defined and have corresponding
TypeDef metadata records.

There is no need for forward class declaration in version 2.0 of ILAsm, though. In v2.0,
the IL assembler implicitly declares a class whenever this class is mentioned, as a declaration
or as a reference. Of course, the class implicitly declared on a reference is just a dummy—a
placeholder. It turns from a dummy to “real” class declaration when the declaration of the
class (.class ... { ... }) is encountered in the source code. If all compilands are parsed,
and there still are “dummies” remaining, the compilation fails.

This method of class “bookkeeping” messes up royally the order of class declaration on
round-tripping (disassembling and reassembling of a module), because the classes in the
round-tripped module are emitted not in the order they were emitted in the original module,
but rather in the order they were mentioned in the disassembly. This is a minor issue, because
the order of class definitions (TypeDef records) does not really matter, except in the case of
nested classes (enclosing class must be declared before the nested class), and this case is han-
dled properly by the IL assembler.

If, however, you want to preserve the order of class declarations or you have some consid-
erations to emit the class declarations in some particular order, you can use directive
.typelist:

.typelist { FirstClass SecondClass ThirdClass ...}

The .typelist directive is best placed right on top of the first source file, even before the
manifest declarations but after the .mscorlib directive, if present. The reason for such placing is
obvious: the IL assembler needs to know right away if you are compiling Mscorlib.dll or some-
thing else, and the manifest declarations might have custom attributes, or other class references,
that could mix up the intended order of class declaration.

Manifest declarations, described in Chapter 6, plus forward class declarations (v1.0, v1.1)
or the .typelist directive (v2.0), look a lot like a program header, so I would not blame you if
you put them in a separate source file. Just don’t forget that this file must be first on the list of
source files when you assemble your module.

CHAPTER 7 ■ NAMESPACES AND CLASSES 141

Ch07_6463_CMP4 5/3/06 7:04 PM Page 141

Summary of the Metadata Validity Rules
Recall that the type-related metadata tables (except those related to generic types, which
will be discussed in Chapter 11) include TypeDef, TypeRef, InterfaceImpl, NestedClass, and
ClassLayout. The records of these tables contain the following entries:

• The TypeDef table contains the Flags, Name, Namespace, Extends, FieldList, and
MethodList entries.

• The TypeRef table contains the ResolutionScope, Name, and Namespace entries.

• The InterfaceImpl table contains the Class and Interface entries.

• The NestedClass table contains the NestedClass and EnclosingClass entries.

• The ClassLayout table contains the PackingSize, ClassSize, and Parent entries.

TypeDef Table Validity Rules
• The Flags entry can have only those bits set that are defined in the enumeration

CorTypeAttr in CorHdr.h except the tdForwarder flag, reserved for exported types
(validity mask: 0x00173DBF).

• [run time] The Flags entry cannot have the sequential and explicit bits set
simultaneously.

• [run time] The Flags entry cannot have the unicode and autochar bits set
simultaneously.

• If the rtspecialname flag is set in the Flags entry, the Name field must be set to _Deleted*,
and vice versa.

• [run time] If the bit 0x00040000 is set in the Flags entry, either a DeclSecurity record or
a custom attribute named SuppressUnmanagedCodeSecurityAttribute must be associ-
ated with the TypeDef, and vice versa.

• [run time] If the interface flag is set in the Flags entry, abstract must be also set.

• [run time] If the interface flag is set in the Flags entry, sealed must not be set.

• [run time] If the interface flag is set in the Flags entry, the TypeDef must have no
instance fields.

• [run time] If the interface flag is set in the Flags entry, all the TypeDef’s instance
methods must be abstract.

• [run time] The visibility flag of a non-nested TypeDef must be set to private or public.

• [run time] If the visibility flag of a TypeDef is set to nested public, nested private,
nested family, nested assembly, nested famorassem, or nested famandassem, the
TypeDef must be referenced in the NestedClass entry of one of the records in the
NestedClass metadata table, and vice versa.

• The Name field must reference a nonempty string in the #Strings stream.

CHAPTER 7 ■ NAMESPACES AND CLASSES142

Ch07_6463_CMP4 5/3/06 7:04 PM Page 142

• The combined length of the strings referenced by the Name and Namespace entries must
not exceed 1,023 bytes.

• The TypeDef table must contain no duplicate records with the same full name (the
namespace plus the name) unless the TypeDef is nested or deleted.

• [run time] The Extends entry must be nil for TypeDefs with the interface flag set and for
the TypeDef System.Object of the Mscorlib assembly.

• [run time] The Extends entry of all other TypeDefs must hold a valid reference to the
TypeDef, TypeRef, or TypeSpec table, and this reference must point at a nonsealed class
(not an interface or a value type).

• [run time] The Extends entry must not point to the type itself or to any of the type
descendants (inheritance loop).

• [run time] The FieldList entry can be nil or hold a valid reference to the Field table.

• [run time] The MethodList entry can be nil or hold a valid reference to the Method table.

Enumeration-Specific Validity Rules
If the TypeDef is an enum—that is, if the Extends entry holds the reference to the class
[mscorlib]System.Enum—the following additional rules apply:

• [run time] The interface, abstract, sequential, and explicit flags must not be set in
the Flags entry.

• The sealed flag must be set in the Flags entry.

• The TypeDef must have no methods, events, or properties.

• The TypeDef must implement no interfaces—that is, it must not be referenced in the
Class entry of any record in the InterfaceImpl table.

• [run time] The TypeDef must have at least one instance field of integer type or of type
bool or char.

• [run time] All static fields of the TypeDef must be literal.

• The type of the static fields of the TypeDef must be the current TypeDef itself.

TypeRef Table Validity Rules
• [run time] The ResolutionScope entry must hold either 0 or a valid reference to the

AssemblyRef, ModuleRef, Module, or TypeRef table. In the last case, TypeRef refers to a
type nested in another type (a nested TypeRef).

• If the ResolutionScope entry is nil, the ExportedType table of the prime module of the
assembly must contain a record whose TypeName and TypeNamespace entries match the
Name and Namespace entries of the TypeRef record, respectively.

• [run time] The Name entry must reference a nonempty string in the #Strings stream.

CHAPTER 7 ■ NAMESPACES AND CLASSES 143

Ch07_6463_CMP4 5/3/06 7:04 PM Page 143

• [run time] The combined length of the strings referenced by the Name and Namespace
entries must not exceed 1,023 bytes.

• The table must contain no duplicate records with the same full name (the namespace
plus the name) and ResolutionScope value.

InterfaceImpl Table Validity Rules
A Class entry set to nil means a deleted InterfaceImpl record. If the Class entry is non-nil,
however, the following rules apply:

• [run time] The Class entry must hold a valid reference to the TypeDef table.

• [run time] The Interface entry must hold a valid reference to the TypeDef or TypeRef
table.

• If the Interface field references the TypeDef table, the corresponding TypeDef record
must have the interface flag set in the Flags entry.

• The table must contain no duplicate records with the same Class and Interface
entries.

NestedClass Table Validity Rules
• The NestedClass entry must hold a valid reference to the TypeDef table.

• [run time] The EnclosingClass entry must hold a valid reference to the TypeDef table,
one that differs from the reference held by the NestedClass entry.

• The table must contain no duplicate records with the same NestedClass entries.

• The table must contain no records with the same EnclosingClass entries and
NestedClass entries referencing TypeDef records with matching names—in other
words, a nested class must have a unique name within its encloser.

• The table must contain no sets of records forming a circular nesting pattern—for
example, A nested in B, B nested in C, C nested in A.

ClassLayout Table Validity Rules
A Parent entry set to nil means a deleted ClassLayout record. However, if the Parent entry is
non-nil, the following rules apply:

• The Parent entry must hold a valid reference to the TypeDef table, and the referenced
TypeDef record must have the Flags bit explicit or sequential set and must have the
interface bit not set.

• [run time] The PackingSize entry must be set to 0 or to a power of 2 in the range 1 to 128.

• The table must contain no duplicate records with the same Parent entries.

CHAPTER 7 ■ NAMESPACES AND CLASSES144

Ch07_6463_CMP4 5/3/06 7:04 PM Page 144

Primitive Types and Signatures

Having looked at how types are defined in the common language runtime and ILAsm, let’s
proceed to the question of how these types and their derivatives are assigned to program
items—fields, variables, methods, and so on. The constructs defining the types of program
items are known as the signatures of these items. Signatures are built from encoded references
to various classes and value types; I’ll discuss signatures in detail in this chapter.

But before we start analyzing the signatures of program items, let’s consider the building
blocks of these signatures.

Primitive Types in the Common Language Runtime
All types have to be defined somewhere. The Microsoft .NET Framework class library defines
hundreds of types, and other assemblies build their own types based on the types defined in
the class library. Some of the types defined in the class library are recognized by the common
language runtime as primitive types and are given special encoding in the signatures. This is
done only for the sake of performance—theoretically, the signatures could have been built
from type tokens only, given that every type is defined somewhere and hence has a token. But
resolving all these tokens simply to find that they reference trivial items such as a 4-byte inte-
ger or a Boolean value can hardly be considered a sensible way to work at the run time.

Primitive Data Types
The term primitive data types refers to the types defined in the .NET Framework class library
that are given specific individual type codes to be used in signatures. Because all these types
are defined in the assembly Mscorlib and all belong to the namespace System, I have omitted
the prefix [mscorlib]System when supplying the class library type name for a type.

The individual type codes are defined in the enumeration CorElementType in the header
file CorHdr.h. The names of all these codes begin with ELEMENT_TYPE_, which I have either
omitted in this chapter or abbreviated as E_T_.

145

C H A P T E R 8

■ ■ ■

Ch08_6463_CMP2 4/28/06 9:16 AM Page 145

Table 8-1 describes primitive data types and their respective ILAsm notation.

Table 8-1. Primitive Data Types Defined in the Runtime

Code Constant .NET Framework ILAsm Notation Comments
Name Type Name

0x01 VOID Void void

0x02 BOOLEAN Boolean bool Single-byte value, true = 1,
false = 0

0x03 CHAR Char char 2-byte unsigned integer,
representing a Unicode
character

0x04 I1 SByte int8 Signed 1-byte integer, the
same as char in C/C++

0x05 U1 Byte unsigned int8 Unsigned 1-byte integer

0x06 I2 Int16 int16 Signed 2-byte integer

0x07 U2 UInt16 unsigned int16 Unsigned 2-byte integer

0x08 I4 Int32 int32 Signed 4-byte integer

0x09 U4 UInt32 unsigned int32 Unsigned 4-byte integer

0x0 A I8 Int64 int64 Signed 8-byte integer

0x0 B U8 UInt64 unsigned int64 Unsigned 8-byte integer

0x0 C R4 Single float32 4-byte floating point

0x0 D R8 Double float64 8-byte floating point

0x16 TYPEDBYREF TypedReference typedref Typed reference, carrying
both a reference to a type
and information identifying
the referenced type

0x18 I IntPtr native int Pointer-size integer; size
dependent on the target
platform, which explains the
use of the keyword native

0x19 U UIntPtr native unsigned int Pointer-size unsigned integer

Data Pointer Types
The common language runtime distinguishes between pointers that must point at the begin-
ning of an object allocated on the garbage-collected heap (called object references; see
“Representing Classes”) and other pointers.

Two data pointer types are defined in the common language runtime: the managed
pointer and the unmanaged pointer. The difference is that a managed pointer is managed
by the runtime’s garbage collection subsystem and stays valid even if the referenced item is
moved in memory during the process of garbage collection, whereas an unmanaged pointer
can be safely used only in association with “unmovable” items.

Both pointer types must be followed by the referent types to which the pointers point. As
types constructed from referent types, the pointers have no corresponding types defined in

CHAPTER 8 ■ PRIMITIVE TYPES AND SIGNATURES146

Ch08_6463_CMP2 4/28/06 9:16 AM Page 146

the .NET Framework class library and cannot be boxed. Table 8-2 describes the two pointer
types and their ILAsm notations. Neither of them has an associated .NET Framework type.

Table 8-2. Pointer Types Defined in the Runtime

Code Constant Name ILAsm Notation Comments

0x0F PTR <type>* Unmanaged pointer to <type>

0x10 BYREF <type>& Managed pointer to <type>

■Note Although ILAsm notation places the pointer character after the pointed type, in signatures E_T_PTR
and E_T_BYREF always precede the referent type.

Pointers of both types are subject to standard pointer arithmetic: an integer can be
added to or subtracted from a pointer, resulting in a pointer; and one pointer can be sub-
tracted from another, resulting in an integer value. The difference between pointer arithmetic
in, say, C/C++ (see Listing 8-1) and in IL is that in IL—and hence in ILAsm (see Listing 8-2)—
the increments and decrements of pointers are always specified in bytes, regardless of the size
of the item the pointer represents.

Listing 8-1. C/C++

long L, *pL=&L;
...
pL += 4; // pL is incremented by 4*sizeof(long) = 16 bytes

Listing 8-2. ILAsm

.locals init(int32 L, int32& pL)
ldloca L // Load pointer to L on stack
stloc pL // pL = &L
...
ldloc pL // Load pL on stack
ldc.i4 4 // Load 4 on stack
add
stloc pL // pL += 4, pL is incremented by 4 bytes

By the same token...now, this is just a common expression. I’m not referring to metadata
tokens. (I think I’d better be extra careful with phrases like “by the same token” or “token of
appreciation” in this book.) In the same way, the delta of two pointers in IL is always expressed
in bytes, not in the items pointed at.

Using unmanaged pointers in IL is never considered safe (verifiable). Because of the
unlimited access that C-style pointer arithmetic gives to anybody for anything, IL code, which

CHAPTER 8 ■ PRIMITIVE TYPES AND SIGNATURES 147

Ch08_6463_CMP2 4/28/06 9:16 AM Page 147

has unmanaged pointers dereferenced, is deemed unverifiable and can be run when the code
comes from a trusted source (such as a local drive).

Managed pointers are tamed, domesticated pointers, fully owned by the common lan-
guage runtime type control and the garbage collection subsystem. These pointers dwell in a
safe but not too spacious corral, fenced along the following lines:

• Managed pointers are always references to an item in existence—a field, an array
element, a local variable, or a method argument.

• Array elements and fields cannot have managed pointer types.

• Managed pointer types can be used only for method attributes—local variables, param-
eters, or a return type, and it is not a simple coincidence that all these items are stack
allocated.

• Managed pointers that point to “managed memory” (the garbage collector heap, which
contains object instances and arrays) cannot be converted to unmanaged pointers.

• Managed pointers that don’t point to the garbage collector heap can be converted to
unmanaged pointers, but such conversion renders the IL code unverifiable.

• The underlying type of a managed pointer cannot be another pointer, but it can be an
object reference.

Managed pointers are different from object references. In Chapter 7, which described
boxing and unboxing of the value types, you saw that it takes boxing to create an object refer-
ence to a value type. Using a simple reference—that is, a managed pointer—is not enough.

The difference is that an object reference points to the start (method table) of an object,
whereas a managed pointer points to the object’s interior—the value (data) part of the item.
When you take a managed pointer to an instance of a value type, you address the data part.
You can have only this much because instances of value types, not being objects, have no
method tables.

When you box a value type instance, you create an object, a class instance with its own
method table and data part copied from the value type instance. This object is represented by
an object reference.

Function Pointer Types
Chapter 7 briefly described the use of managed function pointers and compared them with
delegate types. Managed function pointers are represented by type E_T_FNPTR, which is indi-
cated by the value 0x1B and doesn’t have a .NET Framework type associated.

Just like a data pointer type, a function pointer type is a constructed type that does not
exist by itself and must be followed by the full signature of the method to which it points.
(Method signatures are discussed later in this chapter; see “Signatures.”)

The ILAsm notation for a function pointer is as follows:

method <call_conv> <return_type> * (<type>[,<type>*])

where <call_conv> is a calling convention, <return_type> is the return type, and the <type>
sequence in the parentheses is the argument list. You’ll find more details in the “Signatures”
section.

CHAPTER 8 ■ PRIMITIVE TYPES AND SIGNATURES148

Ch08_6463_CMP2 4/28/06 9:16 AM Page 148

Vectors and Arrays
The common language runtime recognizes two types of arrays: vectors and multidimensional
arrays, as described in Table 8-3. Vectors are single-dimensional arrays with a zero lower bound.
Multidimensional arrays, which I’ll refer to as arrays, can have more than one dimension and
nonzero lower bounds. Both array types are constructed types, so neither of them has an associ-
ated .NET Framework type.

Table 8-3. Arrays Supported in the Runtime

Code Constant Name ILAsm Notation Comments

0x1D SZARRAY <type>[] Vector of <type>

0x14 ARRAY <type>[<bounds> [,<bounds>*]] Array of <type>

All vectors and arrays are objects (class instances) derived from the abstract class
[mscorlib]System.Array.

Vector encoding is simple: E_T_SZARRAY followed by the encoding of the underlying type,
which can be anything except void. The size of the vector is not part of the encoding. Since
arrays and vectors are object references, it is not enough to simply declare an array—you must
create an instance of it, using the instruction newarr for a vector or calling an array construc-
tor. It is at that point that the size of the vector or array instance is specified. Thus, the size of
an array is an attribute of an instance of an array, not the type of the array.

Array encoding is more sophisticated:

E_T_ARRAY<underlying_type><rank><num_sizes><size1>...<sizeN>
<num_lower_bounds><lower_bound1>...<lower_boundM>

where the following is true:

<underlying_type> cannot be void
<rank> is the number of array dimensions (K>0)
<num_sizes> is the number of specified sizes for dimensions (N <= K)
<sizen> is an unsigned integer specifying the size (n = 1,...,N)
<num_lower_bounds> is the number of specified lower bounds (M <= K)
<lower_boundm> is a signed integer specifying the lower bound (m = 1,...,M)

All the unsigned integer values among the previous are compressed according to the
length compression formula discussed in Chapter 5. To save you a trip three chapters back,
I will repeat this formula in Table 8-4.

Table 8-4. The Length Compression Formula for Unsigned Integers

Value Range Compressed Size Compressed Value (Big Endian)

0–0x7F 1 byte <value>

0x80–0x3FFF 2 bytes 0x8000 | <value>

0x4000–0x1FFFFFFF 4 bytes 0xC0000000 | <value>

CHAPTER 8 ■ PRIMITIVE TYPES AND SIGNATURES 149

Ch08_6463_CMP2 4/28/06 9:16 AM Page 149

Signed integer values (lower bound values) are compressed according to a different com-
pression procedure. First the signed integer is encoded as an unsigned integer by taking the
absolute value of the original integer, shifting it left by 1 bit, and setting the least significant bit
according to the most significant (sign) bit of the original value. Then compression is applied
according to the formula shown in Table 8-4.

If size and/or the lower bound for a dimension are not specified, they are not presumed
to be 0; rather, they are marked as not specified. The specification of size and lower bound
cannot have “holes”—that is, if you have an array of rank 5 and want to specify size (or lower
bound) for its third dimension, you must specify size (or lower bound) for the first and second
dimensions as well.

An array specification in ILAsm looks like this:

<type> [<bounds>[, <bounds>*]]

where

<bounds> ::= [<lower_bound>] ... [<upper_bound>]

The following is an example:

int32[..., ...] // Two-dimensional array with undefined lower bounds
// And sizes

int32[2...5] // One-dimensional array with lower bound 2 and size 4
int32[0..., 0...] // Two-dimensional array with zero lower bounds

// And undefined sizes

If neither lower bound nor upper bound is specified for a dimension in a multidimen-
sional array declaration, the ellipsis can be omitted. Thus, int32[...,...] and int32[,] mean the
same: a two-dimensional array with no lower bounds or sizes specified.

This omission does not work in the case of single-dimensional arrays, however. The nota-
tion int32[] indicates a vector (<E_T_SZARRAY><E_T_I4>), and int32[...] indicates an array of
rank 1 whose lower bound and size are undefined (<E_T_ARRAY><E_T_I4><1><0><0>).

The common language runtime treats multidimensional arrays and vectors of vectors (of
vectors, and so on) completely differently. The specifications int32[,] and int32[][] result
in different type encoding, are created differently, and are laid out differently when created:

int32[,]: This specification has the encoding <E_T_ARRAY><E_T_I4><2><0><0>, is created
by a single call to an array constructor, and is laid out as a contiguous two-dimensional
array of int32.

int32[][]: This specification has the encoding <E_T_SZARRAY><E_T_SZARRAY><E_T_I4>, is
created by a series of newarr instructions, and is laid out as a vector of vector references,
each pointing to a contiguous vector of int32, with no guarantee regarding the location of
each vector. Vectors of vectors are useful for describing jagged arrays, when the size of the
second dimension varies depending on the first dimension index.

CHAPTER 8 ■ PRIMITIVE TYPES AND SIGNATURES150

Ch08_6463_CMP2 4/28/06 9:16 AM Page 150

Modifiers
Four built-in common language runtime type codes, described in Table 8-5, do not denote any
specific data or pointer type but rather are used as modifiers of data and pointer types. None
of these modifiers has an associated .NET Framework type.

Table 8-5. Modifiers Defined in the Runtime

Code Constant Name ILAsm Notation Comments

0x1F CMOD_REQD modreq(<class_ref>) Required custom modifier

0x20 CMOD_OPT modopt(<class_ref>) Optional custom modifier

0x41 SENTINEL ... Start of optional arguments in a vararg
method call

0x45 PINNED pinned Marks a local variable as unmovable by
the garbage collector

The modifiers modreq and modopt indicate that the item to which they are attached—an
argument, a return type, or a field, for example—must be treated in some special way. These
modifiers are followed by TypeDef or TypeRef tokens, and the classes corresponding to these
tokens indicate the special way the item is to be handled.

The tokens following modreq and modopt are compressed according to the following algo-
rithm. As you might remember, an uncoded (external) metadata token is a 4-byte unsigned
integer, which has the token type in its senior byte and an RID in its 3 lower bytes. It so hap-
pens that the tokens appearing in the signatures and hence requiring compression are of three
types only: TypeDef, TypeRef, or TypeSpec. (See “Signatures” later in this chapter for informa-
tion about TypeSpecs.) Because of that, only 2 bits, rather than a whole byte, are required for
the token type: 00 denotes TypeDef, 01 is used for TypeRef, and 10 specifies TypeSpec. The
token compression procedure resembles the procedure used to compress the signed integers:
the RID part of the token is shifted left by 2 bits, and the 2-bit type encoding is placed in the
least significant bits. The result is compressed just as any unsigned integer would be, accord-
ing to the formula shown earlier in Table 8-4.

The modifiers modreq and modopt are used primarily by tools other than the common
language runtime, such as compilers or program analyzers. The modreq modifier indicates
that the modifier must be taken into account, whereas modopt indicates that the modifier is
optional and can be ignored. The ILAsm compiler does not use these modifiers for its internal
purposes.

The only use of the modreq and modopt modifiers recognized by the common language
runtime is when these modifiers are applied to return types or parameters of methods subject
to managed/unmanaged marshaling. For example, to specify that a managed method must
have the cdecl calling convention when it is marshaled as unmanaged, you can use the fol-
lowing modifier attached to the method’s return type:

modopt([mscorlib]System.Runtime.CompilerServices.CallConvCdecl)

When used in the context of managed/unmanaged marshaling, the modreq and modopt
modifiers are equivalent.

CHAPTER 8 ■ PRIMITIVE TYPES AND SIGNATURES 151

Ch08_6463_CMP2 4/28/06 9:16 AM Page 151

Although the modreq and modopt modifiers have no effect on the managed types of the items
to which they are attached, signatures with and without these modifiers are considered differ-
ent. The same is true for signatures differing only in classes referenced by these modifiers. This
allows, for example, the overloading of functions having arguments of type int and long. In
C/C++, int and long are two different types, but for CLR they are the same—32-bit signed
integers (E_T_I4). So in order to distinguish these two types, C++ compiler emits long as
modopt([mscorlib]System.Runtime.CompilerServices.IsLong)int32. Another modifier often
used by the C++ compiler is modopt([mscorlib]System.Runtime.CompilerServices.IsConst), to
distinguish, for example, the C types int* and const int*. Custom modifiers were introduced
to accommodate C++ type system, but they are not specific to C++. Other high-level languages
might also require distinguishing certain types, which are indistinguishable from the CLR’s point
of view.

The sentinel modifier (...) was introduced in Chapter 1, when we analyzed the declara-
tion and calling of methods with a variable-length argument list (vararg methods). A sentinel
signifies the beginning of optional arguments supplied for a vararg method call. This modifier
can appear in only one context: at the call site, because the optional parameters of a vararg
method are not specified when such a method is declared. The runtime treats a sentinel
appearing in any other context as an error. The method arguments at the call site can contain
only one sentinel, and the sentinel is used only if optional arguments are supplied:

// Declaration of vararg method – mandatory parameters only:
.method public static vararg int32 Print(string Format)
{

...
}
...
// Calling vararg method with two optional arguments:
call vararg int32 Print(string, ..., int32, int32)
...
// Calling vararg method without optional arguments:
call vararg int32 Print(string)

The pinned modifier is applicable to the method’s local variables only. Its use means that
the object referenced by the local variable cannot be relocated by the garbage collector and
must stay put throughout the method execution. If a local variable representing an object ref-
erence or a managed pointer is “pinned,” it is safe to convert it to an unmanaged pointer and
then to dereference this unmanaged pointer, because the unmanaged pointer is guaranteed to
still be valid when it is dereferenced (it is safe in the sense of dereferencing, but it is still unver-
ifiable, as is any usage of an unmanaged pointer):

.locals init(class Foo A, class Foo pinned B, int32* pA, int32* pB)
ldloc A
ldflda int32 Foo::x
stloc pA // pA = &A->x
ldloc B
ldflda int32 Foo::x
stloc pB // pB = &B->x
...
ldloc pA
ldc.i4 123

CHAPTER 8 ■ PRIMITIVE TYPES AND SIGNATURES152

Ch08_6463_CMP2 4/28/06 9:16 AM Page 152

stind.i4 // *pA=123 – unsafe, A could have been moved
ldloc pB
ldc.i4 123
stind.i4 // *pB=123 – safe, B is pinned and cannot move

Native Types
When managed code calls unmanaged methods or exposes managed fields to unmanaged
code, it is sometimes necessary to provide specific information about how the managed types
should be marshaled to and from the unmanaged types. The unmanaged types recognizable
by the common language runtime, also referred to as native, are listed in CorHdr.h in the
enumeration CorNativeType. All constants in this enumeration have names that begin with
NATIVE_TYPE_* ; for the purposes of this discussion, I have omitted these parts of the names
or abbreviated them as N_T_. The same constants are also listed in the .NET Framework class
library in the enumerator System.Runtime.InteropServices.UnmanagedType.

Some of the native types are obsolete and are ignored by the runtime interoperability
subsystem. But since these native types are not retired altogether, ILAsm must have ways to
denote them—and since ILAsm denotes these types, I cannot help but list obsolete types
along with others, all of which you’ll find in Table 8-6.

Table 8-6. Native Types Defined in the Runtime

Code Constant .NET Framework ILAsm Notation Comments
Name Type Name

0x01 VOID void Obsolete and thus should
not be used; recognized by
ILAsm but ignored by the
runtime interoperability
subsystem

0x02 BOOLEAN Bool bool 4-byte Boolean value;
true = nonzero, false = 0

0x03 I1 I1 int8 Signed 1-byte integer

0x04 U1 U1 unsigned int8, Unsigned 1-byte integer
uint8

0x05 I2 I2 int16 Signed 2-byte integer

0x06 U2 U2 unsigned int16, Unsigned 2-byte integer
uint16

0x07 I4 I4 int32 Signed 4-byte integer

0x08 U4 U4 unsigned int32, Unsigned 4-byte integer
uint32

0x09 I8 I8 int64 Signed 8-byte integer

0x0A U8 U8 unsigned int64, Unsigned 8-byte integer
uint64

0x0B R4 R4 float32 4-byte floating point

0x0C R8 R8 float64 8-byte floating point

0x0D SYSCHAR syschar Obsolete
Continued

CHAPTER 8 ■ PRIMITIVE TYPES AND SIGNATURES 153

Ch08_6463_CMP2 4/28/06 9:16 AM Page 153

Table 8-6. Continued

Code Constant .NET Framework ILAsm Notation Comments
Name Type Name

0x0E VARIANT variant Obsolete

0x0F CURRENCY Currency currency Currency value

0x10 PTR * Obsolete; use native int

0x11 DECIMAL decimal Obsolete

0x12 DATE date Obsolete

0x13 BSTR BStr bstr Unicode Visual Basic–style
string, used in COM
interoperations

0x14 LPSTR LPStr lpstr Pointer to a zero-terminated
ANSI string

0x15 LPWSTR LPWStr lpwstr Pointer to a zero-terminated
Unicode string

0x16 LPTSTR LPTStr lptstr Pointer to a zero-terminated
ANSI or Unicode string,
depending on platform

0x17 FIXEDSYSSTRING ByValTStr fixed sysstring Fixed-size system string
[<size>] of size <size> bytes;

applicable to field
marshaling only

0x18 OBJECTREF objectref Obsolete

0x19 IUNKNOWN IUnknown iunknown IUnknown interface pointer

0x1A IDISPATCH IDispatch idispatch IDispatch interface pointer

0x1B STRUCT Struct struct C-style structure, for
marshaling the formatted
managed types

0x1C INTF Interface interface Interface pointer

0x1D SAFEARRAY SafeArray safearray Safe array of type
<variant_type> <variant_type>

0x1E FIXEDARRAY ByValArray fixed array [<size>] Fixed-size array, of size
<size> bytes

0x1F INT IntPtr int Signed pointer-size integer

0x20 UINT UIntPtr unsigned int, uint Unsigned pointer-size
integer

0x21 NESTEDSTRUCT nested struct Obsolete; use struct

0x22 BYVALSTR VBByRefStr byvalstr Visual Basic–style string in a
fixed-length buffer

0x23 ANSIBSTR AnsiBStr ansi bstr ANSI Visual Basic–style string

0x24 TBSTR TBStr tbstr bstr or ansi bstr,
depending on the platform

0x25 VARIANTBOOL VariantBool variant bool 2-byte Boolean; true = –1,
false = 0

Continued

CHAPTER 8 ■ PRIMITIVE TYPES AND SIGNATURES154

Ch08_6463_CMP2 4/28/06 9:16 AM Page 154

Table 8-6. Continued

Code Constant .NET Framework ILAsm Notation Comments
Name Type Name

0x26 FUNC FunctionPtr method Function pointer

0x28 ASANY AsAny as any Object; type defined at
run time

0x2A ARRAY LPArray <n_type> [<sizes>] Fixed-size array of a native
type <n_type>

0x2B LPSTRUCT LPStruct lpstruct Pointer to a C-style structure

0x2C CUSTOMMARSHALER CustomMarshaler custom (<class_str>, Custom marshaler
<cookie_str>)

0x2D ERROR Error error Maps int32 to VT_HRESULT

The <sizes> parameter in the ILAsm notation for N_T_ARRAY, shown in Table 8-6, can be
empty or can be formatted as <size> + <size_param_number>:

<sizes> ::= <>
| <size>
| + <size_param_number>
| <size> + <size_param_number>

If <sizes> is empty, the size of the native array is derived from the size of the managed
array being marshaled.

The <size> parameter specifies the native array size in array items. The zero-based
method parameter number <size_param_number> indicates which of the method parameters
specifies the size of the native array. The total size of the native array is <size> plus the addi-
tional size specified by the method parameter that is indicated by <size_param_number>.

A custom marshaler declaration (shown in Table 8-6) has two parameters, both of which
are quoted strings. The <class_str> parameter is the name of the class representing the cus-
tom marshaler, using the string conventions of Reflection.Emit. The <cookie_str> parameter
is an argument string (cookie) passed to the custom marshaler at run time. This string identi-
fies the form of the marshaling required, and its notation is specific to the custom marshaler.

Variant Types
Variant types (popular in COM) are defined in the enumeration VARENUM in the Wtypes.h file,
which is distributed with Microsoft Visual Studio. Not all variant types are applicable as safe
array types, according to Wtypes.h, but ILAsm provides notation for all of them nevertheless, as
shown in Table 8-7. It might look strange, considering that variant types appear in ILAsm only
in the context of safe array specification, but we should not forget that one of ILAsm’s principal
applications is the generation of test programs, which contain known, preprogrammed errors.

CHAPTER 8 ■ PRIMITIVE TYPES AND SIGNATURES 155

Ch08_6463_CMP2 4/28/06 9:16 AM Page 155

Table 8-7. Variant Types Defined in the Runtime

Code Constant Name Applicable to Safe Array? ILAsm Notation

0x00 VT_EMPTY No <empty>

0x01 VT_NULL No null

0x02 VT_I2 Yes int16

0x03 VT_I4 Yes int32

0x04 VT_R4 Yes float32

0x05 VT_R8 Yes float64

0x06 VT_CY Yes currency

0x07 VT_DATE Yes date

0x08 VT_BSTR Yes bstr

0x09 VT_DISPATCH Yes idispatch

0x0A VT_ERROR Yes error

0x0B VT_BOOL Yes bool

0x0C VT_VARIANT Yes variant

0x0D VT_UNKNOWN Yes iunknown

0x0E VT_DECIMAL Yes decimal

0x10 VT_I1 Yes int8

0x11 VT_UI1 Yes unsigned int8, uint8

0x12 VT_UI2 Yes unsigned int16, uint16

0x13 VT_UI4 Yes unsigned int32, uint32

0x14 VT_I8 No int64

0x15 VT_UI8 No unsigned int64, uint64

0x16 VT_INT Yes int

0x17 VT_UINT Yes unsigned int, uint

0x18 VT_VOID No void

0x19 VT_HRESULT No hresult

0x1A VT_PTR No *

0x1B VT_SAFEARRAY No safearray

0x1C VT_CARRAY No carray

0x1D VT_USERDEFINED No userdefined

0x1E VT_LPSTR No lpstr

0x1F VT_LPWSTR No lpwstr

0x24 VT_RECORD Yes record

0x40 VT_FILETIME No filetime

0x41 VT_BLOB No blob

0x42 VT_STREAM No stream

0x43 VT_STORAGE No storage

Continued

CHAPTER 8 ■ PRIMITIVE TYPES AND SIGNATURES156

Ch08_6463_CMP2 4/28/06 9:16 AM Page 156

Table 8-7. Continued

Code Constant Name Applicable to Safe Array? ILAsm Notation

0x44 VT_STREAMED_OBJECT No streamed_object

0x45 VT_STORED_OBJECT No stored_object

0x46 VT_BLOB_OBJECT No blob_object

0x47 VT_CF No cf

0x48 VT_CLSID No clsid

0x1000 VT_VECTOR Yes <v_type> vector

0x2000 VT_ARRAY Yes <v_type> []

0x4000 VT_BYREF Yes <v_type> &

Representing Classes in Signatures
Remember the local variables signature from the “Modifiers” code snippet? It contained two
references to some class Foo:

.locals init(class Foo A, class Foo pinned B, int32* pA, int32* pB)

The classes and value types in general are represented in signatures by their TypeDef or
TypeRef tokens, preceded by E_T_CLASS or E_T_VALUETYPE, respectively, as shown in Table 8-8.

Table 8-8. Representation of CLASS and VALUETYPE

Code Constant .NET Framework ILAsm Notation Comments
Name Type Name

0x11 VALUETYPE valuetype <class_ref> Value type

0x12 CLASS class <class_ref> Class or interface, except
[mscorlib]System.Object
and
[mscorlib]System.String

0x0E STRING String string [mscorlib]System.String
class

0x1C OBJECT Object object [mscorlib]System.Object
class

As you can see in Table 8-8, two classes, String and Object, are assigned their own
codes and hence should have been listed along with the primitive data types in Table 8-1,
if it were not for their class nature. This is important: if a type (class or value type) is given
its own code, it cannot be referenced in signatures other than by this code. In other words,
the class [mscorlib]System.Object must appear in signatures as E_T_OBJECT and never as
E_T_CLASS<token_of_Object>, and the value type [mscorlib]System.Int32 must appear in
signatures as E_T_I4 and never as E_T_VALUETYPE<token_of_Int32>. This rule was introduced
in the early stages of CLR development in an attempt to somehow reduce the anarchy reigning
in the signature domain, where semantically identical signatures could be expressed in a
dozen different ways. A nice side effect of this rule is that it minimizes the signatures.

CHAPTER 8 ■ PRIMITIVE TYPES AND SIGNATURES 157

Ch08_6463_CMP2 4/28/06 9:16 AM Page 157

The JIT compiler does not accept “long forms” of type encoding for types that have dedi-
cated type codes assigned to them, and run-time signature validation procedures reject such
signatures.

■Caution If a type (class or value type) is given its own code, it cannot be referenced in signatures other
than by this code.

Signatures
Now that you know more about type encoding, let’s look at how the types of the various items
you find in a program are set in the common language runtime. Program items such as fields,
methods, and local variables are not characterized by simply encoded types; rather, they are
characterized by signatures. A signature is a byte array containing one or more encoded types
and residing in the #Blob stream of metadata.

The following metadata tables refer to the signatures:

Field table: Field declaration signature

Method table: Method declaration signature

Property table: Property declaration signature

MemberRef table: Field or method referencing signature

StandAloneSig table: Local variables or indirect call signature

TypeSpec table: Type specification signature

Calling Conventions
The first byte of a signature identifies the type of the signature, which for historical reasons is
called the calling convention of the signature, be it a method signature or some other signa-
ture. The CorHdr.h file defines the following calling convention constants in the enumeration
CorCallingConvention:

• IMAGE_CEE_CS_CALLCONV_DEFAULT (0x0). Default (“normal”) method with a fixed-length
argument list. ILAsm has no keyword for this calling convention.

• IMAGE_CEE_CS_CALLCONV_VARARG (0x5). Method with a variable-length argument list. The
ILAsm keyword is vararg.

• IMAGE_CEE_CS_CALLCONV_FIELD (0x6). Field. ILAsm has no keyword for this calling con-
vention.

• IMAGE_CEE_CS_CALLCONV_LOCAL_SIG (0x7). Local variables. ILAsm has no keyword for this
calling convention.

CHAPTER 8 ■ PRIMITIVE TYPES AND SIGNATURES158

Ch08_6463_CMP2 4/28/06 9:16 AM Page 158

• IMAGE_CEE_CS_CALLCONV_PROPERTY (0x8). Property. ILAsm has no keyword for this calling
convention.

• IMAGE_CEE_CS_CALLCONV_UNMGD (0x9). Unmanaged calling convention, not currently used
by the common language runtime and not recognized by ILAsm.

• IMAGE_CEE_CS_CALLCONV_HASTHIS (0x20). Instance method that has an instance pointer
(this) as an implicit first argument. The ILAsm keyword is instance.

• IMAGE_CEE_CS_CALLCONV_EXPLICITTHIS (0x40). Method call signature. The first explicitly
specified parameter is the instance pointer. The ILAsm keyword is explicit.

The calling conventions instance and explicit are the modifiers of the default and
vararg method calling conventions. The calling convention explicit can be used only in
conjunction with instance and only at the call site, never in the method declaration.

Calling conventions for field, property, and local variables signatures don’t need special
ILAsm keywords because they are inferred from the context.

Field Signatures
A field signature is the simplest kind of signature. It consists of a single encoded type (SET),
which of course follows the calling convention byte:

<field_sig> ::= <callconv_field> <SET>

Although this type encoding (SET) can be quite long, especially in the case of a multidi-
mensional array or a function pointer, it is nevertheless a single type encoding. In a field
signature, SET cannot have the &, pinned, and sentinel modifiers, and it cannot be void. The
reasons are plain enough: only method parameters and local variables can be managed point-
ers and have the & modifier, only local variables can be pinned, only method references of
vararg methods can have sentinel in signature, and only a method’s return type can be void.
And a field is none of those.

The field calling convention is always equal to IMAGE_CEE_CS_CALLCONV_FIELD, regardless
of whether the field is static or instance. As a result, it is necessary to keep two sets of field
manipulation instructions in the IL instruction set (described in Chapter 13)—for instance
fields and for static fields. At the same time there is only one set of method call instructions,
suitable for both instance and static methods, which are recognized by bit IMAGE_CEE_CS_
CALLCONV_HASTHIS in calling conventions of their signatures.

Method and Property Signatures
The structures of method and property signatures (and I am talking about method and
property declarations here) are similar:

<method_sig> ::= <callconv_method> <num_of_args> <return_type>
[<arg_type>[,<arg_type>*]]

<prop_sig> ::= <callconv_prop> <num_of_args> <return_type>
[<arg_type>[,<arg_type>*]]

CHAPTER 8 ■ PRIMITIVE TYPES AND SIGNATURES 159

Ch08_6463_CMP2 4/28/06 9:16 AM Page 159

The difference is in the calling convention. The calling convention for a method signature
is the following:

< callconv_method > ::= <default> // Static method, default
// calling convention

| vararg // Static vararg method
| instance // Instance method, default

// calling convention
| instance vararg // Instance vararg method

The calling convention for a property signature is always equal to
IMAGE_CEE_CS_CALLCONV_PROPERTY.

Having noted this difference, you might as well forget about property signatures and con-
centrate on method signatures. The truth is that a property signature—excluding the calling
convention—is a composite of signatures of the property’s access methods, so it is no great
wonder that method and property signatures have similar structures.

Remember that in the method calling convention, the combined calling conventions,
such as instance vararg, are the products of bitwise OR operations performed on the respec-
tive calling convention constants. The calling convention is always represented by one (the
first) byte of a signature.

The value <num_of_args>, a compressed unsigned integer, is the number of parameters,
not counting the return type. The values <return_type> and <arg_type> are SETs. The differ-
ence between them and the field’s SET is that the modifier & is allowed in both <return_type>
and <arg_type>. The difference between <return_type> and <arg_type> is that <return_type>
can be void and <arg_type> cannot.

Instance methods have the implicit first argument this, which is not reflected in the argu-
ment list. This implicit argument is a reference to the instance of the method’s parent type. It
is a class reference if the parent is a class or an interface and a managed pointer if the parent is
a value type.

MemberRef Signatures
Member references, which are kept in the MemberRef metadata table, are the references to
fields and methods, usually those defined outside the current module. There are no specific
MethodRefs and FieldRefs, so you must look at the calling convention of a MemberRef signature
to tell a field reference from a method reference, which is not exactly convenient or fast. On
the flip side, this design solution saves 17 bytes per image loaded in memory (8 bytes for table
descriptor and 3 * 3 bytes for column descriptors of a separate FieldRef table; see Chapter 5),
which is undoubtedly a significant gain.

MemberRef signatures for field references are the same as the field declaration signatures
discussed earlier; see “Field Signatures.” MemberRef signatures for method references are struc-
turally similar to method declaration signatures, although in the argument list of a vararg
method reference, a sentinel can precede the optional arguments. The sentinel itself does not
count as an additional argument, so if you call a vararg method with one mandatory argu-
ment and two optional arguments, the MemberRef signature will have an argument count of
three and an argument list structure that looks like this:

<mandatory_arg><sentinel><opt_arg1><opt_arg2>

CHAPTER 8 ■ PRIMITIVE TYPES AND SIGNATURES160

Ch08_6463_CMP2 4/28/06 9:16 AM Page 160

Indirect Call Signatures
To call methods indirectly, IL has the special instruction calli. This instruction takes argument
values plus a function pointer from the stack and uses the StandAloneSig token as a parameter.
The signature indexed by the token is the signature by which the call is made. Effectively, calli
takes a function pointer and a signature and presumes that the signature is the correct one to
use in calling this function:

ldc.i4.0 // Load first argument
ldc.i4.1 // Load second argument
ldftn void Foo::Bar(int32, int32) // Load function pointer
calli void(int32, int32) // Call Foo::Bar indirectly

Indirect call signatures are similar to the method signatures of MemberRefs, but the calling
convention can contain the modifier explicit, which indicates that the instance pointer of
the parent object (this) is explicitly specified in the method signature as the first parameter.

Also, the calling convention of indirect call signature might be one of the unmanaged
calling conventions, if the method called indirectly is in fact unmanaged.

Unmanaged calling conventions are defined in CorHdr.h in the
CorUnmanagedCallingConvention enumeration as follows:

• IMAGE_CEE_UNMANAGED_CALLCONV_C (0x1). C/C++-style calling convention. The call stack
is cleaned up by the caller. The ILAsm notation is unmanaged cdecl.

• IMAGE_CEE_UNMANAGED_CALLCONV_STDCALL (0x2). Win32 API calling convention. The call
stack is cleaned up by the callee. The ILAsm notation is unmanaged stdcall.

• IMAGE_CEE_UNMANAGED_CALLCONV_THISCALL (0x3). C++ member method (non-vararg)
calling convention. The callee cleans the stack, and the this pointer is passed through
the ECX register. The ILAsm notation is unmanaged thiscall.

• IMAGE_CEE_UNMANAGED_CALLCONV_FASTCALL (0x4). Arguments are passed in registers when
possible. The ILAsm notation is unmanaged fastcall. This calling convention is not sup-
ported in the first release of the runtime.

Local Variables Signatures
Local variables signatures are the second type of signatures referenced by the StandAloneSig
metadata table. Each such signature contains type encodings for all local variables used in a
method. The method header can contain the StandAloneSig token, which identifies the local
variables signature. This signature is retrieved by the loader when it prepares the method for
JIT compilation.

Local variables signatures are to some extent similar to method declaration signatures,
with three differences:

• The calling convention is IMAGE_CEE_CS_CALLCONV_LOCAL_SIG.

• Local variables signatures have no return type. The local variable count is immediately
followed by the sequence of encoded local variable types:

<locals_sig> ::= <callconv_locals> <num_of_vars>
<var_type>[,<var_type>*]]

CHAPTER 8 ■ PRIMITIVE TYPES AND SIGNATURES 161

Ch08_6463_CMP2 4/28/06 9:16 AM Page 161

where <var_type> is the same SET as <arg_type> in method declaration signatures—it
can be anything except void.

• The SETs may have the pinned modifier.

Type Specifications
Type specifications are special metadata items residing in the TypeSpec table and representing
constructed types (pointers, arrays, function types, and so on)—as opposed to TypeDefs and
TypeRefs, which represent types (classes, interfaces, and value types).

A common example of a constructed type is a vector or an array of classes or value types.
Consider the following code snippet:

.locals init(int32[0...,0...] iArr) // Declare 2-dim array reference
ldc.i4 5 // Load size of first dimension
ldc.i4 10 // Load size of second dimension
// Create array by calling array constructor:
newobj instance void int32[0...,0...]::.ctor(int32,int32)
stloc iArr // Store reference to new array in iArr

In the newobj instruction, we specified a MemberRef of the constructor method, parented
not by a type but by a constructed type, int32[0...,0...]. The question is, “Whose .ctor is it,
anyway?”

The arrays and vectors are generic types and can be instantiated only in conjunction with
some nongeneric type, producing a new class—in this case, a two-dimensional array of 4-byte
integers with zero lower bounds. So the constructor we called was the constructor of this class.

And, of course, about the only possible way to represent a constructed type is by a signature.
That’s why TypeSpec records have only one entry, containing an offset in the #Blob stream, point-
ing at the signature. Personally, I think it’s a pity the TypeSpec record contains only one entry; a
Name entry could be of some use. We could go pretty far with named TypeSpecs. Most obvious
possibilities include type aliasing and type forwarding.

The TypeSpec signature has no calling convention and consists of one SET, which, how-
ever, can be fairly long. Consider, for example, a multidimensional array of function pointers
that have function pointers among their arguments.

TypeSpec tokens can be used with all IL instructions that accept TypeDef or TypeRef
tokens. In addition, as you’ve seen, MemberRefs can be scoped to TypeSpecs as well as TypeRefs.
The only places where TypeSpecs could not replace TypeDefs or TypeRefs in versions 1.0 and
1.1 were the extends and implements clauses of the class declaration, but in version 2.0 the
TypeSpecs can be used there as well, because the generic type instantiations are represented
by TypeSpecs (more about generic types and instantiations in Chapter 11).

Two additional kinds of TypeSpecs, other than vectors and arrays, are unmanaged
pointers and function pointers, which are not true generics, in that no abstract class exists
from which all pointers inherit. Of course, both types of pointers can be cast to the value type
int ([mscorlib]System.IntPtr), but this can hardly help—the int value type is oblivious to
the type being pointed at, so such casting results only in loss of information. Pointer kinds
of TypeSpecs are rarely used, compared to array kinds, and have limited application.

CHAPTER 8 ■ PRIMITIVE TYPES AND SIGNATURES162

Ch08_6463_CMP2 4/28/06 9:16 AM Page 162

Summary of Signature Validity Rules
Let’s wrap up the basic facts discussed in this chapter:

• [run time] Signature entries of records in the Method, Field, Property, MemberRef,
StandaloneSig, and TypeSpec metadata tables must hold valid offsets in the #Blob
stream. Nil values of these entries are not acceptable.

• Signatures are built from SETs. Each SET describes the type of a field, a parameter, a
variable, or other such item.

• [run time] Each SET is a sequence of primitive type codes and optional integer parame-
ters, such as metadata tokens or array dimension sizes. A SET cannot end with codes of
the following primitive types: a sentinel, *, &, [], or pinned. These primitive types are
modifiers for the types whose encodings follow them in the SET.

• [run time] A field signature, which is referenced from the Field or MemberRef table,
consists of the calling convention IMAGE_CEE_CS_CALLCONV_FIELD and one valid SET,
which cannot be void or <type>& and cannot contain a sentinel or a pinned modifier.

• A method reference signature, which is referenced from the MemberRef table, consists
of a calling convention, an argument count, a return SET, and a sequence of argument
SETs, corresponding in number to the argument count.

• [run time] The calling convention of a method reference signature is one of the follow-
ing: the default, vararg, instance, or instance vararg.

• [run time] The return SET of a method reference signature cannot contain a sentinel or
a pinned modifier.

• [run time] No more than one argument SET of a method reference signature can con-
tain a sentinel, and it can do so only if the calling convention includes vararg.

• [run time] The argument SETs of a method reference signature cannot be void and
cannot contain a pinned modifier.

• A method declaration signature, which is referenced from the Method table, has the
same structure as a method reference signature and must comply with the same
requirements, plus no argument SET can contain a sentinel.

• A property declaration signature, which is referenced from the Property table, has the
same structure as a method declaration signature and must comply with the same
requirements except that the calling convention of a property declaration signature
must be IMAGE_CEE_CS_CALLCONV_PROPERTY.

• An indirect call signature, which is referenced from the StandAloneSig table, has the
same structure as a method reference signature and must comply with the same
requirements except that the calling convention of an indirect call can be instance
explicit or instance explicit vararg, and the calling convention of an indirect call
to an unmanaged method can be unmanaged cdecl, unmanaged stdcall, unmanaged
thiscall, or unmanaged fastcall.

CHAPTER 8 ■ PRIMITIVE TYPES AND SIGNATURES 163

Ch08_6463_CMP2 4/28/06 9:16 AM Page 163

• A local variables signature, which is referenced from the StandAloneSig table, consists
of the calling convention IMAGE_CEE_CS_CALLCONV_LOCAL_SIG, a local variable count, and
a sequence of local variable SETs, corresponding in number to the variable count.

• [run time] No local variable SET can be void or can contain a sentinel.

• A type specification signature, which is referenced from the TypeSpec table, consists
of one SET not preceded by the calling convention. The SET may represent an array, a
vector, an unmanaged pointer, or a function pointer, and it cannot contain a pinned
modifier.

CHAPTER 8 ■ PRIMITIVE TYPES AND SIGNATURES164

Ch08_6463_CMP2 4/28/06 9:16 AM Page 164

Fields and Data Constants

Fields are one of two kinds of typed and named data locations, the second kind being
method local variables, which are discussed in Chapter 10. Fields correspond to the data
members and global variables of the C++ world. Apart from their own characteristics, fields
can have additional information associated with them that defines the way the fields are laid
out by the loader, how they are allocated, how they are marshaled to unmanaged code, and
whether they have default values. This chapter examines all aspects of member and global
fields and the metadata used to describe these aspects.

Field Metadata
To define a field, you must first provide basic information: the field’s name and signature and
the flags indicating the field’s characteristics, stored in the Field metadata table. Then comes
optional information, specific to certain kinds of fields: field marshaling information, found in
the FieldMarshal table; field layout information in the FieldLayout table; field mapping infor-
mation in the FieldRVA table; and a default value in the Constant table.

To reference a field, you must know its owner—TypeRef, TypeDef, or ModuleRef—as well as
the field’s name and signature. The references to the fields are kept in the MemberRef table.
Figure 9-1 shows the general structure of the field metadata group.

Figure 9-1. Field metadata group

Field
Table

TypeDef
Table

FieldLayout
Table

FieldRVA
Table

Constant
Table

MemberRef
Table

FieldMarshal
Table

TypeRef
Table

ModuleRef
Table

165

C H A P T E R 9

■ ■ ■

Ch09_6463_CMP3 7/26/06 6:13 PM Page 165

Defining a Field
The central metadata table of the group, the Field table, has the associated token type
mdtFieldDef (0x04000000). A record in this table has three entries:

• Flags (2-byte unsigned integer). Binary flags indicating the field’s characteristics.

• Name (offset in the #Strings stream). The field’s name.

• Signature (offset in the #Blob stream). The field’s signature.

As you can see, a Field record does not contain one vital piece of information: which class
or value type owns the field. The information about field ownership is furnished by the class
descriptor itself: records in the TypeDef table have FieldList entries, which hold the RID in
the Field table where the first of the type’s fields can be found.

In the simplest case, the ILAsm syntax for a field declaration is as follows:

.field <flags> <type> <name>

The owner of a field is the class or value type in the lexical scope of which the field is
defined.

A field’s binary flags are defined in the CorHdr.h file in the enumeration CorFieldAttr
and can be divided into four groups, as described in the following list. I’m using ILAsm key-
words instead of the constant names from CorFieldAttr, as I don’t think the constant names
are relevant.

• Accessibility flags (mask 0x0007):

• privatescope (0x0000). This is the default accessibility. A private scope field is exempt
from the requirement of having a unique triad of owner, name, and signature and
hence must always be referenced by a FieldDef token and never by a MemberRef token
(0x0A000000), because member references are resolved to the definitions by exactly
this triad. The privatescope fields are accessible from anywhere within current
module.

• private (0x0001). The field is accessible from its owner and from classes nested in
the field’s owner. Global private fields are accessible from anywhere within cur-
rent module.

• famandassem (0x0002). The field is accessible from types belonging to the owner’s
family defined in the current assembly. The term family here means the type itself
and all its descendants.

• assembly (0x0003). The field is accessible from types defined in the current
assembly.

• family (0x0004). The field is accessible from the owner’s family (defined in this or
any other assembly).

• famorassem (0x0005). The field is accessible from the owner’s family (defined in this
or any other assembly) and from all types (of the owner’s family or not) defined in
the current assembly.

• public (0x0006). The field is accessible from any type.

CHAPTER 9 ■ FIELDS AND DATA CONSTANTS166

Ch09_6463_CMP3 7/26/06 6:13 PM Page 166

• Contract flags (mask 0x02F0):

• static (0x0010). The field is static, shared by all instances of the type. Global fields
must be static.

• initonly (0x0020). The field can be initialized only and cannot be written to later.
Initialization takes place in an instance constructor (.ctor) for instance fields and
in a class constructor (.cctor) for static fields. This flag is not enforced by the CLR;
it exists for the compilers’ reference only.

• literal (0x0040). The field is a compile-time constant. The loader does not lay out
this field and does not create an internal handle for it. The field cannot be directly
addressed from IL and can be used only as a Reflection reference to retrieve an
associated metadata-held constant. If you try to access a literal field directly—for
example, through the ldsfld instruction—the JIT compiler throws a MissingField
exception and aborts the task.

• notserialized (0x0080). The field is not serialized when the owner is remoted. This
flag has meaning only for instance fields of the serializable types.

• specialname (0x0200). The field is special in some way, as defined by the name. An
example is field value__ of an enumeration type.

• Reserved flags (cannot be set explicitly; mask 0x9500):

• rtspecialname (0x0400). The field has a special name that is reserved for the inter-
nal use of the common language runtime. Two field names are reserved: value_, for
instance fields in enumerations, and _Deleted*, for fields marked for deletion but
not actually removed from metadata. The keyword rtspecialname is ignored by the
IL assembler (the flag is actually set automatically by the metadata emission API)
and is displayed by the IL disassembler for informational purposes only. This flag
must be accompanied in the metadata by a specialname flag.

• marshal(<native_type>) (0x1000). The field has an associated FieldMarshal record
specifying how the field must be marshaled when consumed by unmanaged code.
The ILAsm construct marshal(<native_type>) defines the marshaling information
emitted to the FieldMarshal table but does not set the flag directly. Rather, the flag
is set behind the scenes by the metadata emission API when the marshaling infor-
mation is emitted. Chapter 8 discusses native types.

• [no ILAsm keyword] (0x8000). The field has an associated Constant record. The
flag is set by the metadata emission API when the respective Constant record is
emitted. See the section “Default Values” later in this chapter.

• [no ILAsm keyword] (0x0100). The field is mapped to data and has an associated
FieldRVA record. The flag is set by the metadata emission API when the respective
FieldRVA record is emitted. See the section “Mapped Fields” later in this chapter.

In the field declaration, the type of the field (<type> in the previous syntax formula) is the
ILAsm notation of the appropriate single encoded type, which together with the calling con-
vention forms the field’s signature. If you forgot what a field signature looks like, see Chapter 8.

CHAPTER 9 ■ FIELDS AND DATA CONSTANTS 167

Ch09_6463_CMP3 7/26/06 6:13 PM Page 167

The name of the field (<name> in the previous syntax formula), also included in the
declaration, can be a simple name or a composite (dotted) name. ILAsm v1.0 and v1.1 did
not allow composite field names, although one could always cheat and put a composite name
in single quotation marks, turning it into a simple name.

Examples of field declarations include the following:

.field public static marshal(int) int32 I

.field family string S

.field private int32& pJ // ERROR! ByRef in field signature!

Referencing a Field
Field references in ILAsm have the following notation:

<field_ref> ::= <type>[<class_ref>::]< name>

where <class_ref>—as you know from Chapter 7—is defined as follows:

<class_ref> ::= [<resolution_scope>]<full_type_name>

where

<resolution_scope> ::= [<assembly_ref_alias>]
| [.module <module_ref_name>]

For instance, this example uses the IL instruction ldfld, which loads the field value on the
stack:

ldfld int32 [.module Another.dll]Foo.Bar::idx

When it is not possible to infer unambiguously from the context whether the referenced
member is a field or a method, <field_ref> is preceded by the keyword field. Note that the
keyword does not contain a leading dot. The following example uses the IL instruction
ldtoken, which loads an item’s runtime handle on the stack:

ldtoken field int32 [.module Another.dll]Foo.Bar::idx

The field references reside in the MemberRef metadata table, which has associated token
type 0x0A000000. A record of this table has only three entries:

• Class (coded token of type MemberRefParent). This entry references the TypeRef or
ModuleRef table. Method references, residing in the same table, can have their Class
entries referencing the Method and TypeSpec tables as well.

• Name (offset in the #Strings stream).

• Signature (offset in the #Blob stream).

Instance and Static Fields
Instance fields are created every time a type instance is created, and they belong to the type
instance. Static fields, which are shared by all instances of the type, are created when the type
is loaded. Some of the static fields (literal and mapped fields) are never allocated. The loader
simply notes where the mapped fields reside and addresses these locations whenever the

CHAPTER 9 ■ FIELDS AND DATA CONSTANTS168

Ch09_6463_CMP3 7/26/06 6:13 PM Page 168

fields are to be addressed. And all the references to the literal fields are replaced with the
constants at compile time by the high-level compilers (the IL assembler does not do that,
leaving it to the programmer).

A field signature contains no indication of whether the field is static or instance. But since
the loader keeps separate books for instance fields and for two out of three kinds of static
fields—not for literal static fields—the kind of referenced field is easily discerned from the
field’s token. When a field token is found in the IL stream, the JIT compiler does not have to
dive into the metadata, retrieve the record, and check the field’s flags; by that time, all the
fields have been accounted for and duly classified by the loader.

IL has two sets of instructions for field loading and storing. The instructions for instance
fields are ldfld, ldflda, and stfld; those for static fields are ldsfld, ldsflda, and stsfld. An
attempt to use a static field instruction with an instance field would result in a JIT compilation
failure. The inverse combination would work, but it requires loading the instance pointer on
the stack, which is, of course, completely redundant for a static field. The good thing about the
possibility of using instance field instructions for static fields is that it allows for accessing
both static and instance fields in the same way.

Default Values
Default values reside in the Constant metadata table. Three kinds of metadata items can have
a default value assigned and therefore can reference the Constant table: fields, method param-
eters, and properties. A record of the Constant table has three entries:

• Type (unsigned 1-byte integer). The type of the constant—one of the ELEMENT_TYPE_*
codes. (See Chapter 8.)

• Parent (coded token of type HasConstant). A reference to the owner of the constant—a
record in the Field, Property, or Param table.

• Value (offset in the #Blob stream). A constant value blob.

The current implementation of the common language runtime and ILAsm allows the con-
stant types described in Table 9-1. (As usual, I’ve dropped the ELEMENT_TYPE_ part of the name.)

Table 9-1. Constant Types

Constant Type ILAsm Notation Comments

I1 int8 Signed 1-byte integer.

I2 int16 Signed 2-byte integer.

I4 int32 Signed 4-byte integer.

I8 int64 Signed 8-byte integer.

R4 float32 4-byte floating point.

R8 float64 8-byte floating point.

CHAR char 2-byte Unicode character.

BOOLEAN bool 1-byte Boolean, true = 1, false = 0.

STRING <quoted_string>, bytearray Unicode string.

CLASS nullref Null object reference. The value of the constant
of this type must be a 4-byte integer containing 0.

CHAPTER 9 ■ FIELDS AND DATA CONSTANTS 169

Ch09_6463_CMP3 7/26/06 6:13 PM Page 169

The ILAsm syntax for defining the default value of a field is as follows:

<field_def_const> ::= .field <flags> <type> <name>
= <const_type> [(<value>)]

The value in parentheses is mandatory for all constant types except nullref. For example:

.field public int32 i = int32(123)

.field public static literal bool b = bool(true)

.field private float32 f = float32(1.2345)

.field public static int16 ii = int16(0xFFE0)

.field public object o = nullref

Defining integer and Boolean constants—not to mention nullref—is pretty straightfor-
ward, but floating-point constants and strings can present some difficulties.

Floating-point numbers have special cases, such as positive infinity, negative infinity, and
not-a-number (NAN), that cannot be presented textually in simple floating-point format. In
these special cases, the floating-point constants can alternatively be represented as integer
values with a matching byte count. The integer values are not converted to floating-point
values; instead, they represent an exact bit image of the floating-point values (in IEEE-754
floating-point format used by the CLR). For example:

.field public float32 fPosInf = float32(0x7F800000)

.field public float32 fNegInf = float32(0xFF800000)

.field public float32 fNAN = float32(0xFFC00000)

Like all other constants, string constants are stored in the #Blob stream. In this regard,
they differ from user-defined strings, which are stored in the #US stream. What both kinds of
strings have in common is that they are supposed to be Unicode (UTF-16). I say “supposed
to be” because the only Unicode-specific restrictions imposed on these strings are that their
sizes are reported in Unicode characters and that their byte counts must be even. Otherwise,
these strings are simply binary objects and might or might not contain invalid Unicode
characters.

Notice that the type of the constant does not need to match the type of the item to which
this constant is assigned—in this case, the type of the field. That is, the match is not required
by the CLR, which cares nothing about the constants: the constants are provided for compil-
ers’ information only, and the high-level compilers, having encountered a reference to a
constant in the source code, emit explicit instructions to assign respective values to fields or
parameters.

In ILAsm, a string constant can be defined either as a composite quoted string or as a byte
array:

.field public static string str1 = "Isn't" + " it " + "marvelous!"

.field public static string str2 = bytearray(00 01 FF FE 1A 00 00)

When a string constant is defined as a simple or composite quoted string, this string is
converted to Unicode before being stored in the #Blob stream. In the case of a bytearray defi-
nition, the specified byte sequence is stored “as is” and padded with one 0 byte if necessary to
make the byte count even. In the example shown here, the default value for the str2 field will
be padded to bring the byte count to eight (four Unicode characters). And if the bytes speci-
fied in the bytearray are invalid Unicode characters, it will surely be discovered when we try to
print the string, but not before.

CHAPTER 9 ■ FIELDS AND DATA CONSTANTS170

Ch09_6463_CMP3 7/26/06 6:13 PM Page 170

Assigning default values to fields (and parameters) seems to be such a compelling tech-
nique that you might wonder why we did not employ it in the simple sample discussed in
Chapter 1. Really, defining the default values is a great way to initialize fields—right? Wrong.
Here’s a tricky question. Suppose that we define a member field as follows:

.field public static int32 ii = int32(12345)

What will the value of the field be when the class is loaded? Correct answer: 0. Why?
Default values specified in the Constant table are not used by the loader to initialize the items
to which they are assigned. If you want to initialize a field to its default value, you must explic-
itly call the respective Reflection method to retrieve the value from metadata and then store
this value in the field. This doesn’t sound too nice, and I think that the CLR could probably do
a better job with field initialization—and with literal fields as well.

Let me remind you once again that literal fields are not true fields. They are not laid out by
the loader, and they cannot be directly accessed from IL. From the point of view of metadata,
however, literal fields are nevertheless valid fields having valid tokens, which allow the con-
stant values corresponding to these fields to be retrieved by Reflection methods. The common
language runtime does not provide an implicit means of accessing the Constant table, which
is a pity. It would certainly be much nicer if the JIT compiler would compile the ldsfld
instruction into the retrieval of the respective constant value, instead of failing, when this
instruction is applied to a literal field. But such are the facts of life, and I am afraid we cannot
do anything about it at the moment.

Given this situation, literal fields without associated Constant records are legal from the
loader’s point of view, but they are utterly meaningless. They serve no purpose except to
inflate the Field metadata table.

But how do the compilers handle literal fields? If every time a constant from an enumera-
tion—represented, as we know, by a literal field—was used, the compiler emitted a call to the
Reflection API to get this constant value, then one could imagine where it would leave the per-
formance. Most compilers are smarter than that and resolve the literal fields at compile time,
replacing references to literal fields with explicit constant values of these fields so that the lit-
eral fields never come into play at run time.

ILAsm, following common language runtime functionality to the letter, allows the defini-
tion of the Constant metadata but does nothing about the symbol-to-value resolution at
compile time. From the point of view of ILAsm and the runtime, the enumeration types are
real, as distinctive types, but the symbolic constants listed in the enumerations are not. You
can reference an enum, but you can never reference its literal fields.

Mapped Fields
It is possible to provide unconditional initialization for static fields by mapping the fields to
data defined in the PE file and setting this data to the initializing values. The syntax for map-
ping a field to data in ILAsm is as follows:

<mapped_field_decl> ::= .field <flags> <type> <name> at <data_label>

Here’s an example:

.field public static int64 ii at data_ii

CHAPTER 9 ■ FIELDS AND DATA CONSTANTS 171

Ch09_6463_CMP3 7/26/06 6:13 PM Page 171

The nonterminal symbol <data_label> is a simple name labeling the data segment to
which the field is mapped. The ILAsm compiler allows a field to be mapped either to the
“normal” data section (.sdata) or to the thread local storage (.tls), depending on the data
declaration to which the field mapping refers. A field can be mapped only to data residing
in the same module as the field declaration. (For information about data declaration, see the
following section, “Data Constants Declaration.”)

Mapping a field results in emitting a record into the FieldRVA table, which contains two
entries:

• RVA (4-byte unsigned integer). The relative virtual address of the data to which the field
is mapped.

• Field (RID to the Field table). The index of the Field record being mapped.

Two or more fields can be mapped to the same location, but each field can be mapped
to one location only. Duplicate FieldRVA records with the same Field values and different
RVA values are therefore considered invalid metadata. The loader is not particular about dupli-
cate FieldRVA records, however; it simply uses the first one available for the field and ignores
the rest.

The field mapping technique has some catches. The first catch (well, not much of a catch,
actually) is that, obviously, only static fields can be mapped. Even if we could map instance
fields, each instance would be mapped to the same physical memory, making the fields de
facto static—shared by all instances—anyway. Mapping instance fields is considered invalid
metadata, but it has no serious consequences for the loader—if a field is not static, the loader
does not even check to see whether the field is mapped. The only real effect of mapping
instance fields is a bloated FieldRVA table. The IL assembler treats mapping of an instance
field as an error and produces an error message.

The second catch is to an extent a derivative from the first catch: the mapped static fields
are “the most static of them all.” When multiple application domains are sharing the same
process (as in the case of ASP.NET, for example) and several application domains are sharing a
loaded assembly, the mapped fields of this assembly are shared by all application domains,
unlike the “normal” static fields, which are individual per application domain.

The third catch is that a field cannot be mapped if its type contains object references
(objects or arrays). The data sections are out of the garbage collector’s reach, so the validity of
object references placed in the data sections cannot be guaranteed. If the loader finds object
references in a mapped field type, it throws a TypeLoad exception and aborts the loading, even
if the code is run in full-trust mode from a local drive and all security-related checks are dis-
abled. The loader checks for the presence of object references on all levels of the field type—
in other words, it checks the types of all the fields that make up the type, checks the types of
fields that make up those types, and so on.

The fourth catch is that in the verifiable code a field cannot be mapped if its type (value
type, of course) contains nonpublic instance fields. The reasoning behind this limitation is
that if we map a field with a type containing nonpublic members, we can map another field
of some all-public type to the same location and, through this second mapping, get unlimited
access to nonpublic member fields of the first type. The loader checks for the presence of non-
public members on all levels of the mapped field type and throws a TypeLoad exception if it

CHAPTER 9 ■ FIELDS AND DATA CONSTANTS172

Ch09_6463_CMP3 7/26/06 6:13 PM Page 172

finds such members. This check, unlike the check for object references, is performed only
when code verification is required; it is disabled when the code is run from the local drive in
full-trust mode.

Note, however, that a mapped field itself can be declared nonpublic without ill conse-
quences. This is based on the simple assumption that if developers decide to overlap their
own nonpublic field and thus defy the accessibility control mechanism of the common lan-
guage runtime object model, they probably know what they are doing.

The last catch worth mentioning is that the initialization data is provided “as is,” exactly
as it is defined in the PE file. And if you run the code on a platform other than the one on
which the PE file was created, you can face some unpleasant consequences. As a trivial exam-
ple, suppose you map an int32 field to data containing bytes 0xAA, 0xBB, 0xCC, and 0xDD. On
a little endian platform (for instance, an Intel platform), the field is initialized to 0xDDCCBBAA,
while on a big endian platform…well, you get the picture.

All these catches do not preclude the compilers from using field mapping for initialization.
Version 2.0 of the IL assembler provides a means of mapping the fields onto an explicitly

specified memory address. In this case, the <data label> name must have the form @<RVA in
decimal format>. This technique can hardly be recommended for general use because of the
obvious hazards associated with it (you usually don’t know the target RVA before the program
has been compiled), but in certain limited cases (when you do know the RVA beforehand) it
can be useful. Consider, for example, the following declaration:

.field public static int16 NTHeaderMagic at @152

Data Constants Declaration
A data constant declaration in ILAsm has the following syntax:

<data_decl> ::= .data [tls] [<data_label> =] <data_items>

where <data_label> is a simple name, unique within the module

<data_items> ::= { <data_item> [, <data_item>*] } | <data_item>

and where

<data_item> ::= <data_type> [(<value>)] [[<count>]]

Data constants are emitted to the .sdata section or the .tls section, depending on the
presence of the tls keyword, in the same sequence in which they were declared in the source
code. The unlabeled data declarations can be used for padding between the labeled data dec-
larations and probably for nothing else, since without a label it’s impossible to map a field to
this data. Unlabeled—or, more precisely, unreferenced—data might not survive round-tripping
(disassembly-reassembly) because the IL disassembler outputs only referenced data.

The nonterminal symbol <data_type> specifies the data type. (See Table 9-2.) The data
type is used by the IL assembler exclusively for identifying the size and byte layout of <value>
(in order to emit the data correctly) and is not emitted as any part of metadata or the data
itself. Having no way to know what the type was intended to be when the data was emitted,
the IL disassembler always uses the most generic form, a byte array, for data representation.

CHAPTER 9 ■ FIELDS AND DATA CONSTANTS 173

Ch09_6463_CMP3 7/26/06 6:13 PM Page 173

Table 9-2. Types Defined for Data Constants

Data Type Size Value Comments

float32 4 bytes Floating point, If an integer value is used, it is converted to
single precision floating point. If the value overflows float32,

the ILAsm compiler issues a warning.

float64 8 bytes Floating point, If an integer value is used, it is converted to
double precision floating point.

int64 8 bytes 8-byte signed integer

int32 4 bytes 4-byte signed integer If the value overflows int32, the ILAsm
compiler issues a warning.

int16 2 bytes 2-byte signed integer If the value overflows int16, the ILAsm
compiler issues a warning.

int8 1 byte 1-byte signed integer If the value overflows int8, the ILAsm
compiler issues a warning.

bytearray var Sequence of two-digit The value cannot be omitted because it
hexadecimal numbers, defines the size. The repetition parameter
without the 0x prefix ([<count>]) cannot be used.

char* var Composite quoted string The value cannot be omitted because it
defines the size. The repetition parameter
([<count>]) cannot be used. The string is
converted to Unicode before being emitted
to data.

& pointer size Another data label Data on data; the data containing the value
of the unmanaged pointer—the virtual
address—of another named data segment.
The value cannot be omitted, and the
repetition parameter ([<count>]) cannot be
used. The referenced data segment must
be declared before being referenced in a
data-on-data declaration. Using data on
data results in the emission of additional
relocations, which makes the module
unverifiable and platform dependent.

If <value> is not specified, the data is initialized to a value with all bits set to zeros. Thus, it
is still “initialized data” in terms of the PE file structure—meaning that this data is part of the
PE file disk image.

The optional <count> in square brackets indicates the repetition count of the data item.
Here are some examples:

.data tls T_01 = int32(1234)
// 4 bytes in .tls section, value 0x000004D2
.data tls int32
// unnamed 4 bytes padding in .tls section, value doesn't matter
.data D_01 = int32(1234)[32] // 32 4-byte integers in .sdata section,

// Each equal to 0x000004D2
.data D_02 = char*("Hello world!") // Unicode string in .sdata section

CHAPTER 9 ■ FIELDS AND DATA CONSTANTS174

Ch09_6463_CMP3 7/26/06 6:13 PM Page 174

Explicit Layouts and Union Declaration
Although instance fields cannot be mapped to data, it is possible to specify the positioning of
these fields directly. As you might remember from Chapter 7, a class or a value type can have
an explicit flag—a special flag indicating that the metadata contains an exact recipe for the
loader regarding the layout of this class. This information is kept in the FieldLayout metadata
table, whose records contain these two entries:

• OffSet (4-byte unsigned integer). The relative offset of the field in the class layout (not
an RVA) or the field’s ordinal in case of sequential layout. The offset is relative to the
start of the class instance’s data.

• Field (RID to the Field table). The index of the field for which the offset is specified.

In ILAsm, the field offset is specified by putting the offset value in square brackets imme-
diately after the .field keyword, as shown here:

.class public value sealed explicit MyStruct
{

.field [0] public int32 ii

.field [4] public float64 dd

.field [12] public bool bb
}

Only instance fields can have offsets specified. Since static fields are not part of the class
instance layout, specifying explicit offsets for them is meaningless and is considered a meta-
data error. If an offset is specified for a static field, the loader behaves the same way it does
with mapped instance fields: if the field is static, the loader does not check to see whether the
field has an offset specified. Consequently, FieldLayout records referencing the static fields are
nothing more than a waste of memory.

In a class that has an explicit layout, all the instance fields must have specified offsets. If
one of the instance fields does not have an associated FieldLayout record, the loader throws
a TypeLoad exception and aborts the loading. Obviously, a field can have only one offset, so
duplicate FieldLayout records that have the same Field entry are illegal. This is not checked
at run time because this metadata invalidity is not critical: the loader takes the first available
FieldLayout record for the current field and ignores any duplicates. It’s worth remembering,
though, that while supplying wrong metadata doesn’t always lead to aborted program, it
almost certainly leads to unexpected (by the programmer) behavior of the application.

The placement of object references (classes, arrays) is subject to a general limitation: the
fields of object reference types must be aligned on pointer size—either 4 or 8 bytes, depending
on the platform:

.class public value sealed explicit MyStruct
{

.field [0] public int16 ii

.field [2] public string str //Illegal on 32-bit and 64-bit

.field [6] public int16 jj

.field [8] public int32 kk

.field [12] public object oo //Illegal on 64-bit platform

.field [16] public int32[] iArr //Legal on both platforms
}

CHAPTER 9 ■ FIELDS AND DATA CONSTANTS 175

Ch09_6463_CMP3 7/26/06 6:13 PM Page 175

This alignment requirement may cause platform dependence, unless you decide to
always align the fields of object reference types on 8 bytes, which would suit both 32-bit and
64-bit platforms.

Value types with an explicit layout containing object references must have a total size
equal to a multiple of the pointer size. The reason is pretty obvious: imagine what happens if
you declare an array of such value types.

Explicit layout is a standard way to implement unions in IL. By explicitly specifying field
offsets, you can make fields overlap however you want. Let’s suppose, for example, that you
want to treat a 4-byte unsigned integer as such, as a pair of 2-byte words, or as 4 bytes. In C++
notation, the respective constructs look like this:

union MultiDword {
DWORD dw;
union {

struct {
WORD w1;
WORD w2;

};
struct {

BYTE b1;
BYTE b2;
BYTE b3;
BYTE b4;

};
};

};

In ILAsm, the same union will be written like so:

.class public value sealed explicit MultiDword
{

.field [0] public uint32 dw

.field [0] public uint16 w1

.field [2] public uint16 w2

.field [0] public uint8 b1

.field [1] public uint8 b2

.field [2] public uint8 b3

.field [3] public uint8 b4
}

The only limitation imposed on the explicit-layout unions is that if the overlapping fields
contain object references, these object references must not overlap with any other field:

.class public value sealed explicit StrAndIndex
{

.field [0] public string Str // Reference, size 4 bytes
// on 32-bit platform

CHAPTER 9 ■ FIELDS AND DATA CONSTANTS176

Ch09_6463_CMP3 7/26/06 6:13 PM Page 176

.field [4] public uint32 Index
}
.class public value sealed explicit MyUnion
{

.field [0] public valuetype StrAndIndex str_and_index

.field [0] public uint64 whole_thing // Illegal!

.field [0] public string str // Illegal!

.field [2] public uint32 half_and_half // Illegal!

.field [4] public uint32 index // Legal, object reference
// not overlapped

}

Such “unionizing” of the object references would provide the means for directly modify-
ing these references, which could thoroughly disrupt the functioning of the garbage collector.
The loader checks explicit layouts for object reference overlap; if any is found, it throws a
TypeLoad exception and aborts the loading.

This rule has an interesting exception, though: the object references can be overlapped with
other object references (only full overlapping is allowed; partial overlapping is forbidden). This
looks to me like a gaping hole in the type safety. On the other hand, this overlapping is allowed
only in full-trust mode, and in full-trust mode you can do even worse things (run native unman-
aged code, for example).

A field can also have an associated FieldLayout record if the type that owns this field has a
sequential layout. In this case, the OffSet entry of the FieldLayout record holds a field ordinal
rather than an offset. The fields belonging to a sequential-layout class needn’t have associated
FieldLayout records, but if one of the class’s fields has such an associated record, all the rest
must have one too. The ILAsm syntax for field declaration in types with sequential layout is
similar to the case of the explicit layout, except the integer value in square brackets represents
the field’s ordinal rather than the offset:

.class public value sealed sequential OneTwoThreeFour
{

.field [0] public uint8 one

.field [1] public uint8 two

.field [2] public uint8 three

.field [3] public uint8 four
}

Global Fields
Fields declared outside the scope of any class are known as global fields. They don’t belong to
a class but instead belong to the module in which they are declared. A module is represented
by a special TypeDef record with RID=1 under the name <Module>, so all the formalities that
govern how field records are identified by reference from their parent TypeDef records are
observed.

Global fields must be static. Since only one instance of the module exists when the assem-
bly is loaded and because it is impossible to create alternative instances of the module, this
limitation seems obvious.

CHAPTER 9 ■ FIELDS AND DATA CONSTANTS 177

Ch09_6463_CMP3 7/26/06 6:13 PM Page 177

Global fields can have public, private, or privatescope accessibility flags—at least that’s
what the metadata validity rules say. As you saw in Chapter 1, however, a global item (a field or
a method) can have any accessibility flag, and the loader interprets this flag only as assembly,
private, or privatescope. The public, assembly, and famorassem flags are all interpreted as
assembly, while the family, famandassem, and private flags are all interpreted as private. The
global fields cannot be accessed from outside the assembly, so they don’t have true public
accessibility. And as no type can be derived from <Module>, the question about family-related
accessibility is moot.

Global fields can be accessed from anywhere within the module, regardless of their declared
accessibility. In this regard, the classes that are declared within a module and use the global
fields have the same access rights as if they were nested in the module. The metadata contains
no indications of such nesting, of course.

A reference to a global field declared in the same module has no <class_ref>:: part:

<global_field_ref> ::= [field] <field_type> <field_name>

The keyword field is used in particular cases when the nature of the reference cannot be
inferred from the context, for example in the ldtoken instruction.

A reference to a global field declared in a different module of the assembly also lacks the
class name but has resolution scope:

<global_field_ref> ::= [field] [.module <mod_name>]::<field_ name>

The following are two examples of such declarations:

ldsfld int32 globalInt
// field globalInt from this module
ldtoken field int32 [.module supporting.dll]::globalInt
// globalInt from other module

Since the global fields are static, we cannot explicitly specify their layout except by
mapping them to data. Thus, our 4-2-1-byte union MultiDword would look like this if we
implemented it with global fields:

.field public static uint32 dw at D_00

.field public static uint16 w1 at D_00

.field public static uint16 w2 at D_02

.field public static uint8 b1 at D_00

.field public static uint8 b2 at D_01

.field public static uint8 b3 at D_02

.field public static uint8 b4 at D_03

.data D_00 = int8(0)

.data D_01 = int8(0)

.data D_02 = int8(0)

.data D_03 = int8(0)

...
ldc.i1.1
stsfld uint8 b3 // Set value of third byte

Fortunately, we don’t have to do that every time we need a global union. Instead, we can
declare the value type MultiDword exactly as before and then declare a global field of this type:

CHAPTER 9 ■ FIELDS AND DATA CONSTANTS178

Ch09_6463_CMP3 7/26/06 6:13 PM Page 178

.field public static valuetype MultiDword multi_dword

...
ldc.i1.1
ldsflda valuetype MultiDword multi_dword
// Load reference to the field
// As instance of MultiDword
stfld uint8 MultiDword::b3 // Set value of third byte

Constructors vs. Data Constants
You’ve already taken a look at field mapping as a technique of field initialization, and I’ve listed
the drawbacks and limitations of this technique. Field mapping has this distinct “unmanaged”
scent about it, but the compilers routinely use it for field initialization nevertheless. Is there a
way to get the fields initialized without mapping them? Yes, there is.

The common language runtime object model provides two special methods, the instance
constructor (.ctor) and the class constructor (.cctor), a.k.a. the type initializer. We’re getting
ahead of ourselves a bit here; Chapter 10 discusses methods in general and constructors in
particular, so I won’t concentrate on the details here. For now, all we need to know about .ctor
and .cctor is that .ctor is executed when a new instance of a type is created, and .cctor is
executed after the type is loaded and before any one of the type members is accessed. The
class constructors are static and can deal with static members of the type only, so we have a
perfect setup for field initialization: .cctors take care of static fields, and .ctors take care of
instance fields.

But how about global fields? The good news is that we can define a global .cctor. Field
initialization by constructors is vastly superior to field mapping, with none of its limitations,
as described earlier in the section “Mapped Fields.” The catch? Unfortunately, initialization by
constructors must be executed at run time, burning processor cycles, whereas mapped fields
simply “are there” after the module has been loaded. The mapped fields don’t require addi-
tional operations for the initialization. Whether this price is worth the increased freedom and
safety regarding field initialization depends on the concrete situation, but in general I think it
is.

Let me illustrate the point by building an alternative enumeration. Since all the values of
an enumeration are stored in literal fields, which are inaccessible from IL directly, the compil-
ers replace references to these fields with the respective values at compile time. We can use a
very simple enum as a model:

.class public enum sealed MagicNumber
{

.field private specialname int32 value__

.field public static literal valuetype
MagicNumber MagicOne = int32(123)

.field public static literal valuetype
MagicNumber MagicTwo = int32(456)

.field public static literal valuetype
MagicNumber MagicThree = int32(789)

}

CHAPTER 9 ■ FIELDS AND DATA CONSTANTS 179

Ch09_6463_CMP3 7/26/06 6:13 PM Page 179

Let’s suppose that our code uses the symbolic constants of an enumeration declared in a
third-party assembly. We compile the code, and the symbolic constants are replaced with their
values. Forget for a moment that we must have that third-party assembly available at compile
time. But we will need to recompile the code every time the enumeration changes, and we
have no control over the enumeration because it is defined outside our jurisdiction. In
another scenario, when we declare an enumeration in one of our own modules, we must
recompile all the modules that reference this enumeration once it is changed.

Let’s suppose also—for the sake of an argument—that we don’t like this situation, so we
decide to devise our own enumeration:

.class public value sealed MagicNumber
{

.field public int32 _value_ // Specialname value__ is
// reserved for enums

.field public static valuetype MagicNumber MagicOne at D_00

.field public static valuetype MagicNumber MagicTwo at D_04

.field public static valuetype MagicNumber MagicThree at D_08
}
.data D_00 = int32(123)
.data D_04 = int32(456)
.data D_08 = int32(789)

This solution looks good, except in the platform-independence department. We con-
quered the recompilation problem and can at last address the symbolic constants by their
symbols (names), through field access instructions. This approach presents a problem,
though: the fields representing the symbolic constants can be written to.

Let’s try again with a class constructor; refer to the sample MyEnums.il on the Apress
Web site:

.class public value sealed MagicNumber
{

.field private int32 _value_ // Specialname value__ is
// reserved for enums

.field public static initonly valuetype MagicNumber MagicOne

.field public static initonly valuetype MagicNumber MagicTwo

.field public static initonly valuetype MagicNumber MagicThree

.method public static specialname void .cctor()
{

ldsflda valuetype MagicNumber MagicNumber::MagicOne
ldc.i4 123
stfld int32 MagicNumber::_value_

ldsflda valuetype MagicNumber MagicNumber::MagicTwo
ldc.i4 456
stfld int32 MagicNumber::_value_

ldsflda valuetype MagicNumber MagicNumber::MagicThree
ldc.i4 789
stfld int32 MagicNumber::_value_

CHAPTER 9 ■ FIELDS AND DATA CONSTANTS180

Ch09_6463_CMP3 7/26/06 6:13 PM Page 180

ret
}
.method public int32 ToBase()
{

ldarg.0 // Instance pointer
ldfld int32 MagicNumber::_value_
ret

}
}

This seems to solve all the remaining problems. The initonly flag on the static fields pro-
tects them from being overwritten outside the class constructor. Embedding the numeric
values of symbolic constants in the IL stream takes care of platform dependence. We are not
mapping the fields, so we are free to use any type as the underlying type of our enumeration.
And, of course, declaring the _value_ field private protects it from having arbitrary values
assigned to it.

Alas, this solution does have a hidden problem: the initonly flag does not provide full
protection against arbitrary field overwriting. The operations ldflda (ldsflda) and stfld
(stsfld) on initonly fields are unverifiable outside the constructors. They’re unverifiable
but not impossible, which means that if the verification procedures are disabled, the initonly
fields can be overwritten in any method.

It looks like my attempts to devise a “nice” equivalent of an enum failed. If you have any
fresh ideas in this regard, let me know.

Summary of Metadata Validity Rules
The field-related metadata tables are Field, FieldLayout, FieldRVA, FieldMarshal, Constant,
and MemberRef. The records of these tables have the following entries:

• The Field table contains the Flags, Name, and Signature entries.

• The FieldLayout table contains the OffSet and Field entries.

• The FieldRVA table contains the RVA and Field entries.

• The FieldMarshal table contains the Parent and NativeType (native signature) entries.

• The Constant table contains the Type, Parent, and Value entries.

• The MemberRef table contains the Class, Name, and Signature entries.

Field Table Validity Rules

• The Flags entry can have only those bits set that are defined in the enumeration
CorFieldAttrEnum in CorHdr.h (validity mask 0xB7F7).

• [run time] The accessibility flag (mask 0x0007) must be one of the following:
privatescope, private, famandassem, assembly, family, famorassem, or public.

• The literal and initonly flags are mutually exclusive.

CHAPTER 9 ■ FIELDS AND DATA CONSTANTS 181

Ch09_6463_CMP3 7/26/06 6:13 PM Page 181

• If the literal flag is set, the static flag must also be set.

• If the rtspecialname flag is set, the specialname flag must also be set.

• [run time] If the flag 0x1000 (fdHasFieldMarshal) is set, the FieldMarshal table must
contain a record referencing this Field record, and vice versa.

• [run time] If the flag 0x8000 (fdHasDefault) is set, the Constant table must contain a
record referencing this Field record, and vice versa.

• [run time] If the flag 0x0100 (fdHasFieldRVA) is set, the FieldRVA table must contain a
record referencing this Field record, and vice versa.

• [run time] Global fields, owned by the TypeDef <Module>, must have the static flag set.

• [run time] The Name entry must hold a valid reference to the #Strings stream, indexing a
nonempty string no more than 1,023 bytes long in UTF-8 encoding.

• [run time] The Signature entry must hold a valid reference to the #Blob stream, index-
ing a valid field signature. Chapter 8 discusses validity rules for field signatures.

• No duplicate records—attributed to the same TypeDef and having the same Name and
Signature values—can exist unless the accessibility flag is privatescope.

• Fields attributed to enumerations must comply with additional rules, described in
Chapter 7.

FieldLayout Table Validity Rules
• The Field entry must hold a valid reference to the Field table.

• The field referenced in the Field entry must not have the static flag set.

• [run time] If the referenced field is an object reference type and belongs to TypeDefs
that have an explicit layout, the OffSet entry must hold a value that is a multiple of
sizeof(void*).

• [run time] If the referenced field is an object reference type and belongs to TypeDefs
that have an explicit layout, this field must not overlap with any other field.

FieldRVA Table Validity Rules
• [run time] The RVA entry must hold a valid nonzero relative virtual address.

• The Field entry must hold a valid index to the Field table.

• No duplicate records referencing the same field can exist.

CHAPTER 9 ■ FIELDS AND DATA CONSTANTS182

Ch09_6463_CMP3 7/26/06 6:13 PM Page 182

FieldMarshal Table Validity Rules
• The Parent entry must hold a valid reference to the Field or Param table.

• No duplicate records that contain the same Parent value can exist.

• The NativeType entry must hold a valid reference to the #Blob stream, indexing a valid
marshaling signature. Chapter 7 describes native types that make up the marshaling
signatures.

Constant Table Validity Rules
• The Type entry must hold a valid ELEMENT_TYPE_* code, one of the following: bool, char,

a signed or unsigned integer of 1 to 8 bytes, string, or object.

• The Value entry must hold a valid offset in the #Blob stream.

• The Parent entry must hold a valid reference to the Field, Property, or Param table.

• No duplicate records that contain the same Parent value can exist.

MemberRef Table Validity Rules
• [run time] The Class entry must hold a valid reference to one of the following tables:

TypeRef, TypeSpec, ModuleRef, MemberRef, or Method.

• [run time] The Class entry of a MemberRef record referencing a field must hold a valid
reference to the TypeRef or ModuleRef table.

• [run time] The Name entry must hold a valid offset in the #Strings stream, indexing a
nonempty string no longer than 1,023 bytes in UTF-8 encoding.

• [run time] The name defined by the Name entry must not match the common language
runtime reserved names _Deleted* or _VtblGap*.

• [run time] The Signature entry must hold a valid offset in the #Blob stream, indexing a
valid MemberRef signature. Chapter 7 discusses validity rules for MemberRef signatures.

• No duplicate records with all three entries matching can exist.

• An item (field or method) that a MemberRef record references must not have the accessi-
bility flag privatescope.

CHAPTER 9 ■ FIELDS AND DATA CONSTANTS 183

Ch09_6463_CMP3 7/26/06 6:13 PM Page 183

Ch09_6463_CMP3 7/26/06 6:13 PM Page 184

Methods

Methods are the third and last leg of the tripod supporting the entire concept of managed
programming, the first two being types and fields. When it comes down to execution, types,
fields, and methods are the central players, with the rest of the metadata simply providing
additional information about this triad.

Method items can appear in three contexts: a method definition, a method reference (for
example, when a method is called), and a method implementation (when a method provides
the implementation of another method).

Method Metadata
Similar to field-related metadata, method-related metadata involves definition-specific and
reference-specific metadata. In addition, method-related metadata includes the method
implementation, discussed later in this chapter, as well as method semantics, method inter-
operability, and security metadata. (Chapter 15 describes method semantics, Chapter 18
examines method interoperability, and Chapter 17 includes method security.) Figure 10-1
shows the metadata tables involved in the method definition and referencing implementation
and their mutual dependencies. To avoid cluttering the illustration, I have not included meta-
data tables involved in the other three method-related aspects: method semantics, method
interoperability, and security metadata. The MethodSpec table, introduced in version 2.0 of
the CLR, is used to define the generic method instantiations. This table will be discussed in
Chapter 12.

185

C H A P T E R 1 0

■ ■ ■

Ch10_6463_CMP3 5/3/06 9:33 AM Page 185

Figure 10-1. Metadata tables related to method definition and referencing

Method Table Record Entries
The central table for method definition is the Method table, which has the associated token
type mdtMethodDef (0x06000000). A record in the Method table has six entries:

• RVA (4-byte unsigned integer). The RVA of the method body in the module. The method
body consists of the header, IL code, and managed exception handling descriptors. The
RVA must point to a read-only section of the PE file.

• ImplFlags (2-byte unsigned integer). Implementation binary flags indicating the
specifics of the method implementation.

• Flags (2-byte unsigned integer). Binary flags indicating the method’s accessibility and
other characteristics.

• Name (offset in the #Strings stream). The name of the method (not including the name
of the class to which the method belongs). This entry must index a string of nonzero
length no longer than 1,023 bytes in UTF-8 encoding.

• Signature (offset in the #Blob stream). The method signature. This entry must index a
blob of nonzero size and must comply with the method definition signature rules
described in Chapter 8.

Method
Table

TypeDef
Table

Param
Table

Constant
Table

MemberRef
Table

FieldMarshal
Table

TypeRef
Table

ModuleRef
Table

TypeSpec
Table

MethodImpl
Table

MethodSpec
Table

CHAPTER 10 ■ METHODS186

Ch10_6463_CMP3 5/3/06 9:33 AM Page 186

• ParamList (RID in the Param table). The record index of the start of the parameter list
belonging to this method. The end of the parameter list is defined by the start of the
next method’s parameter list or by the end of the Param table (the same pattern as in
method and field lists belonging to a TypeDef).

As in the case of field definition, Method records carry no information regarding the
parent class of the method. Instead, the Method table is referenced in the MethodList entries
of TypeDef records, indexing the start of Method records belonging to each particular TypeDef.

The RVA entry must be 0 or must hold a valid relative virtual address pointing to a read-
only section of the image file. If the RVA value points to a read/write section, the loader will
reject the method unless the application is run from a local drive with all security checks
disabled. If the RVA entry holds 0, it means this method is implemented somewhere else
(imported from a COM library, platform-invoked from an unmanaged DLL, or simply imple-
mented by descendants of the class owning this method). All these cases are described by
special combinations of method flags and implementation flags.

The ILAsm syntax for method definition is the following:

<method_def> ::=
.method <flags> <call_conv> <ret_type> <name>(<arg_list>) < impl> {

<method_body> }

where <call_conv>, <ret_type>, and <arg_list> are the method calling convention, the return
type, and the argument list defining the method signature.

For example:

.method public instance void set_X(int32 value) cil managed
{
ldarg.0
ldarg.1
stfld int32 .this::x
ret

}

Method Flags
The nonterminal symbol <flags> identifies the method binary flags, which are defined in the
enumeration CorMethodAttr in CorHdr.h and are described in the following list:

• Accessibility flags (mask 0x0007), which are similar to the accessibility flags of fields:

• privatescope (0x0000). This is the default accessibility. A private scope method is
exempt from the requirement of having a unique triad of owner, name, and signa-
ture and hence must always be referenced by a MethodDef token and never by a
MemberRef token. The privatescope methods are accessible (callable) from any-
where within current module.

• private (0x0001). The method is accessible from its owner class and from classes
nested in the method’s owner.

CHAPTER 10 ■ METHODS 187

Ch10_6463_CMP3 5/3/06 9:33 AM Page 187

• famandassem (0x0002). The method is accessible from types belonging to the
owner’s family—that is, the owner itself and all its descendants—defined in the
current assembly.

• assembly (0x0003). The method is accessible from types defined in the current
assembly.

• family (0x0004). The method is accessible from the owner’s family.

• famorassem (0x0005). The method is accessible from the owner’s family and from
all types defined in the current assembly.

• public (0x0006). The method is accessible from any type.

• Contract flags (mask 0x00F0):

• static (0x0010). The method is static, shared by all instances of the type.

• final (0x0020). The method cannot be overridden. This flag must be paired with
the virtual flag; otherwise, it is meaningless and is ignored.

• virtual (0x0040). The method is virtual. This flag cannot be paired with the static
flag.

• hidebysig (0x0080). The method hides all methods of the parent classes that have a
matching signature and name (as opposed to having a matching name only). This
flag is ignored by the common language runtime and is provided for the use of
compilers only. The IL assembler recognizes this flag but does not use it.

• Virtual method table (v-table) control flags (mask 0x0300):

• newslot (0x0100). A new slot is created in the class’s v-table for this virtual method
so that it does not override the virtual method of the same name and signature this
class inherited from its base class. This flag can be used only in conjunction with
the virtual flag.

• strict (0x0200). This virtual method can be overridden only if it is accessible from
the overriding class. This flag can be used only in conjunction with the virtual flag.

• Implementation flags (mask 0x2C08):

• abstract (0x0400). The method is abstract; no implementation is provided. This
method must be overridden by the nonabstract descendants of the class owning
the abstract method. Any class owning an abstract method must have its own
abstract flag set. The RVA entry of an abstract method record must be 0.

• specialname (0x0800). The method is special in some way, as described by the
name.

• pinvokeimpl(<pinvoke_spec>) (0x2000). The method has an unmanaged imple-
mentation and is called through the platform invocation mechanism P/Invoke,
discussed in Chapter 18. <pinvoke_spec> in parentheses defines the implementation

CHAPTER 10 ■ METHODS188

Ch10_6463_CMP3 5/3/06 9:33 AM Page 188

map, which is a record in the ImplMap metadata table specifying the unmanaged
DLL exporting the method and the method’s unmanaged calling convention. If the
DLL name in <pinvoke_spec> is provided, the method’s RVA must be 0, because
the method is implemented externally. If the DLL name is not specified or the
<pinvoke_spec> itself is not provided—that is, the parentheses are empty—the
defined method is a local P/Invoke, implemented in unmanaged native code
embedded in the current PE file; in this case, its RVA must not be 0 and must
point to the location, in the current PE file, of the native method’s body.

• unmanagedexp (0x0008). The managed method is exposed as an unmanaged export.
This flag is not currently used by the common language runtime.

• Reserved flags (cannot be set explicitly; mask 0xD000):

• rtspecialname (0x1000). The method has a special name reserved for the internal use
of the runtime. Four method names are reserved: .ctor for instance constructors,
.cctor for class constructors, _VtblGap* for v-table placeholders, and _Deleted*
for methods marked for deletion but not actually removed from metadata. The
keyword rtspecialname is ignored by the IL assembler and is displayed by the IL
disassembler for informational purposes only. This flag must be accompanied by
a specialname flag.

• [no ILAsm keyword] (0x4000). The method either has an associated
DeclSecurity metadata record that holds security details concerning
access to the method or has the associated custom attribute
System.Security.SuppressUnmanagedCodeSecurityAttribute.

• reqsecobj (0x8000). This method calls another method containing
security code, so it requires an additional stack slot for a security object.
This flag is formally under the Reserved mask, so it cannot be set explicitly.
Setting this flag requires emitting the pseudocustom attribute
System.Security.DynamicSecurityMethodAttribute. When the IL assembler
encounters the keyword reqsecobj, it does exactly that: emits the pseudocustom
attribute and thus sets this “reserved” flag. Since anybody can set this flag by emit-
ting the pseudocustom attribute, I wonder what the reason was for putting this
flag under the Reserved mask. This flag could just as well been left as assignable.

I’ve used the word implementation here and there rather extensively; perhaps some
clarification is in order, to avoid confusion. First, note that method implementation in the
sense of one method providing the implementation for another is discussed later in this
chapter. Implementation-specific flags of a method are not related to that topic; rather, they
indicate the features of implementation of the current method. Second, a Method record con-
tains two binary flag entries: Flags and ImplFlags (implementation flags). It so happens that
part of Flags (mask 0x2C08) is also implementation related. That’s a lot of implementations.
Thus far, I have been talking about the implementation part of Flags. For information about
ImplFlags, see “Method Implementation Flags” later in this chapter.

CHAPTER 10 ■ METHODS 189

Ch10_6463_CMP3 5/3/06 9:33 AM Page 189

Method Name
A method name in ILAsm either is a simple name or (in version 2.0 only) a dotted name or is
one of the two keywords .ctor or .cctor. As you already know, .ctor is the reserved name for
instance constructors, while .cctor is reserved for class constructors, or type initializers. In
ILAsm, .ctor and .cctor are keywords, so they should not be single quoted as any other irreg-
ular simple name.

The general requirements for a method name are straightforward: the name must contain
1 to 1,023 bytes in UTF-8 encoding plus a zero terminator, and it should not match one of the
four reserved method names—unless you really mean it. If you give a method one of these
reserved names, the common language runtime treats the method according to this name.

Method Implementation Flags
The nonterminal symbol <impl> in the method definition form denotes the implementation
flags of the method (the ImplFlags entry of a Method record). The implementation flags are
defined in the enumeration CorMethodImpl in CorHdr.h and are described in the following list:

• Code type (mask 0x0003):

• cil (0x0000). The default. The method is implemented in common intermediate
language (CIL, a.k.a. IL or MSIL). Yes, I realize that CIL does not sound like a good
abbreviation for those familiar with the innards of the Visual C++ compiler,
because in that area it traditionally means “C intermediate language.” You can use
the il keyword if you don’t like cil. Or don’t use either of them; it is a default flag
anyway.

• native (0x0001). The method is implemented in native platform-specific code.

• optil (0x0002). The method is implemented in optimized IL. The optimized IL is
not supported in existing releases of the common language runtime, so this flag
should not be set.

• runtime (0x0003). The method implementation is automatically generated by the
runtime itself. Only certain methods from the base class library (Mscorlib.dll) carry
this flag. If this flag is set, the RVA of the method must be 0.

• Code management (mask 0x0004):

• managed (0x0000). The default. The code is managed. In the existing releases of the
runtime, this flag cannot be paired with the native flag.

• unmanaged (0x0004). The code is unmanaged. This flag must be paired with the
native flag.

• Implementation and interoperability (mask 0x10D8):

• forwardref (0x0010). The method is defined, but the IL code of the method is not
supplied. This flag is used primarily in edit-and-continue scenarios and in man-
aged object files, produced by the Visual C++ compiler. This flag should not be set
for any of the methods in a managed PE file.

CHAPTER 10 ■ METHODS190

Ch10_6463_CMP3 5/3/06 9:33 AM Page 190

• preservesig (0x0080). The method signature must not be mangled during the
interoperation with classic COM code, which is discussed in Chapter 18.

• internalcall (0x1000). Reserved for internal use. This flag indicates that the method
is internal to the runtime and must be called in a special way. If this flag is set, the
RVA of the method must be 0.

• synchronized (0x0020). Instruct the JIT compiler to automatically insert code to
take a lock on entry to the method and release the lock on exit from the method.
When an instance synchronized method is called, the lock is taken on the instance
reference (the this parameter). For static methods, the lock is taken on the
System.Type object associated with the class of the method. Methods belonging
to value types cannot have this flag set.

• noinlining (0x0008). The runtime is not allowed to inline the method—that is, to
replace the method call with explicit insertion of the method’s IL code.

Take a look at the examples shown here:

.method public static int32 Diff(int32,int32) cil managed
{

...
}
.method public void .ctor() runtime managed {}

Method Parameters
Method parameters reside in the Param metadata table, whose records have three entries:

• Flags (2-byte unsigned integer). Binary flags characterizing the parameter.

• Sequence (2-byte unsigned integer). The sequence number of the parameter, with
0 corresponding to the method return.

• Name (offset in the #Strings stream). The name of the parameter, which can be zero length
(because the parameter name is used solely for Reflection and is not involved in any reso-
lution by name). For the method return, it must be zero length.

Parameter flags are defined in the enumeration CorParamAttr in CorHdr.h and are
described in the following list:

• Input/output flags (mask 0x0013):

• in (0x0001). Input parameter.

• out (0x0002). Output parameter.

• opt (0x0010). Optional parameter.

• Reserved flags (cannot be set explicitly; mask 0xF000):

• [no ILAsm keyword] (0x1000). The parameter has an associated Constant record.
The flag is set by the metadata emission API when the respective Constant record is
emitted.

CHAPTER 10 ■ METHODS 191

Ch10_6463_CMP3 5/3/06 9:33 AM Page 191

• marshal(<native_type>) (0x2000). The parameter has an associated FieldMarshal
record specifying how the parameter must be marshaled when consumed by
unmanaged code.

To describe the ILAsm syntax of parameter definition, let me remind you of the method
definition form:

<method_def> ::=
.method <flags> <call_conv> <ret_type> <name>(<arg_list>) < impl> {

<method_body> }

where

<ret_type> ::= <type> [marshal(<native_type>)];
<arg_list> ::= [<arg> [,<arg>*]];
<arg> ::= [[<in_out_flag>]*] <type> [marshal(<native_typ e>)]

[<p_name>];
<in_out_flag> ::= in | out | opt

Obviously, <p_name> is the name of the parameter, which, if provided, must be a simple
name.

Here is an example of parameter definitions:

.method public static int32 marshal(int) Diff(
[in] int32 marshal(int) First,
[in] int32 marshal(int) Second)
{

...
}

The syntax just shown takes care of all the entries of a Param record (Flags, Sequence, Name)
and, if needed, those of the associated FieldMarshal record (Parent, NativeType). To set the
default values for the parameters, which are records in the Constant table, we need to add
parameter specifications within the method scope:

<param_const_def> ::= .param [<sequence>] = <const_type> [(<value>)]

<sequence> is the parameter’s sequence number. This number should not be 0, because
a 0 sequence number corresponds to the return type, and a “default return value” does not
make sense. <const_type> and <value> are the same as for field default value definitions,
described in Chapter 9. For example:

.method public static int32 marshal(int) Diff(
[in] int32 marshal(int) First,
[opt] int32 marshal(int) Second)
{

.param [2] = int32(0)

...
}

CHAPTER 10 ■ METHODS192

Ch10_6463_CMP3 5/3/06 9:33 AM Page 192

According to the common language runtime metadata model, it is not necessary to emit a
Param record for each return or argument of a method. Rather, it must be done only if we want
to specify the name, flags, marshaling, or default value. The IL assembler emits Param records
for all arguments unconditionally and for a method return only if marshaling is specified. The
name, flags, and default value are not applicable to a method return.

Referencing the Methods
Method references, like field references, translate into either MethodDef tokens or MemberRef
tokens. As a rule, a reference to a locally defined method translates into a MethodDef token.
However, even a locally defined method can be represented by a MemberRef token; and in cer-
tain cases, such as references to vararg methods, it must be represented by a MemberRef token.

The ILAsm syntax for method referencing is as follows:

<method_ref> ::=
[method] <call_conv> <ret_type> <class_ref>::<name>(<arg_list>)

The method keyword, with no leading dot, is used in the following two cases in which the
kind of metadata item being referenced is not clear from the context:

• When a method is referenced as an argument of the ldtoken instruction

• When a method is referenced in an explicit specification of a custom attribute’s owner
(see Chapter 16 for more information)

The same rules apply to the use of the field keyword in field references. The method key-
word is used in one additional context: when specifying a function pointer as a type of field,
variable, or parameter (see Chapter 8). That case, however, involves not a method reference
but a signature definition.

Flags, implementation flags, and parameter-related information (names, marshaling, and
so on) are not specified in a method reference. As you know, a MemberRef record holds only the
member parent’s token, name, and signature—the three elements needed to identify a method
or a field unambiguously. Here are a few examples of method references:

call instance void Foo::Bar(int32,int32)
ldtoken method instance void Foo::Bar(int32,int32)

In the case of method references, the nonterminal symbol <class_ref> can be a TypeDef,
TypeRef, TypeSpec, or ModuleRef:

call instance void Foo::Bar(int32,int32) // TypeDef
call instance void [OtherAssembly]Foo::Bar(int32,int32) // TypeRef
call instance void class Foo[]::Bar(int32,int32) // TypeSpec
call void [.module Other.dll]::Bar(int32,int32) // ModuleRef

CHAPTER 10 ■ METHODS 193

Ch10_6463_CMP3 5/3/06 9:33 AM Page 193

Method Implementation Metadata
Method implementations represent specific metadata describing method overriding, in which
one virtual method’s implementation is substituted for another virtual method’s implementa-
tion. The method implementation metadata is held in the MethodImpl table, which has the
following structure:

• Class (RID in the TypeDef table). The record index of the TypeDef implementing a
method—in other words, replacing the method’s implementation with that of another
method.

• MethodBody (coded token of type MethodDefOrRef). A token indexing a record in the
Method table that corresponds to the implementing method—that is, to the method
whose implementation substitutes for another method’s implementation. A coded
token of this type can point to the MemberRef table as well, but this is illegal in the
existing releases of the common language runtime. The method indexed by MethodBody
must be virtual. In the existing releases of the runtime, the method indexed by Method-
Body must belong to the class indexed by the Class entry.

• MethodDecl (coded token of type MethodDefOrRef). A token indexing a record in the
Method table or the MemberRef table that corresponds to the implemented method—
that is, to the method whose implementation is being replaced by another method’s
implementation. The method indexed by MethodDecl must be virtual.

Static, Instance, Virtual Methods
We can classify methods in many ways: global methods vs. member methods, variable argu-
ment lists vs. fixed argument lists, and so on. Global and vararg methods are discussed in later
sections. In this section, we’ll focus on static vs. instance methods. Take a look at Figure 10-2.

Static methods are shared by all instances of a type. They don’t require an instance refer-
ence (this) and cannot access instance members unless the instance reference is provided
explicitly. When a type is loaded, static methods are placed in a separate typewide table.

The signature of a static method is exactly as it is specified, with the first specified argu-
ment being number 0:

.method public static void Bar(int32 i, float32 r)
{

ldarg.0 // Load int32 i on stack
...

}

Instance methods are instance specific and have the this instance reference as an
unlisted first (number 0) argument of the signature:

.method public instance void Bar(int32 i, float32 r)
{

ldarg.0 // Load instance pointer on stack
ldarg.1 // Load int32 i on stack
...

}

CHAPTER 10 ■ METHODS194

Ch10_6463_CMP3 5/3/06 9:33 AM Page 194

Figure 10-2. Method classification

■Note Be careful about the use of the keyword instance in specifying the method calling convention.
When a method is defined, its flags—including the static flag—are explicitly specified. Because of this,
at definition time it’s not necessary to specify the instance calling convention—it can be inferred from the
presence or absence of the static flag. When a method is referenced, however, its flags are not specified,
so in this case the instance keyword must be specified explicitly for instance methods; otherwise, the
referenced method is presumed static. This creates a seeming contradiction: a method when declared is
instance by default (no static flag specified), and the same method when referenced is static by
default (no instance specified). But static is a flag and instance is a calling convention, so in fact
we’re dealing with two different default options here.

Instance methods are divided into virtual and nonvirtual methods, identified by the
presence or absence of the virtual flag. The virtual methods of a class can be called through
the virtual method table (v-table) of this class, which adds a level of indirection to implement
so-called late binding. Method calling through the v-table (virtual dispatch) is performed by
a special virtual call instruction (callvirt). Virtual methods can be overridden in derived
classes by these classes’ own virtual methods of the same signature and name—and even of

Static

Methods

Instance

Nonvirtual Virtual

Special Methods

Class
Constructors

Instance
Constructors Finalizers

CHAPTER 10 ■ METHODS 195

Ch10_6463_CMP3 5/3/06 9:33 AM Page 195

a different name, although such overriding requires an explicit declaration, as described later
in this chapter. Virtual methods can be abstract or might offer some implementation.

If you have a nonvirtual method declared in a class, it does not mean you can’t declare
another nonvirtual method with the same name and signature in a class derived from the first
one. You can, but it will be a different method, having nothing to do with the method declared
in the base class. Such a method in the derived class hides the respective method in the base
class, but the hidden method can still be called if you explicitly specify the owning class.

If you do the same with virtual methods, however, the method declared in the derived
class actually overrides (replaces in the v-table) the method declared in the base class. This is
true unless, of course, you specify the newslot flag on the overriding method, in which case
the overriding method will occupy a new entry of the v-table and hence will not really be over-
riding anything.

To illustrate this point, take a look at the following code from the sample file Virt_not.il on
the Apress Web site:

.class public A
{

.method public specialname void .ctor()
{

ldarg.0
call instance void [mscorlib]System.Object::.ctor()
ret

}
.method public void Foo()
{

ldstr "A::Foo"
call void [mscorlib]System.Console::WriteLine(string)
ret

}
.method public virtual void Bar()
{

ldstr "A::Bar"
call void [mscorlib]System.Console::WriteLine(string)
ret

}
.method public virtual void Baz()
{

ldstr "A::Baz"
call void [mscorlib]System.Console::WriteLine(string)
ret

}

}

CHAPTER 10 ■ METHODS196

Ch10_6463_CMP3 5/3/06 9:33 AM Page 196

.class public B extends A
{

.method public specialname void .ctor()
{

ldarg.0
call instance void A::.ctor()
ret

}
.method public void Foo()
{

ldstr "B::Foo"
call void [mscorlib]System.Console::WriteLine(string)
ret

}
.method public virtual void Bar()
{

ldstr "B::Bar"
call void [mscorlib]System.Console::WriteLine(string)
ret

}
.method public virtual newslot void Baz()
{

ldstr "B::Baz"
call void [mscorlib]System.Console::WriteLine(string)
ret

}
}

.method public static void Exec()
{

.entrypoint
newobj instance void B::.ctor() // Create instance of derived class
castclass class A // Cast it to base class

dup // We need 3 instance pointers
dup // On stack for 3 calls

call instance void A::Foo()
callvirt instance void A::Bar()
callvirt instance void A::Baz()
ret

}

CHAPTER 10 ■ METHODS 197

Ch10_6463_CMP3 5/3/06 9:33 AM Page 197

If we compile and run the sample, we’ll receive this output:

A:Foo
B:Bar
A:Baz

The method A::Foo is nonvirtual; hence, declaring B::Foo does not affect A::Foo in any
way. So when we cast B to A and call A::Foo, B::Foo does not enter the picture—it’s a different
method.

The A::Bar method is virtual, as is B::Bar, so when we create an instance of B, B::Bar
replaces A::Bar in the v-table. Casting B to A after that does not change anything: B::Bar is
sitting in the v-table of the class instance, and A::Bar is gone. Hence, when we call A::Bar
using virtual dispatch, the “usurper” B::Bar is called instead.

Both the A::Baz and B::Baz methods are virtual, but B::Baz is marked newslot. Thus,
instead of replacing A::Baz in the v-table, B::Baz takes a new entry and peacefully coexists
with A::Baz. Since A::Baz is still present in the v-table of the instance, the situation is practi-
cally (oops, almost wrote “virtually”; I should watch it; we can’t have puns in such a serious
book) identical to the situation with A::Foo and B::Foo, except that the calls are done through
the v-table. The Visual Basic .NET compiler likes this concept and uses it rather extensively.

If we don’t want a virtual method to be overridden in the class descendants, we can
mark it with the final flag. If you try to override a final method, the loader fails and throws
a TypeLoad exception.

Instances of unboxed value types don’t have pointers to v-tables. It is perfectly legal to
declare the virtual methods as members of a value type, but these methods can be virtually
called only from a boxed instance of the value type:

.class public value XXX
{

.method public void YYY()
{

...
}
.method public virtual void ZZZ()
{

...
}

}
.method public static void Exec()
{

.entrypoint

.locals init(valuetype XXX xxx) // Variable xxx is an
// Instance of XXX

ldloca xxx // Load managed ptr to xxx
call instance void XXX::YYY() // Legal: access to value

// type member
// by managed ptr

ldloca xxx

CHAPTER 10 ■ METHODS198

Ch10_6463_CMP3 5/3/06 9:33 AM Page 198

callvirt instance void XXX::ZZZ() // Illegal: virtual call of
// methods possible only
// by object reference.

ldloca xxx
call instance void XXX::ZZZ() // Legal: nonvirtual call,

// access to value type member
// by managed ptr.

ldloc xxx // Load instance of XXX.
box valuetype XXX // Convert it to object reference.
callvirt instance void XXX::ZZZ() // Legal
...

}

Explicit Method Overriding
Thus far, I’ve discussed implicit virtual method overriding—that is, a virtual method defined
in a class overriding another virtual method of the same name and signature, defined in the
class’s ancestor or an interface the class implements. But implicit overriding covers only the
simplest case.

Consider the following problem: class A implements interfaces IX and IY, and each of
these interfaces defines its own virtual method int32 Foo(int32). It is known that these meth-
ods are different and must be implemented separately. Implicit overriding can’t help in this
situation. It’s time to use the MethodImpl metadata table.

The MethodImpl metadata table contains descriptors of explicit method overrides. An
explicit override states which method overrides which other method. To define an explicit
override in ILAsm, the following directive is used within the scope of the overriding method:

.override <class_ref>::<method_name>

The signature of the method need not be specified because the signature of the overriding
method must match the signature of the overridden method, and the signature of the overrid-
ing method is known: it’s the signature of the current method. For example:

.class public interface IX {
.method public abstract virtual int32 Foo(int32) { }

}
.class public interface IY {
.method public abstract virtual int32 Foo(int32) { }
}
.class public A implements IX,IY {

.method public virtual int32 XFoo(int32) {

.override IX::Foo

...
}
.method public virtual int32 YFoo(int32) {
.override IY::Foo
...
}

}

CHAPTER 10 ■ METHODS 199

Ch10_6463_CMP3 5/3/06 9:33 AM Page 199

Not surprisingly, we can’t override the same method with two different methods within
the same class: there is only one slot in the v-table to be overridden. However, we can use the
same method to override several virtual methods. Let’s have a look at the following code from
the sample file Override.il on the Apress Web site:

.class public A
{

.method public specialname void .ctor()
{

ldarg.0
call instance void [mscorlib]System.Object::.ctor()
ret

}
.method public void Foo()
{

ldstr "A::Foo"
call void [mscorlib]System.Console::WriteLine(string)
ret

}
.method public virtual void Bar()
{

ldstr "A::Bar"
call void [mscorlib]System.Console::WriteLine(string)
ret

}
.method public virtual void Baz()
{

ldstr "A::Baz"
call void [mscorlib]System.Console::WriteLine(string)
ret

}
}
.class public B extends A
{

.method public specialname void .ctor()
{

ldarg.0
call instance void A::.ctor()
ret

}
.method public void Foo()
{

ldstr "B::Foo"
call void [mscorlib]System.Console::WriteLine(string)
ret

}
.method public virtual void BarBaz()
{

CHAPTER 10 ■ METHODS200

Ch10_6463_CMP3 5/3/06 9:33 AM Page 200

.override A::Bar

.override A::Baz
ldstr "B::BarBaz"
call void [mscorlib]System.Console::WriteLine(string)
ret

}
}
...
.method public static void Exec()
{

.entrypoint
newobj instance void B::.ctor() // Create instance of derived class
castclass class A // Cast it to base class

dup // We need 3 instance pointers
dup // On stack for 3 calls

call instance void A::Foo()
callvirt instance void A::Bar()
callvirt instance void A::Baz()
...
ret

}

The output of this code demonstrates that the method B::BarBaz overrides both A::Bar
and A::Baz:

A::Foo
B::BarBaz
B::BarBaz

Virtual method overriding, both implicit and explicit, is propagated to the descendants of
the overriding class, unless the descendants themselves override those methods. The second
half of the sample file Override.il demonstrates this:

...

.class public C extends B
{

.method public specialname void .ctor()
{

ldarg.0
call instance void B::.ctor()
ret

}
// No overrides; let's inherit everything from B

}
.method public static void Exec()
{

CHAPTER 10 ■ METHODS 201

Ch10_6463_CMP3 5/3/06 9:33 AM Page 201

.entrypoint

...
newobj instance void C::.ctor() // Create instance of derived class
castclass class A // Cast it to "grandparent"

dup // We need 3 instance pointers
dup // On stack for 3 calls

call instance void A::Foo()
callvirt instance void A::Bar()
callvirt instance void A::Baz()
ret

}

The output is the same, which proves that class C has inherited the overridden methods
from class B:

A::Foo
B::BarBaz
B::BarBaz

ILAsm supports an extended form of the explicit override directive, placed within the
class scope:

.override <class_ref>::<method_name> with <method_ref>

For example, the overriding effect would be the same in the preceding code if we defined
class B like so:

.class public B extends A
{

.method public specialname void .ctor()
{

ldarg.0
call instance void A::.ctor()
ret

}
.method public void Foo()
{

ldstr "B::Foo"
call void [mscorlib]System.Console::WriteLine(string)
ret

}
.method public virtual void BarBaz()
{

ldstr "B::BarBaz"
call void [mscorlib]System.Console::WriteLine(string)
ret

CHAPTER 10 ■ METHODS202

Ch10_6463_CMP3 5/3/06 9:33 AM Page 202

}
.override A::Bar with instance void B::BarBaz()
.override A::Baz with instance void B::BarBaz()

}

In the extended form of the .override directive, the overriding method must be fully
specified because the extended form is used within the overriding class scope, not within
the overriding method scope.

To tell the truth, the extended form of the .override directive is not very useful in the
existing versions of the common language runtime because the overriding methods are
restricted to those of the overriding class. Under these circumstances, the short form of the
directive is sufficient, and I doubt that anyone would want to use the more cumbersome
extended form. But I’ve noticed that in this industry the circumstances tend to change.

One more note: you probably have noticed that the sample Override.il looks tedious
and repetitive: similar constructors of the classes and multiple calls to [mscorlib]System.
Console::WriteLine(string). As was discussed in Chapter 3, version 2.0 of the ILAsm allows
you to streamline the programming by means of defines, typedefs, and the special keywords
.this, .base, and .nester. Have a look at the sample Override_v2.il on the Apress Web site:

#define DEFLT_CTOR
".method public specialname void .ctor()

{ldarg.0; call instance void .base::.ctor(); ret}"

.typedef method void [mscorlib]System.Console::WriteLine(string) as PrintString

.class public A
{

DEFLT_CTOR
.method public void Foo()
{

ldstr "A::Foo"
call PrintString
ret

}
.method public virtual void Bar()
{

ldstr "A::Bar"
call PrintString
ret

}
.method public virtual void Baz()
{

ldstr "A::Baz"
call PrintString
ret

}

}

CHAPTER 10 ■ METHODS 203

Ch10_6463_CMP3 5/3/06 9:33 AM Page 203

.class public B extends A
{

DEFLT_CTOR
.method public void Foo()
{

ldstr "B::Foo"
call PrintString
ret

}
.method public virtual void BarBaz()
{

.override .base::Bar

.override .base::Baz
ldstr "B::BarBaz"
call PrintString
ret

}
}
...
.class public C extends B
{

DEFLT_CTOR
// No overrides; let's inherit everything from B

}
.method public static void Exec()
{

.entrypoint

...
newobj instance void C::.ctor() // Create instance of derived class
castclass class A // Cast it to "grandparent"

dup // We need 3 instance pointers
dup // On stack for 3 calls

call instance void A::Foo()
callvirt instance void A::Bar()
callvirt instance void A::Baz()
ret

}

CHAPTER 10 ■ METHODS204

Ch10_6463_CMP3 5/3/06 9:33 AM Page 204

Not only is sample Override_v2.il easier to read and to type, it is compiled faster (only
marginally; you will not notice any effect compiling such small sample). I will leave it to you
to modify the Virt_not.il sample in the same way. Just don’t forget that these syntax enhance-
ments are specific to version 2.0 and are not supported in versions 1.0 and 1.1.

Method Overriding and Accessibility
Can I override an inaccessible virtual method? For example, if class A has private virtual
method Foo, can I derive class B from A and override Foo? I know I cannot call A::Foo, but I
don’t want to call it; I want to override it and call my own B::Foo. Can I?

“Yes you can,” says C++, “exactly because you are not calling the private method Foo of A.”
“No you cannot,” says C#, “because you have no access whatsoever to the private method

Foo of A.”
“Eh?” says Visual Basic…. No, no, I’m just kidding, of course. Actually, VB sides with C#.
So what should the common language runtime say in this regard? As usual, it finds some

common ground that is acceptable to all languages.
There is the special flag strict (0x0200), which controls the “overridability” of a virtual

method. If the method is declared strict virtual, then it can be overridden only by classes
that have access to it. A private strict virtual method, for example, cannot be overridden
in principle, so it just as well might have been marked final.

If the flag strict is not specified, then the method can be overridden without any regard
to its accessibility.

So C# and VB declare their methods strict virtual, C++ declares its methods virtual,
and everyone is happy.

An interesting thing about this situation is that the explicit overrides are always bound to
the accessibility, as if all virtual methods were strict virtual. This creates a regrettable asymme-
try between implicit and explicit overriding.

One more note about overriding and accessibility: you cannot override a virtual method
with a method that has more restricted accessibility. For example, you cannot override a pub-
lic method with a family method, but you can override a family method with a public method.
This rule works for both implicit and explicit overrides. I leave it to you to figure out the rea-
soning behind this rule.

Method Header Attributes
The RVA value (if it is nonzero) of a Method record points to the method body. The managed
method body consists of a method header, IL code, and an optional managed exception han-
dling (EH) table, as shown in Figure 10-3.

Two types of method headers—fat and tiny—are defined in CorHdr.h. The first two bits
of the header indicate its type: bits 10 stand for the tiny format, and bits 11 stand for the fat
format. Why do we need two bits for a simple dichotomy? Speaking hypothetically, the day
might come when more method header types are introduced.

CHAPTER 10 ■ METHODS 205

Ch10_6463_CMP3 5/3/06 9:33 AM Page 205

A tiny method header is only 1 byte in size, with the first two (least significant) bits holding
the type—10—and the six remaining bits holding the method IL code size in bytes. A method is
given a tiny header if it has neither local variables nor managed exception handling, if it works
fine with the default evaluation stack depth of 8 slots, and if its code size is less than 64 bytes.
A fat header is 12 bytes in size and has the structure described in Table 10-1. The fat headers
must begin at 4-byte boundaries. Figure 10-4 shows the structures of both tiny and fat method
headers.

Figure 10-3. Managed method body structure

Table 10-1. The Fat Header Structure

Entry Size Description

WORD The lower 2 bits hold the fat header type code (0x3); the next 10 bits hold Flags. The
upper 4 bits hold the size of the header in DWORDs and must be set to 3. Currently
used flags are 0x2, which indicates that more sections follow the IL code—that is, an
exception handling table is present—and 0x4, which indicates that local variables
will be initialized to 0 automatically on entry to method.

WORD MaxStack is the maximal evaluation stack depth in slots. Stack size in IL is measured
not in bytes but in slots, with each slot able to accept one item regardless of the
item’s size. The default value is 8 slots, and the stack depth can be set explicitly in
ILAsm by the directive .maxstack <integer> used inside the method scope. Be
careful about trying to economize the method run-time footprint by specifying
.maxstack lower than the default: if the specified stack depth differs from the
default depth, the IL assembler has no choice but to give the method a fat header
even if the method has neither local variables nor exception handling table, and its
code size is less than 64 bytes.

DWORD CodeSize is the size of the IL code in bytes.

DWORD LocalVarSigTok is the token of the local variables signature (token type 0x11000000).
Chapter 8 discusses the structure of the local variables signature. If the method has
no local variables, this entry is set to 0.

Tiny Header

IL Code
(< 64bytes)

Fat Header

IL Code

SEH Table

CHAPTER 10 ■ METHODS206

Ch10_6463_CMP3 5/3/06 9:33 AM Page 206

Figure 10-4. The structures of tiny and fat method headers

Local Variables
Local variables are the typed data items that are declared within the method scope and exist
from the moment the method is called until it returns. ILAsm allows us to assign names to
local variables and reference them by name, but IL instructions address the local variables by
their zero-based ordinals.

When the source code is compiled in debug mode, the local variable names are stored in
the PDB file accompanying the module, and in this case the local variable names might sur-
vive round-tripping. In general, however, these names are not preserved because they, unlike
the names of fields and method parameters, are not part of the metadata.

1 0

Tiny Header

Type
IL Code Size

Fat Header

1 1

* *

Type
Flags

0 0 1 1

Header size

MaxStack

0
8

0

15

015

031

Code Size

031

Local Variables Signature Token

More Sections

Initialize Local Variables

CHAPTER 10 ■ METHODS 207

Ch10_6463_CMP3 5/3/06 9:33 AM Page 207

All the local variables, no matter when they are declared within the method scope, form a
single signature, kept in the StandAloneSig metadata table (token type 0x11000000). The token
referencing respective signature is part of the method header.

Local variables are declared in ILAsm as follows:

.method public void Foo(int32 ii, int32 jj)
{

.locals init (float32 ff, float64 dd, object oo, string ss)

...
}

The init keyword sets the flag 0x4 in the method header, indicating that the JIT compiler
must inject the code initializing all local variables before commencing the method execution.
Initialization means that for all variables of value types, which are allocated upon declaration,
the corresponding memory is zeroed, and all variables of object reference types are set to null.
Code that contains methods without a local variable initialization flag set is deemed unverifi-
able and can be run only with verification disabled.

ILAsm does not require that all local variables be declared in one place; the following is
perfectly legal:

.method public void Foo(int32 ii, int32 jj)
{

.locals init (float32 ff, float64 dd, object oo, string ss)

...
{

.locals (int32 kk, bool bb)

...
}
...
{

.locals (int32 mm, float32 f)

...
}
...

}

In this case, the summary local variables signature will contain the types float32, float64,
object, string, int32, bool, int32, and float32. Repeating init in subsequent local variable
declarations of the same method is not necessary because any one of the .locals init direc-
tives sets the local variable initialization flag.

It’s obvious enough that we have a redundant local variable slot in the composite signa-
ture: by the time we need mm, we don’t need kk any more, so we could reuse the slot and reduce
the composite signature. In ILAsm, we can do that by explicitly specifying the zero-based slot
numbers for local variables:

CHAPTER 10 ■ METHODS208

Ch10_6463_CMP3 5/3/06 9:33 AM Page 208

.method public void Foo(int32 ii, int32 jj)
{

.locals init ([0]float32 ff, [1]float64 dd,
[2]object oo, [3]string ss)

...
{

.locals ([4]int32 kk, [5]bool bb)

...
}
...
{

.locals ([4]int32 mm, [6]float32 f)

...
}
...

}

Could we also reuse slot 5 for variable f? No, because the type of slot 5 is bool, and we
need a slot of type float32 for f. Only the slots holding local variables of the same type and
used within nonoverlapping scopes can be reused.

■Note The number of local variables declared in a method is completely unrelated to the .maxstack
value, which depends only on how many items you might have to load simultaneously for computational
purposes. For example, if you declare 20 local variables, you don’t need to declare .maxstack 20; but if
your method is calling another method that takes 20 arguments, you need to ensure that the stack has
sufficient depth, because you will need at least to load all 20 arguments on the stack to make the call.

The number of local variables for any given method cannot exceed 65535 (0xFFFF), because the local vari-
able ordinals are represented in the CLR by unsigned short integers. The same limitation is imposed on the
number of method parameters (including the return), for the same reason.

Class Constructors
Class constructors, or type initializers, are the methods specific to a type as a whole that run
after the type is loaded and before any of the type’s members are accessed. You’ve already
encountered class constructors in the preceding chapter, which discussed approaches to
static field initialization. That is exactly what class constructors are most often used for: static
field initialization.

CHAPTER 10 ■ METHODS 209

Ch10_6463_CMP3 5/3/06 9:33 AM Page 209

Class constructors are static, have specialname and rtspecialname flags, cannot use the
vararg calling convention, have neither parameters nor a return value (that is, the return type is
void), and have the name .cctor, which in ILAsm is a keyword rather than a name. Because of
this, only one class constructor per type can be declared. Normally, class constructors are never
called from the IL code. If a type has a class constructor, this constructor is executed automati-
cally after the type is loaded. However, a class constructor, like any other static method, can be
called explicitly. As a result of such a call, the global fields of the type are reset to their initial val-
ues. Calling .cctor explicitly does not lead to type reloading.

Class Constructors and the beforefieldinit Flag
The class constructors are executed before any members (static or instance) of the classes are
accessed. Normally, it means that a .cctor is executed right before first access to a static mem-
ber of the class or before the first class instantiation, whichever comes first.

However, if the class has the beforefieldinit flag set (see Chapter 7), the invocation of
.cctor happens on “relaxed” (as it is called in the Ecma International/ISO standard) sched-
ule—the .cctor is supposed to be called any time, at CLR discretion, prior to the first access to
a static field of the class.

In fact, the .cctor invocation schedule in presence of the beforefieldinit flag is anything
but “relaxed”: the .cctor is invoked right when the class is referenced, even if no members of
the class are ever accessed.

Take a look at the following code (sample Cctors.il on the Apress Web site):

.assembly extern mscorlib { auto }

.assembly cctors {}

.module cctors.exe

.typedef [mscorlib]System.Console as TTY

#define DEFLT_CTOR
".method public specialname void .ctor()
{ldarg.0; call instance void .base::.ctor(); ret;}"

.class public Base
{

DEFLT_CTOR
.method public void DoSomething()
{

ldarg.0
pop
ldstr "Base::DoSomething()"
call void TTY::WriteLine(string)
ret

}
}
.class public /*beforefieldinit*/ A extends Base
{

CHAPTER 10 ■ METHODS210

Ch10_6463_CMP3 5/3/06 9:33 AM Page 210

DEFLT_CTOR
.method public static specialname void .cctor()
{

ldstr "A::.cctor()"
call void TTY::WriteLine(string)
ret

}
}
.class public /*beforefieldinit*/ B extends Base
{

DEFLT_CTOR
.method public static specialname void .cctor()
{

ldstr "B::.cctor()"
call void TTY::WriteLine(string)
ret

}
}

.method public static void Exec()
{

.entrypoint

.locals init(class Base b1)

ldstr "Enter string"
call void TTY::WriteLine(string)
call string TTY::ReadLine()
call bool string::IsNullOrEmpty(string)
brtrue L1 // use result of IsNullOrEmpty

// Instantiate class A with .cctor
newobj instance void A::.ctor()
stloc.s b1
br L2

L1:
// Instantiate class B with .cctor
newobj instance void B::.ctor()
stloc.s b1

L2:
// Use the instance
ldloc.s b1
call instance void Base::DoSomething()

ret
}

CHAPTER 10 ■ METHODS 211

Ch10_6463_CMP3 5/3/06 9:33 AM Page 211

This code instantiates either class A or class B, depending on whether you input a non-
empty or empty string. The output shows that the class constructor of respective class is
executed right before the instantiation of the class:

>cctors.exe

Enter string

B::.cctor()
Base::DoSomething()

or

>cctors.exe

Enter string
aaa
A::.cctor()
Base::DoSomething()

But if we uncomment the beforefieldinit flags on declarations of classes A and B and
reassemble the code, the output changes:

>cctors.exe

A::.cctor()
B::.cctor()
Enter string

Base::DoSomething()

As you see, the class constructors of both A and B are executed even before the program
requests the input string, let alone before either class is accessed. It’s a good thing our class
constructors are so harmless—imagine what would happen if the class constructors of A and B
were mutually exclusive in some respect. Besides, the class constructors are very expensive to
run: the instantiation of a class with .cctor takes about 50 times longer than the instantiation
of a class without .cctor, given that in both cases .cctor and .ctor summarily do the same
work.

The moral of the story is this: avoid using the beforefieldinit flag if you want to run only
relevant class constructors. To do so in C#, always explicitly specify static constructors for
classes that have initialized static fields.

Module Constructors
What happens if I declare a type initializer (.cctor) outside any type scope? What type will it
initialize and when?

CHAPTER 10 ■ METHODS212

Ch10_6463_CMP3 5/3/06 9:33 AM Page 212

The answer is simple: as you already know, the global static methods and fields belong to
special type (always the first record in the TypeDef table), usually named <Module> and repre-
senting current managed module (PE file). Thus, the globally declared type initializer is the
module initializer, or module constructor. It is executed upon module load, before any con-
tents of this module are accessed. In this regard, a module constructor is functionally similar
to DllMain, called with reason DLL_PROCESS_ATTACH. The most common use of the module con-
structors is the initialization of global fields, but far it be from me to stifle your imagination.

Instance Constructors
Instance constructors, unlike class constructors, are specific to an instance of a type and are
used to initialize both static and instance fields of the type. Functionally, instance construc-
tors in IL are a direct analog of C++ constructors. Instance constructors can have parameters
but must return void, must be instance, must have specialname and rtspecialname flags, and
must have the name .ctor, which is an ILAsm keyword. In the existing releases of the com-
mon language runtime, instance constructors are not allowed to be virtual. A type can have
multiple instance constructors, but they must have different parameter lists because the name
(.ctor) and the return type (void) are fixed.

Note that it is impossible to instantiate a reference type if it does not have an instance
constructor. As an exercise, devise a technique to instantiate a reference type that has only
private instance constructor(s). If you don’t feel like exercising right now, take a look at sample
Privatector.il on the Apress Web site.

Usually, instance constructors are called during the execution of the newobj instruction,
when a new type instance is created:

.class public Foo
{

.field private int32 tally

.method public void .ctor(int32 tally_init)
{

ldarg.0 // Load the instance reference
dup // Need two instance references on the stack
call instance void [mscorlib]System.Object::.ctor

// Call the base constructor
ldarg.1 // Load the initializing value tally_init
stfld int32 Foo::tally // this->tally = tally_init;
ret

}
...

}
.method public static void Exec()
{

.entrypoint

.locals init (class Foo foo)
// foo is a null reference at this point
ldc.i4 128 // Put 128 on stack as Foo's constructor argument
newobj instance void Foo::.ctor(int32)

CHAPTER 10 ■ METHODS 213

Ch10_6463_CMP3 5/3/06 9:33 AM Page 213

// Instance of Foo is created
stloc.0 // foo = new Foo(128);
...

}

But, as is the case for class constructors, an instance constructor can be called explicitly.
Calling the instance constructor resets the fields of the type instance and does not create a
new instance. The only problem with calling class or instance constructors explicitly is that
sometimes the constructors include type instantiations, if some of the fields to be initialized
are of object reference type. In this case, additional care should be taken to avoid multiple
type instantiations.

Please note that before calling any instance methods, an instance constructor must call
its parent’s instance constructor. This is called instance initialization, and without it any fur-
ther instance method calls on the created instance of this type are unverifiable. Accessing the
instance fields of an unitialized instance is, however, verifiable.

■Caution Calling the class and instance constructors explicitly, however possible in principle, renders the
code unverifiable. This limitation is imposed on the constructors of the reference types (classes) only and
does not concern those of the value types. The CLR does not execute the instance constructors of value
types when an instance of the value type is created (for example, when a local variable of some value type
is declared), so the only way to invoke a value type instance constructor is to call it explicitly. The only place
where an instance constructor of a reference type can be verifiably called explicitly is within an instance
constructor of the class’s direct descendant.

Constructors of the classes cannot be the arguments of the ldftn instruction. In other words, you can’t
obtain a function pointer to a .ctor or .cctor of a class.

Class and instance constructors are the only methods allowed to set the values of the
static and instance (respectively) fields marked initonly. Methods belonging to some other
class, including .ctor and .cctor, cannot modify the initonly field, even if the field accessi-
bility permits. Subsequent explicit calls to .ctor and .cctor can modify the initonly fields as
well as the first, implicit initializing calls. Modification of initonly fields by methods other
than the type’s constructors renders the code unverifiable.

The value types are not instantiated using the newobj instruction, so an instance con-
structor of a value type (if specified) should be called explicitly by using the call instruction,
even though declaring a variable of a value type creates an instance of this value type.

Interfaces cannot have instance constructors at all; there is no such thing as an interface
instance.

CHAPTER 10 ■ METHODS214

Ch10_6463_CMP3 5/3/06 9:33 AM Page 214

Instance Finalizers
Another special method characteristic of a class instance is a finalizer, which is in many
aspects similar to a C++ destructor. The finalizer must have the following signature:

.method family virtual instance void Finalize()
{

...
}

Unlike instance constructors, which cannot be virtual, instance destructors—sorry, I
mean finalizers—must be virtual. This requirement and the strict limitations imposed on the
finalizer signature and name result from the fact that any particular finalizer is an override of
the virtual method Finalize of the inheritance root of the class system, the [mscorlib]Sys-
tem.Object class, the ultimate ancestor of all classes in the Microsoft .NET universe. To tell the
truth, the Object’s finalizer does exactly nothing. But Object, full of fatherly care, declares this
virtual method anyway, so Object’s descendants could override it, should they desire to do
something meaningful at the inevitable moment of their instances’ demise. And at this sad
moment, the instances of Object’s descendants must have their own finalizers executed,
even if they (instances) are cast to Object. This explains the requirement for the finalizers
to be virtual.

The finalizer is executed by the garbage collection (GC) subsystem of the runtime when
that subsystem decides that a class instance should be disposed of. No one knows exactly
when this happens; the only solid fact is that it occurs after the instance is no longer used
and has become inaccessible—but how soon after is anybody’s guess.

If you prefer to execute the instance’s last will and testament—that is, call the finalizer—
when you think you don’t need the instance any more, you can do exactly that by calling
the finalizer explicitly. But then you should notify the GC subsystem that it does not need
to call the finalizer again when in due time it decides to dispose of the abandoned class
instance. You can do this by calling the .NET Framework class library method
[mscorlib]System.GC::SuppressFinalize, which takes the object (a reference to the instance)
as its sole argument—the instance is still there; you simply called its finalizer but did not
destroy it—and returns void.

If for some reason you change your mind afterward, you can notify the GC subsystem that
the finalizer must be run after all by calling the [mscorlib]System.GC::ReRegisterForFinalize
method with the same signature, void(object). You needn’t fear that the GC subsystem might
destroy your long-suffering instance without finalization before you call ReRegisterForFinalize—
as long as you can still reference this instance, the GC will not touch it. Both methods for
controlling finalization are public and static, so they can be called from anywhere.

CHAPTER 10 ■ METHODS 215

Ch10_6463_CMP3 5/3/06 9:33 AM Page 215

Variable Argument Lists
Encounters with variable argument list (vararg) methods in earlier chapters revealed the
following information:

• The calling convention of these methods is vararg.

• Only mandatory parameters are specified in the vararg method declaration:

.method public static vararg void Print(string Format)
{ ... }

• If and only if optional parameters are specified in a vararg method reference at the call
site, they are preceded by a sentinel—an ellipsis in ILAsm notation—and a comma:

call vararg void Print(string, ..., int32, float32, string)

I’m not sure that requiring the sentinel to appear as an independent comma-separated
argument was a good idea. After all, a sentinel is not a true element type but is a modifier of
the element type immediately following. Nevertheless, such was ILAsm notation in the first
release of the common language runtime, and we had to live with it for a while. Version 2.0 of
ILAsm takes care of this, and the following notations are considered equivalent:

call vararg void Print(string, ..., int32, float32, string)
// works for all versions

call vararg void Print(string, ... int32, float32, string) // works for v2.0 only

The vararg method signature at the call site obviously differs from the signature specified
when the method is defined, because the call site signature carries information about optional
parameters. That’s why vararg methods are always referenced by MemberRef tokens and never
by MethodDef tokens, even if the method is defined in the current module. (In that case, the
MemberRef record corresponding to the vararg call site will have the respective MethodDef as its
parent, which is slightly disturbing, but only at first sight.)

Now let’s see how the vararg methods are implemented. IL offers no specific instructions
for argument list parsing beyond the arglist instruction, which merely creates the argument
list structure. To work with this structure and iterate through the argument list, you need to
work with the .NET Framework class library value type [mscorlib]System.ArgIterator. This
value type should be initialized with the argument list structure, which is an instance of the
value type [mscorlib]System.RuntimeArgumentHandle, returned by the arglist instruction.
ArgIterator offers such useful methods as GetRemainingCount and GetNextArg.

To make a long story short, let’s review the following code snippet from the sample file
Vararg.il on the Apress Web site:

// Compute sum of undefined number of arguments
.method public static vararg unsigned int64

Sum(/* all arguments optional */)
{

.locals init(value class [mscorlib]System.ArgIterator Args,
unsigned int64 Sum,
int32 NumArgs)

ldc.i8 0
stloc Sum

CHAPTER 10 ■ METHODS216

Ch10_6463_CMP3 5/3/06 9:33 AM Page 216

ldloca Args
arglist // Create argument list structure
// Initialize ArgIterator with this structure:
call instance void [mscorlib]System.ArgIterator::.ctor(

valuetype [mscorlib]System.RuntimeArgumentHandle)

// Get the optional argument count:
ldloca Args
call instance int32 System.ArgIterator::GetRemainingCount()
stloc NumArgs

// Main cycle:
LOOP:
ldloc NumArgs
brfalse RETURN // if(NumArgs == 0) goto RETURN;

// Get next argument:
ldloca Args
call instance typedref [mscorlib]System.ArgIterator::GetNextArg()

// Interpret it as unsigned int64:
refanyval [mscorlib]System.UInt64
ldind.u8

// Add it to Sum:
ldloc Sum
add
stloc Sum // Sum += *((int64*)&next_arg)
// Decrease NumArgs and go for next argument:
ldloc NumArgs
ldc.i4.m1
add
stloc NumArgs
br LOOP

RETURN:
ldloc Sum
ret

}

In this code, we did not specify any mandatory arguments and thus took the return value
of GetRemainingCount for the argument count. Actually, GetRemainingCount returns only the
number of optional arguments, which means that if we had specified N mandatory arguments,
the total argument count would have been greater by N.

The GetNextArg method returns a typed reference, typedref, which is cast to a managed
pointer to an 8-byte unsigned integer by the instruction refanyval [mscorlib]System.UInt64.
If the type of the argument cannot be converted to the required type, the JIT compiler throws
an InvalidCast exception. The refanyval instruction is discussed in detail in Chapter 13.

CHAPTER 10 ■ METHODS 217

Ch10_6463_CMP3 5/3/06 9:33 AM Page 217

Method Overloading
High-level languages such as C# and C++ allow method overload on parameters only. This means
you can declare several methods with the same name within the same class only if the parameter
lists of these methods are different. However, you know by now that the methods are uniquely
identified by the triad {name, signature, parent} (let’s forget about privatescope methods for
now) and that the signature of a method includes the calling convention and the return type. The
conclusion we are coming to is…yes! The common language runtime allows you to overload the
methods on the return type and even on the calling convention. And, naturally, so does ILAsm.

Take a look at the following code from sample Overloads.il on the Apress Web site:

#define DEFLT_CTOR
".method public specialname void .ctor()

{ldarg.0; call instance void .base::.ctor(); ret}"

.typedef method void [mscorlib]System.Console::WriteLine(string) as PrintString

.class public A
{

DEFLT_CTOR
.method public void Foo()
{

ldstr "instance void Foo"
call PrintString
ret

}
.method public static void Foo()
{

ldstr "static void Foo"
call PrintString
ret

}
.method public vararg void Foo()
{

ldstr "instance vararg void Foo"
call PrintString
ret

}
.method public static vararg void Foo()
{

ldstr "static vararg void Foo"
call PrintString
ret

}
.method public int32 Foo()
{

ldstr "instance int32 Foo"
call PrintString

CHAPTER 10 ■ METHODS218

Ch10_6463_CMP3 5/3/06 9:33 AM Page 218

ldc.i4.1
ret

}
.method public static int32 Foo()
{

ldstr "static int32 Foo"
call PrintString
ldc.i4.1
ret

}

}
.method public static void Exec()
{

.entrypoint
newobj instance void A::.ctor() // Create instance of A

dup // We need 3 instance pointers
dup // On stack for 3 calls

call instance void A::Foo()
call instance vararg void A::Foo()
call instance int32 A::Foo()
pop
call void A::Foo()
call vararg void A::Foo()
call int32 A::Foo()
pop
ret

}

The output proves that all overloads are successfully recognized by the runtime:

instance void Foo
instance vararg void Foo
instance int32 Foo
static void Foo
static vararg void Foo
static int32 Foo

As you probably deduced, the same principle applies to the fields: the fields can be
overloaded on type, so you can have fields int32 foo and int16 foo in the same class. Unlike
methods, the fields cannot be overloaded on the calling convention, because all field signa-
tures have the same calling convention (IMAGE_CEE_CS_CALLCONV_FIELD).

No high-level language (I know of), including C# and C++, supports method overloading
on return type or field overloading on type. ILAsm does, because in ILAsm the return type of
a method and the type of a field must be explicitly specified when the method or the field is
referenced.

CHAPTER 10 ■ METHODS 219

Ch10_6463_CMP3 5/3/06 9:33 AM Page 219

Let me reformulate the last statement: the CLR supports overloading on return type/field
type and on the method’s calling convention, so ILAsm has to support it also; that’s why in
ILAsm the calling convention and return type must be explicitly specified.

Why don’t C# and C++ support method overloading on return type? Don’t they have
linguistic means to specify the type? Yes, they have and use these means for distinguishing
methods overloaded on parameters. I’m talking about casts. Why can C# or C++ distinguish
which method Foo to call between

int i = Foo((int)j);
int i = Foo((short)j);

but can’t distinguish between

int i = (int)Foo();
int i = (int)(short)Foo();

with the rightmost cast on the method’s return serving as specification of the method’s return
type? I don’t know why.

Global Methods
Global methods, similar to global fields, are defined outside any class scope. Most of the fea-
tures of global fields and global methods are also similar: global methods are all static, and the
accessibility flags for both global fields and methods mean the same.

Of course, one global method worth a special mention is the global class constructor,
.cctor. As the preceding chapter discussed, a global .cctor is the best way to initialize global
fields. The following code snippet from the sample file Gcctor.il on the Apress Web site pro-
vides an example:

.field private static string Hello

.method private static void .cctor()
{

ldstr "Hi there! What's up?"
stsfld string Hello
ret

}
.method public static void Exec()
{

.entrypoint
ldsfld string Hello // Global fields are accessible

// within the module
call void [mscorlib]System.Console::WriteLine(string)
ret

}

CHAPTER 10 ■ METHODS220

Ch10_6463_CMP3 5/3/06 9:33 AM Page 220

Summary of Metadata Validity Rules
Method-related metadata tables discussed in this chapter include the Method, Param,
FieldMarshal, Constant, MemberRef, and MethodImpl tables. The records in these tables
have the following entries:

• The Method table: RVA, ImplFlags, Flags, Name, Signature, and ParamList

• The Param table: Flags, Sequence, and Names

• The FieldMarshal table: Parent and NativeType (native signature)

• The Constant table: Type, Parent, and Value

• The MemberRef table: Class, Name, and Signature

• The MethodImpl table: Class, MethodBody, and MethodDecl

Chapter 9 summarized the validity rules for the FieldMarshal, Constant, and Member
Ref tables. The only point to mention here regarding the MemberRef table is that, unlike
field-referencing MemberRef records, method-referencing records can have the Method
table referenced in the Parent entry. The Method table can be referenced exclusively by
the MemberRef records representing vararg call sites.

Method Table Validity Rules
• The Flags entry can have only those bits set that are defined in the enumeration

CorMethodAttr in CorHdr.h (validity mask 0xFDF7).

• [run time] The accessibility flag (mask 0x0007) must be one of the following:
privatescope, private, famandassem, assembly, family, famorassem, or public.

• The static flag must not be combined with any of the following flags: final, virtual,
newslot, or abstract.

• The pinvokeimpl flag must be paired with the static flag (but not vice versa).

• Methods having privatescope accessibility must not have the virtual, final, newslot,
specialname, or rtspecialname flag set.

• The abstract, newslot, and final flags must be paired with the virtual flag.

• The abstract flag and the implementation flag forwardref are mutually exclusive.

• [run time] If the flag 0x4000 is set, the method must either have an associated
DeclSecurity metadata record that holds security information concerning access
to the method or have the associated custom attribute System.Security.
SuppressUnmanagedCodeSecurityAttribute. The inverse is true as well.

CHAPTER 10 ■ METHODS 221

Ch10_6463_CMP3 5/3/06 9:33 AM Page 221

• [run time] Methods belonging to interfaces must have either the static flag set or the
virtual flag set.

• [run time] Global methods must have the static flag set.

• If the rtspecialname flag is set, the specialname flag must also be set.

• The ImplFlags entry must have only those bits set that are defined in the enumeration
CorMethodImplAttr in CorHdr.h (validity mask 0x10BF).

• The implementation flag forwardref is used only during in-memory edit-and-continue
scenarios and in object files (generated by the MC++ compiler) and must not be set for
any method in a managed PE file.

• [run time] The implementation flags cil and unmanaged are mutually exclusive.

• [run time] The implementation flags native and managed are mutually exclusive.

• The implementation flag native must be paired with the unmanaged flag.

• [run time] The implementation flag synchronized must not be set for methods belong-
ing to value types.

• [run time] The implementation flags runtime and internalcall are for internal use only
and must not be set for methods defined outside .NET Framework system assemblies.

• [run time] The Name entry must hold a valid reference to the #Strings stream, indexing a
nonempty string no more than 1,023 bytes long in UTF-8 encoding.

• [run time] If the method name is .ctor, .cctor, _VtblGap*, or _Deleted*, the
rtspecialname flag must be set, and vice versa.

• [run time] A method named .ctor—an instance constructor—must not have the static
flag or the virtual flag set.

• [run time] A method named .cctor—a class constructor—must have the static flag set.

• [run time] The Signature entry must hold a valid reference to the #Blob stream, index-
ing a valid method signature. Chapter 8 discusses validity rules for method signatures.

• [run time] A method named .ctor—an instance constructor—must return void and
must have the default calling convention.

• [run time] A method named .cctor—a class constructor—must return void, can take
no parameters, and must have the default calling convention.

• No duplicate records—attributed to the same TypeDef and having the same name and
signature—should exist unless the accessibility flag is privatescope.

• [run time] The RVA entry must hold 0 or a valid relative virtual address pointing to a
read-only section of the PE file.

• [run time] The RVA entry holds 0 if and only if

• the abstract flag is set, or

• the implementation flag runtime is set, or

CHAPTER 10 ■ METHODS222

Ch10_6463_CMP3 5/3/06 9:33 AM Page 222

• the implementation flag internalcall is set, or

• the class owning the method has the import flag set, or

• the pinvokeimpl flag is set, the implementation flags native and unmanaged are
not set, and the ImplMap table contains a record referencing the current Method
record, and this record contains valid ModuleRef reference.

Param Table Validity Rules
• The Flags entry can have only those bits set that are defined in the enumeration

CorParamAttr in CorHdr.h (validity mask 0x3013).

• [run time] If the flag 0x2000 (pdHasFieldMarshal) is set, the FieldMarshal table must
contain a record referencing this Param record, and vice versa.

• [run time] If the flag 0x1000 (pdHasDefault) is set, the Constant table must contain a
record referencing this Param record, and vice versa.

• [run time] The Sequence entry must hold a value no larger than the number of manda-
tory parameters of the method owning the Param record.

• If the method owning the Param record returns void, the Sequence entry must not hold 0.

• The Name entry must hold 0 or a valid reference to the #Strings stream, indexing a non-
empty string no more than 1,023 bytes long in UTF-8 encoding.

MethodImpl Table Validity Rules
• [run time] The Class entry must hold a valid index to the TypeDef table.

• [run time] The MethodDecl entry must index a record in the Method or MemberRef table.

• [run time] The method indexed by MethodDecl must be virtual.

• [run time] The method indexed by MethodDecl must not be final.

• [run time] If the parent of the method indexed by MethodDecl is not the TypeDef indexed
by Class, the method indexed by MethodDecl must not be private.

• [run time] The parent of the method indexed by MethodDecl must not be sealed.

• [run time] The signatures of the methods indexed by MethodDecl and MethodBody must
match.

• [run time] The MethodBody entry must index a record in the Method table.

• [run time] The method indexed by MethodBody must be virtual.

• [run time] The parent of the method indexed by MethodBody must be the TypeDef
indexed by Class.

CHAPTER 10 ■ METHODS 223

Ch10_6463_CMP3 5/3/06 9:33 AM Page 223

P A R T 4

Inside the Execution
Engine

Ch10_6463_CMP3 5/3/06 9:33 AM Page 224

Generic Types

Generic types, introduced in version 2.0 of the CLR, differ from “normal” (nongeneric) types
in one major aspect: “normal” types, even the abstract ones, are fully defined, while generic
types represent pure abstractions—templates for the generation (or instantiation) of “normal”
types. Generic types are pure abstractions because they describe types constructed not from
other types but from abstract type parameters, or type variables. Thus, a generic type has one
or more type parameters and hence belongs to parameterized types. You are already familiar
with one generic type implemented in versions 1.0 and 1.1 of the CLR—a vector (single-
dimensional, zero lower-bound array). A vector doesn’t exist per se—it’s always a vector “of
something,” such as a vector of 32-bit integers, a vector of strings, or a vector of objects, and
so on. The vector was (and still is) an intrinsic generic type in the sense it is implemented by
the CLR but has no representation as a separate class.

My reference to the templates is not an error. The C++ templates, another representative
of parameterized types, are probably the most-known vehicle of generic programming, so C++
templates and generics (generic types and generic functions, discussed in Chapter 12) play
similar roles. There, however, the similarity ends and the differences begin, including the two
most important:

• C++ templates can have various parameters (type parameters, integer parameters, and
so on), whilst generics can have only type parameters. For example, you can define a
template of a stack of a specific predefined depth, but you can’t define a generic stack
of a specific predefined depth.

• The type parameters of generics can be constrained, meaning you can demand that
such-and-such type parameter meet such-and-such requirements, while C++ doesn’t
have the linguistic means to specify constraints of template parameters.

In general, the set of parameters of a parameterized type is often referred to as the type’s
parameter list, and the set of actual arguments used for the parameterized type instantiation
is known as the instantiation environment. The parameter list may be homogenous (all
parameters are of the same kind, say, type) or heterogeneous. The parameter list may also be
constrained, meaning some limitations may be imposed on the instantiation contexts (for
example, this type argument must be derived from type X, or that integer argument must be a
prime number). So, the .NET generics are parameterized types with homogenous constrained
parameter lists, while C++ templates represent parameterized types with heterogeneous
unconstrained parameter lists.

The generics in .NET were introduced by the outstanding work of Don Syme and Andrew
Kennedy from Microsoft Research (Cambridge, United Kingdom). Don and Andrew started

225

C H A P T E R 1 1

■ ■ ■

Ch11_6463_CMP3 7/25/06 7:42 PM Page 225

their work on .NET generics shortly before version 1.0 of the CLR was released. The way to the
final implementation was long and not without turns, but now version 2.0 of the CLR boasts
advanced, completely functional support of generics.

Being template-like abstractions for building the concrete types, generic types don’t
change the .NET type hierarchy discussed in Chapter 7 (refer to Figure 7-1). Rather, the
generic types add a “genericity” dimension to the type hierarchy: there can be generic and
nongeneric classes, interfaces, and value types, and for example, a generic interface is as
much an interface as a nongeneric one.

All concepts of inheritance (from a base class) and implementation (of the interfaces)
defined for nongeneric types are valid for generic types. Both generic and nongeneric types
can extend and implement only nongeneric types or instantiations of generic types, for obvi-
ous reasons: the instantiations of generic types are true types and can be used anywhere,
while the generic types are the templates of true types and cannot be used anywhere but in
instantiations.

Generic Type Metadata
As I mentioned in Chapter 7, the nongeneric type metadata is grouped around the concepts
of type definition (TypeDef) and type reference (TypeRef). The generic type metadata uses one
more basic concept—type specification (TypeSpec), representing the instantiations of generic
types.

The definition of a nongeneric type involves the following information:

• The full name of the type being defined

• Flags indicating special features the type should have

• The type from which this type is derived

• The interfaces this type implements

• How the loader should lay out objects of this type in memory

• Whether this type is nested in another type—and if so, in which one

• Where fields and methods of this type (if any) can be found

To define a generic type, you should also supply the list of type parameters and define the
constraints of each type parameter.

Referencing a generic type is a tricky question. Strictly speaking, you cannot reference a
generic type per se; you can reference only an instantiation of a generic type, providing in
addition to the type’s name and resolution scope the list of type arguments.

Saving you a trip four chapters back, I’m repeating the figure here that shows the metadata
tables participating in type definition and referencing (see Figure 11-1). The arrows indicate
cross-table referencing by means of metadata tokens.

CHAPTER 11 ■ GENERIC TYPES226

Ch11_6463_CMP3 7/25/06 7:42 PM Page 226

Figure 11-1. Metadata tables participating in type definition and referencing

Three tables in the lower part of Figure 11-1 (TypeSpec, GenericParam, and Generic-
ParamConstraint) and their associated links are related to generic types and will be discussed
in this chapter.

The rest of the tables shown in Figure 11-1 are common to generic and nongeneric types,
so everything I said about these tables in Chapter 7 holds true for the case of generic types.
This means, in particular, that looking at a TypeDef or TypeRef record, you cannot say whether
the type represented by this record is generic (for a TypeDef you need to look in the Generic-
Param table and see whether it contains generic parameters associated with this type). This in
turn means that the genericity of the type (list of its type parameters, if any) cannot be used
for type identification, and the type identification is still based on the type’s full name and res-
olution scope. In other words, you cannot have types G (nongeneric) and G<T> (generic with
one type parameter) defined in the same module. This is rather restrictive and can be likened
to the prohibition of method overloads (this design was chosen because it allowed for the
introduction of generics via incremental changes in the metadata scheme; an alternative
would be the complete overhaul of the metadata structure and of the ways the types are
recognized in the CLR).

TypeDef TypeRef

NestedClass

ClassLayout

InterfaceImpl

AssemblyRef ModuleRef

ModuleTypeSpec

GenericParam GenericParam
Constraint

CHAPTER 11 ■ GENERIC TYPES 227

Ch11_6463_CMP3 7/25/06 7:42 PM Page 227

The high-level languages bypass this limitation and allow you to define types G and G<T>
(and G<T,U>, and so on) in the same module by mangling the names of generic types, usually
adding the generic arity (the number of type parameters) to the type name. For example, VB
and C# emit type G as G, type G<T> as G`1, type G<T,U> as G`2, and so on (now you probably
have guessed why the backtick symbol was added as a legal identifier symbol in ILAsm 2.0).

Since the generic parameters can represent only types, mangling the type name with
generic arity is enough to simulate the “type overload on genericity.” If you had to deal with
C++ templates rather than generics, you would probably have to use a more sophisticated
name-mangling scheme, reflecting the “generic signature” of the type.

The negative side effect (rather minor) of the name mangling is that the generic types are
emitted under names different from those specified in the high-level language code. The posi-
tive effect is that you can identify a generic type and its arity by looking at the type’s name
(however, this doesn’t work for nested types, as I will show you later in this chapter).

The IL assembler does not do the type name mangling automatically, leaving it to the
programmer or to the tool (for example, a compiler) generating ILAsm code. I will follow the
C#/VB name-mangling convention in the samples, but you should remember it is in no way
mandatory.

Having agreed on this, let’s proceed to the discussion of the metadata tables specific to
generic types.

GenericParam Metadata Table
The GenericParam table contains the information about generic parameters. You might won-
der why this table is needed; if the generic parameters can be only types, their number (arity
of a generic type) should be sufficient. The main reasons for the existence of the Generic-
Param table are the need to be able to tell a generic type from a nongeneric one (generic types
have associated generic parameters) and the need to be able to define constraints of each
generic parameter.

Each record in this table has four entries:

• Number (2-byte unsigned integer). Zero-based ordinal of the generic parameter in the
generic type’s parameter list.

• Flags (2-byte bit field). The binary flags indicating certain kinds of constraints imposed
on this generic parameter. I discuss the values of the flags and the constraints they rep-
resent in the section “Constraint Flags” later in this chapter.

• Owner (coded token of type TypeOrMethodDef). A token of the generic type or method defi-
nition to which this generic parameter belongs. I discuss generic methods in Chapter 12.
Note that TypeRefs and MemberRefs, even those of generic types and methods, don’t have
their generic parameters represented in the GenericParam table; the generic parameters
and their constraints are always defined together with their owners, in the metadata of
the same module. This doesn’t mean you cannot reference a generic type from another
module; it means only that since constraints are defined when the generic type is defined
and the role of GenericParams is to carry the constraints, associating GenericParams with
type references would be meaningless.

• Name (offset in the #Strings stream). The name of the generic parameter. This entry may
be zero (unnamed parameter).

CHAPTER 11 ■ GENERIC TYPES228

Ch11_6463_CMP3 7/25/06 7:42 PM Page 228

In the optimized metadata model, the GenericParam records must be sorted by their
Owner field.

GenericParamConstraint Metadata Table
The GenericParamConstraint metadata table contains inheritance and implementation con-
straints imposed on the generic parameters. An inheritance constraint imposed on a generic
parameter means that the type substituting for the parameter in a generic instantiation must
be derived from the specified type. An implementation constraint means that the type substi-
tuting for this parameter must implement the specified interface.

Each record in this table has two entries:

• Owner (RID in the GenericParam table). The index of the GenericParam record describ-
ing the generic parameter to which this constraint is attributed.

• Constraint (coded token of type TypeDefOrRef). A token of the constraining type,
which can reside in the TypeDef, TypeRef, or TypeSpec table. The nature of the con-
straint (inheritance or implementation) is defined by the constraining type: if it is an
interface, then it’s an implementation constraint; otherwise it’s an inheritance con-
straint. (This reminds me of an old Navy adage: “Salute all that moves and paint all
that doesn’t.”) Since the CLR supports only single inheritance, no more than one
GenericParamConstraint record pertaining to a certain generic parameter can have
its Constraint entry referencing a noninterface type.

In the optimized metadata model, the GenericParamConstraint records must be sorted by
their Owner field.

TypeSpec Metadata Table
The TypeSpec metadata table, which you already encountered in Chapter 8, represents the
constructed types—in versions 1.0 and 1.1 it represented vectors and arrays, and in version 2.0
it represents also instantiations of the generic types. The TypeSpec table has only one entry in
each record: Signature (offset in the #Blob stream), representing the signature of the con-
structed type. Chapter 8 discussed the signatures of vectors and arrays, and I will describe the
signatures of generic type instantiations in the section “Generic Type Instantiations” of this
chapter.

I still don’t understand what was the purpose of introducing the TypeSpec metadata table
(and the StandAloneSig table as well) in the first place. These tables serve as simple redirectors
to the #Blob stream. It would make more sense to do the same trick as with mdtString
tokens—interpret the RID part of an mdtTypeSpec or mdtStandAloneSig token as the offset in
the #Blob stream. Maybe the concerns about the 16MB offset limit (the RID part of the token
is 24-bits wide) were the reason? But I digress.

Constraint Flags
The constraint flags describe the constraints imposed on a generic parameter that are not of
an inheritance or implementation nature. Table 11-1 describes the constraint flags defined in
version 2.0 of the CLR (see also enumeration CorGenericParamAttr in file CorHdr.h):

CHAPTER 11 ■ GENERIC TYPES 229

Ch11_6463_CMP3 7/25/06 7:42 PM Page 229

Table 11-1. Constraint Flags

Flag Constant Name ILAsm Notation Comments

0x01 gpCovariant + The type argument must be
covariant. In other words,
G<T> must be assignable to
G<U> if T is assignable to U
(the assignability of T to U
means that the value of
type T can be assigned to a
location, say, a variable, of
type U; Chapter 13 lists the
assignability rules). This
constraint is applicable
only to type parameters
of generic interfaces or
delegates.

0x02 gpContravariant - The type argument must
be contravariant. In other
words, G<T> must be
assignable to G<U> if U is
assignable to T. This
constraint is applicable
only to type parameters
of generic interfaces or
delegates.

0x04 gpReferenceTypeConstraint class The type argument must
be a reference type (not a
value type).

0x08 gpNotNullableValueTypeConstraint valuetype The type argument must
be a value type but not
an instantiation of the
generic value type
[mscorlib]System.
Nullable`1<T>.

0x10 gpDefaultConstructorConstraint .ctor The type argument must
have a default instance
constructor (a public
instance constructor
without arguments) or
must be a value type.

Defining Generic Types in ILAsm
The ILAsm syntax for defining a generic type is as follows:

.class <flags> <dotted_name> < <gen_params> >
[extends <class_ref>]
[implements <class_refs>]

{
...

}

CHAPTER 11 ■ GENERIC TYPES230

Ch11_6463_CMP3 7/25/06 7:42 PM Page 230

As you can see, the only difference between the generic type definition and nongeneric
type definition is the presence of the <gen_params> clause (enclosed in angular brackets):

<gen_params> ::= <gen_param> [, <gen_param>]*

where

<gen_param> ::= [<constraint_flags>] [(<constraints>)] <gen_param_name>

where

<constraint_flags> ::= + | - | class | valuetype | .ctor
<constraints> ::= <class_ref> [, <class_ref>]*
<gen_param_name> ::= <simple_name>

For example:

.class public EventHandler`1< - class ([mscorlib]System.IAsyncResult) T>
extends [mscorlib]System.MulticastDelegate

{
// T must be a contravariant reference type implementing IAsyncResult
...

}

The types specified as constraints cannot be less visible than the generic type itself. The
reasoning is obvious enough: if you define a public generic type and constrain its type param-
eter with a private type, what will happen if somebody tries to instantiate your generic type in
his own assembly?

The types specified as constraints can be nongeneric types (as in the previous example),
generic instantiations, and even references to other type parameters of the same type. If
you don’t need to put any constraints on a generic type, just declare it as G`1<T>. Don’t
declare it as G`1<([mscorlib]System.Object) T>. That’s just plain silly: since any type is
derived eventually from System.Object, “constraining” a generic parameter like that just
bloats the GenericParamConstraint table and increases the type load time. I’m saying this
because I’ve seen people and even compilers doing exactly that.

Addressing the Type Parameters
The type parameters of a generic type are referenced within the type as !<name> or !<ordinal>,
where <name> is the name of the type parameter and <ordinal> is the parameter’s number
(zero-based) in the type parameter list. For example:

.class public value Pair`1<T>
{
.field public !T x
.field public !0 y // fields x and y have the same type T

}

CHAPTER 11 ■ GENERIC TYPES 231

Ch11_6463_CMP3 7/25/06 7:42 PM Page 231

Both notations translate into the single encoded types {E_T_VAR, <compressed_ordinal>},
so both fields x and y in the previous sample have the signatures {CALLCONV_FIELD, E_T_VAR,
<compressed_ordinal>} = {0x06, 0x13, 0x00}.

Type parameters are referenced in the same way in the method signatures of generic types:

.class public List`1<T>
{
.method public void Append(!T val) { ... }
.method public !T GetLast() { ... }
...

}

Generic Type Instantiations
An instantiation of a generic type involves two items—the generic type itself and the instantia-
tion context, representing the list of actual type arguments substituting for the generic type’s
parameters.

The ILAsm syntax representing a generic instantiation is as follows:

class <type_name> < <type> [, <type>]* >

or as follows:

valuetype <type_name> < <type> [, <type>]* >

where <type_name> is a fully qualified name of the generic type and the <type> sequence in
angular brackets represents the type argument list. For example:

.field private class List`1<string> nameList

.field private class List`1<[mscorlib]System.Type> typeList

The keyword class or valuetype is necessary in specifications of generic type instantia-
tions because generic type instantiations are represented in the metadata by TypeSpecs, and
these keywords signal the IL assembler to produce a TypeSpec rather than a TypeRef or a
TypeDef. This is a general rule of ILAsm, not specific to the generic type instantiations. For
example, the notation [mscorlib]System.Type translates into a TypeRef, while the notation
class [mscorlib]System.Type translates into a TypeSpec with the signature {E_T_CLASS,
<token>}, where <token> is a TypeRef token of [mscorlib]System.Type.

The signatures of TypeSpecs representing the generic instantiations have the following form:
{E_T_GENERICINST, E_T_CLASS, <gen_type_token>, <arity>, <arg_token>[, <arg_token>]*},
where <gen_type_token> is a TypeRef or TypeDef token representing the generic type, <arity> is
a compressed number of type arguments, and the sequence of <arg_token> is a sequence of
TypeRef, TypeDef, or TypeSpec tokens (or element type codes) representing the type arguments
(the instantiation context). For example, the generic instantiation class List`1<string> is rep-
resented by a TypeSpec with the signature {E_T_GENERICINST, E_T_CLASS, <token_of_List`1>,
1, E_T_STRING} = {0x15, 0x12, <token_of_List`1>, 0x01, 0x0E}.

CHAPTER 11 ■ GENERIC TYPES232

Ch11_6463_CMP3 7/25/06 7:42 PM Page 232

In general, any type satisfying the constraints (if any) can be used as a type argument of
a generic instantiation. There are three exceptions: a managed pointer to some type, void, and
a value type that contains references to the IL evaluation stack, such as [mscorlib]System.
RuntimeArgumentHandle. All three are unsuitable as the type of a field, and this is the main
reason they are not allowed as type arguments. The CLR doesn’t want you to declare a field of
type T in class A<T> and then instantiate A<void>. It would be embarrassing.

Within the scope of a generic type its type parameters are considered regular types, so the
generic instantiations can use these type parameters as type arguments:

.class public List`1<T> // Generic type
{
...
}
.class public Stack`1<T> // Generic type
{
.field private class List`1<!T> stackList // Generic type instantiated with

// parameter of host generic type
...
}

So, the instantiation context of a generic type within the scope of another generic type
can itself be generic (type parameterized).

The instantiation context can also contain instantiations of other generic types, for example:

.class public StackSet`1<T>
{
.field private class List`1<class Stack`1<!T>> stackList

...
}

Having said that, let’s return to the generic class declaration, where we have unfinished
business.

Defining Generic Types: Inheritance,
Implementation, Constraints
When I talked about generic type definition, I purposefully avoided elaborating on such
important aspects of type definition as inheritance and interface implementation. The reason
for that is all these aspects of a type can be generic instantiations. With a generic type, all these
aspects (and the generic parameter constraints as well) are considered to be in the scope of
the generic type, so their instantiation contexts can be parameterized:

.class public A`2<T,U> extends class B`1<!T>
implements class IX`1<!T>, class IY`1<!U>

{
...
}

CHAPTER 11 ■ GENERIC TYPES 233

Ch11_6463_CMP3 7/25/06 7:42 PM Page 233

Only the declaration of a generic class itself has a type parameter list; all references to a
generic type can be only generic instantiations. For example, the following notation of the
previous example is wrong because it presumes the parent type and implemented interfaces
have type parameters, when in fact they are instantiations with parameterized context:

.class public A`2<T,U> extends B`1<T> implements IX`1<T>, IY`1<U> // Illegal
{
...
}

The same rule applies to the specification of the constraints of generic parameters. For
example:

.class public SortedList`1<(class [mscorlib]System.IComparable`1<!T>) T>
extends class List`1<!T>

{
...
}

Here I declare a generic sorted list, the type parameter of which must implement the
interface System.IComparable`1 of itself (otherwise how could I possibly sort the list?).

One important note: the type parameters of a generic type are indeed considered rightful
types within the generic type’s scope, but they are not instantiations. So, you cannot use the
“naked” type parameters in the extends or implements clause. The following code example
is wrong:

.class public AnyonesChild`1<T> extends !T // Illegal
{
...
}

This restriction allows the runtime to check the generic type validity at declaration time
rather than at instantiation time. The latter is possible in principle but might be very expensive.

At the same time you can use “naked” type parameters as constraints of other type
parameters. For example, the following declaration is perfectly legal:

.class public ParentChild`2<T, (!T)U> // U must be descendant of T
{
...
}

Defining Generic Types: Cyclic Dependencies
As you know from Chapter 7, cyclic dependencies in type inheritance and interface imple-
mentation are illegal. A cyclic dependence means that, for example, class A extends class B,
and B extends C, and C extends A. The cyclic dependencies of nongeneric types are easily
detected by the CLR loader, which throws the Type Load exception and aborts the loading.

CHAPTER 11 ■ GENERIC TYPES234

Ch11_6463_CMP3 7/25/06 7:42 PM Page 234

The question of cyclic dependencies becomes more complex in the case of generic types,
which use instantiations with parameterized contexts in extends and implements clauses,
given that these contexts may contain other instantiations, and so on.

When loading a generic type, the loader must suspend processing this type when it
encounters a generic instantiation as the base or one of the implemented interfaces of this
type, load this instantiation, and then return to loading this type. As you can see, this process
is recursive and can lead to a stack overflow if mutual dependencies of the instantiations are
cyclic.

For example, the following three type declarations have a cyclic inheritance dependency
of the instantiations:

.class public A`1<T> extends class C`1<class B`1<!T>>
{
...
}
.class public B`1<U> extends class A`1<class C`1<!U>>
{
...
}
.class public C`1<V>
{
...
}

The following algorithm is used to identify a cyclic dependency in the inheritance and
implementation of a generic type declaration.

First, list all generic types that have mutual dependency (in this example, A`1, B`1, and
C`1) and their type parameters.

Then list all generic instantiations used in the extends and implements clauses of these
types, including the instantiations used as type arguments of other instantiations (as in
C`1<B`1<!T>>).

Then build a graph that has an edge from each type parameter mentioned in an instantia-
tion to the respective type parameter of a generic type being instantiated. Use the edges of two
kinds: nonexpanding edge means a type parameter is replaced with a “naked” parameter of
another type, and expanding edge means a type parameter is replaced with an instantiation
involving parameter of another type. For example, the instantiation class C`1<!U> of class
C`1<V> creates a nonexpanding edge from U to V, because “naked” !U is substituting for V; at
the same time, the instantiation class C`1<class B`1<!T>> of the same class C`1<V> creates an
expanding edge from T to V, because the instantiation involving !T (class B`1<!T>) is substi-
tuting for V.

If the resulting graph contains a loop having at least one expanding edge in it, you have a
cyclic dependency of instantiations, because each expanding edge means “suspend loading
this type and load the referenced instantiation first” for the CLR loader.

Table 11-2 illustrates the instantiation dependency analysis of the discussed example.
A single-line arrow indicates a nonexpanding edge, and a double-line arrow indicates an
expanding edge.

CHAPTER 11 ■ GENERIC TYPES 235

Ch11_6463_CMP3 7/25/06 7:42 PM Page 235

Table 11-2. Instantiation Dependency Analysis

Generic Type Instantiation Substitution Edge

A`1<T> A`1<C`1<!U>> U ⇒ T

B`1<U> B`1<!T> T → U

C`1<V> C`1<!U> U → V

C`1<V> C`1<B`1<!T>> T ⇒ V

Figure 11-2 shows the resulting graph; expanding edges are represented by solid arrows
and nonexpanding edges are represented by dashed arrows. As you can see, the graph con-
tains a loop with an expanding edge in it.

Figure 11-2. Instantiation dependency graph

The ECMA/ISO standard specification illustrates the circular instantiation dependencies
with a sample that is probably the simplest instantiation dependency with an expanding loop:

.class public A`1<T> extends class B`1<class A`1<class A`1<!T>>>
{
...
}
.class public B`1<U>
{
...
}

This sample has the instantiation dependency graph where the node representing type
parameter T is connected to itself with an expanding edge.

If the instantiation dependency graph has no loops or has loops consisting only of nonex-
panding edges, such instantiation dependency is noncyclic and can be loaded.

The inheritance and implementation constraints imposed on the type parameters of the
generic types don’t affect the type loading in the same way as the generic instantiations, which
the type itself extends and implements, so the instantiations representing these constraints
are not included in the instantiation dependency analysis.

T

U

V

CHAPTER 11 ■ GENERIC TYPES236

Ch11_6463_CMP3 7/25/06 7:42 PM Page 236

The Members of Generic Types
Declaring the members of generic types is more or less straightforward: the types of the mem-
bers can be nongeneric types, type parameters of the generic type, or generic instantiations
(or constructions thereof):

.class public Container`1<T>
{
.field private int32 count
.field private !T[] arr
.method public int32 Count()
{
...

}
.method public !T Element(int32 idx)
{
...

}
...
}

There is an interesting limitation imposed on the methods of generic types: they cannot
have the vararg calling convention.

Referencing the members of a generic type is a bit trickier than declaring them: their
resolution scope must always be the instantiation of the parent type even if the members are
referenced inside the parent type:

.class public Container`1<T>
{
.field private int32 count
.field private !T[] arr
.method public int32 Count()
{
ldarg.0
ldfld int32 class Container`1<!T>::count
ret

}
.method public !T Element(int32 idx)
{
ldarg.0
ldfld !T[] class Container`1<!T>::arr
ldarg.1
ldelem !T
ret

}
...
}

CHAPTER 11 ■ GENERIC TYPES 237

Ch11_6463_CMP3 7/25/06 7:42 PM Page 237

You cannot use the .this, .base, or .nester keywords within a generic type’s scope the
same way you do within nongeneric types, because the reference to a generic type must
always be an instantiation. However, you can use these keywords to form instantiations.
For example:

...
ldfld int32 class .this<!T>::count
...
ldfld !T[] class .this<!T>::arr

...

When addressing the members of generic instantiations outside the defining class’s
scope, you need to specify their signatures as they were defined, not as they became in the
instantiation. For example:

...
call instance !0 class Container`1<string>::Element(int32) // Correct
...
call instance string class Container`1<string>::Element(int32) // Incorrect
...

The return type of method Element was defined as the “type parameter number 0 of
Container`1,” and it must be the same at the method call site, even though the method is
called on the instantiation of Container`1 with string substituting for the type parameter
number 0. You cannot use !T instead of !0 either, because !T does indeed mean the “type
parameter number 0 of Container`1” but only within the lexical scope of the Container`
1 declaration.

This means you can’t inadvertently create a duplicate member declaration when instanti-
ating the generic type. For example:

.class public Pair`2<T,U>
{
.field private !T t
.field private !U u
.method public void Set(!T newT)
{
...

}
.method public void Set(!U newU)
{
...

}
...
}

Everything seems in order: method Set is overloaded on its parameter type, which is
completely legal. Now, try to instantiate Pair`2<string, string>. Do you have a problem
distinguishing one Set from another? Not at all. The methods will be called as follows:

CHAPTER 11 ■ GENERIC TYPES238

Ch11_6463_CMP3 7/25/06 7:42 PM Page 238

...
ldstr "ABCD"
call instance void class Pair`2<string,string>::Set(!0) // first Set called
...
ldstr "EFGH"
call instance void class Pair`2<string,string>::Set(!1) // second Set called
...

Virtual Methods in Generic Types
Declaring virtual methods in generic types is not different in principle from declaring
nonvirtual methods:

.class interface public abstract System.IComparable`1<T>
{
.method public abstract virtual int32 CompareTo(!T other) {}

}

Implicitly overriding a virtual method is also relatively straightforward: the name of the
overriding method must match the name of the overridden method, and the signature of the
overriding method must match the signature of the overridden method with instantiation
type arguments substituting for the type parameters of the overridden method:

.class public serializable sealed beforefieldinit System.String
implements ...

class System.IComparable`1<string>,
...

{
...
.method public virtual final int32 CompareTo(string strB)
{
...
}

...
}

or in the case of a generic class overriding a virtual method from another generic class:

.class public Element`1<T> implements class [mscorlib]System.IComparable`1<!T>
{
...
.method public virtual int32 CompareTo(!T other)
{
...
}

...
}

CHAPTER 11 ■ GENERIC TYPES 239

Ch11_6463_CMP3 7/25/06 7:42 PM Page 239

And of course you cannot override a method that doesn’t have the type parameters in its
signature with a method that does have them:

.class interface public abstract System.IComparable
{
.method public abstract virtual int32 CompareTo(object obj) {}

}
...
.class public Element`1<T> implements [mscorlib]System.IComparable
{
...
.method public virtual int32 CompareTo(!T other) // Invalid override
{
...
}

...
}

When dealing with implicit overriding, however, you should watch for possible duplicate
overrides upon instantiation (yes, in the same vein as inadvertent duplicate member declara-
tions, which I said are not a problem). For example:

.class interface public abstract IX<T,U>
{
.method public abstract virtual int32 XX(!T t) {}
.method public abstract virtual int32 XX(!U u) {}

}
...
.class public A implements class IX<string,string>
{
...
.method public virtual int32 XX(string s) // Which XX does it override?
{
...
}

...
}

If some evil person (not you, of course) declared an interface (or a class) such as IX<T,U>
in the previous sample and you need to override its methods, your only option is to give the
overriding methods other names and use explicit override.

Just to save you a trip back to Chapter 10, let me remind you of the short form of an
explicit override directive in a nongeneric case:

.class public Element implements [mscorlib]System.IComparable
{
...
.method public virtual int32 Comp(object other)
{

CHAPTER 11 ■ GENERIC TYPES240

Ch11_6463_CMP3 7/25/06 7:42 PM Page 240

.override [mscorlib]System.IComparable::CompareTo
...
}

...
}

Explicitly overriding virtual methods of generic types is more complicated: you have to
supply the signature of the overridden method. So, the short form of an explicit override direc-
tive used within the overriding method’s body looks as follows:

.class public Element`1<T> implements class [mscorlib]System.IComparable`1<!T>
{
...
.method public virtual int32 Comp(!T other)
{
.override method instance int32

class [mscorlib]System.IComparable`1<!T>::CompareTo(!0)
...
}

...
}

Note the keyword method followed by the overridden method’s calling convention and
return type.

It is necessary to specify the overridden method’s signature because the overriding
method’s signature is different: the original signature of CompareTo has a single argument of
type “type parameter number 0 of IComparable`1.” That’s why, by the way, the argument type
in the signature of CompareTo has the form !0 instead of !T—!T means the “type parameter T of
Element`1.”

To illustrate this point, the following is an example of a method of a nongeneric class
overriding a method of a generic class:

.class public EStr implements class [mscorlib]System.IComparable`1<string>
{
...
.method public virtual int32 Comp(string other)
{
.override method instance int32

class [mscorlib]System.IComparable`1<string>::CompareTo(!0)
...
}

...
}

The long form of the explicit override directive follows the pattern of the short form. First,
let me remind you of the long form of an explicit override directive in a nongeneric case:

.class public Element implements [mscorlib]System.IComparable
{
.override [mscorlib]System.IComparable::CompareTo with

CHAPTER 11 ■ GENERIC TYPES 241

Ch11_6463_CMP3 7/25/06 7:42 PM Page 241

instance int32 .this::Comp(object)
...
.method public virtual int32 Comp(object other)
{
...
}

...
}

The long form of the explicit override directive in the case of a generic class overriding a
method of another generic class looks as follows:

.class public Element`1<T> implements class [mscorlib]System.IComparable`1<!T>
{
.override method instance int32

class [mscorlib]System.IComparable`1<!T>::CompareTo(!0)
with method instance int32 class .this<!T>::Comp(!0)

...
.method public virtual int32 Comp(!T other)
{
...
}

...
}

Note that when explicitly overriding a method of a generic class, you need to specify the
overriding method the same way as the overridden method, and it does not matter whether
the overriding class is generic:

.class public EStr implements class [mscorlib]System.IComparable`1<string>
{
.override method instance int32

class [mscorlib]System.IComparable`1<string>::CompareTo(!0)
with method instance int32 .this::Comp(string)

...
.method public virtual int32 Comp(string other)
{
...
}

...
}

As you can see, the long form of the .override directive is even more cumbersome in the
case of generic types, and strictly speaking this form is not necessary: the short form is fully
sufficient for explicit overriding.

CHAPTER 11 ■ GENERIC TYPES242

Ch11_6463_CMP3 7/25/06 7:42 PM Page 242

Nested Generic Types
As you know, the nested types have full access to the members, even private ones, of their
immediate enclosers. But the types nested in generic types don’t have any access to the type
parameters of their enclosers. This means if a nongeneric type is nested in a generic type, this
nested type must not use the encloser’s environment:

.class public A`1<T>
{
.class nested public B
{
... // Cannot use !T here

}
... // Can use !T here

}

When a generic type is nested in another (generic or nongeneric) type, its encloser,
naturally, has no access to the nested type’s generic environment. In short, the generic
environments (if any) of the nested and the enclosing types are completely independent:

.class public A`1<T>
{
.class nested public B
{
... // Cannot use !T or !U here

}
.class nested public C`1<U>
{
... // Cannot use !T here

}
... // Can use !T but not !U here

}

The reason for this independence is that the nested and enclosed types are instantiated
separately. When you instantiate an enclosing type, the nested types are not instantiated auto-
matically, and you don’t need to instantiate the encloser to instantiate the nested type. This
goes for both meanings of instantiate—the creation of a generic instantiation of the type and
the creation of an instance of it.

As you know, the nested types are referenced in ILAsm as
<encloser_ref>/<nested_type_name>, where <encloser_ref> is a fully qualified name of the
enclosing type, for example, [mscorlib]System.RuntimeTypeHandle/DispatchWrapperType. This
is true for the types nested in generic types, because of the generic environment independ-
ence. For example, the nested class B described earlier is referenced as A`1/B. There is no such
thing as a type nested in a generic instantiation, so the notation class A`1<string>/B makes
no sense. But an instantiation of a nested generic type is a very real thing, and the notation
class A`1/C<string> is completely legal.

CHAPTER 11 ■ GENERIC TYPES 243

Ch11_6463_CMP3 7/25/06 7:42 PM Page 243

I must warn you about one helpful feature of the C# compiler. When you declare a class
nested in a generic class, the compiler presumes that the nested class needs “access” to the type
parameters of the encloser and makes the nested type generic. So, you can’t possibly define a
nongeneric type nested in a generic type using C#. For example, the following C# code:

public class A<T>
{

public class B
{

...
}
...

}

translates into the following ILAsm code:

.class public A`1<T>
{
.class nested public B<T> // Note: no `1 added to B's name
{
...

}
...

}

And if you declare the nested class as generic, the C# compiler concatenates the declared
type parameter lists of the encloser and the nested type and assigns the result to the nested type.

Note that the C# compiler mangles the nested type’s name according to its own declared
generic arity, not according to the summary encloser’s and nested type’s arity, probably
because the nested type’s name must be unique only within its encloser:

public class A<T>
{

public class B<U>
{

...
}
...

}

which in ILAsm looks as follows:

.class public A`1<T>
{
.class nested public B`1<T,U> // Note: `1 instead of `2 added to B's name
{
...

}
...

}

CHAPTER 11 ■ GENERIC TYPES244

Ch11_6463_CMP3 7/25/06 7:42 PM Page 244

An interesting thing happens if you declare a generic nested type with the same type
parameter name as the encloser’s:

public class A<T>
{

public class B<T>
{

... // Here T means B's type parameter
}
... // Here T means A's type parameter

}

which produces the following ILAsm code:

.class public A`1<T>
{
.class nested public B`1<T,T>
{
... // Here !0 means A's type parameter
... // And !1 or !T means B's type parameter

}
... // Here !0 or !T means A's type parameter

}

Of course, after such a declaration, the encloser’s type parameter T cannot be accessed
inside the nested type in C#, because in C# the type parameters are referenced only by their
names, and T inside the nested type means the nested type’s T. The C# compiler doesn’t diag-
nose this declaration as an error, but, of course, it issues a warning.

ILAsm can reference the type parameters by ordinal as well as by name, so duplicate
names of type parameters don’t prevent these parameters from being addressed.

Summary of the Metadata Validity Rules
The metadata tables specific to the generic types (other type-related tables were discussed in
Chapter 7) include TypeSpec, GenericParam, and GenericParamConstraint. The records of
these tables contain the following entries:

• The TypeSpec record contains the single entry Signature, which must hold a valid offset
in the #Blob stream.

• The GenericParam record contains four entries: Number (2-byte zero-based ordinal of
the type parameter), Flags (2-byte bit field containing the constraint flags of the type
parameter), Owner (coded token of type TypeOrMethodDef, which must be a valid refer-
ence to the TypeDef or Method table), and Name (must be a valid offset in the #Strings
stream, can be zero); there must be no duplicate records in the table with identical
Number and Owner values.

• The GenericParamConstraint record contains two entries: Owner (must be a valid RID
in the GenericParam table) and Constraint (coded token of type TypeDefOrRef, which
must be a valid reference to the TypeDef, TypeRef, or TypeSpec table).

CHAPTER 11 ■ GENERIC TYPES 245

Ch11_6463_CMP3 7/25/06 7:42 PM Page 245

Ch11_6463_CMP3 7/25/06 7:42 PM Page 246

Generic Methods

Generic methods are methods that carry type parameters in addition to their “normal”
method parameters. These type parameters are subject to all the rules governing the type
parameters of generic types, discussed in Chapter 11. This simplifies the discussion of generic
methods significantly; therefore, this chapter will be brief.

The generic parameters of generic methods, as in the case of generic types, are limited
to representing only types and can be constrained in the same way. The scope of the generic
method’s type parameters is the scope of the method itself, which includes the method’s sig-
nature and body. Methods don’t have members or inheritance attributes, which simplifies the
discussion even further.

Like in the case of generic types, the introduction of genericity does not affect the classifi-
cation of the methods proposed in Chapter 10. We still deal with static and instance methods
(independent and dependent of the parent type’s instance, respectively) and with virtual and
nonvirtual instance methods, only now any method can be generic or not.

The genericity of methods is in no way related to the genericity of their owner types. You
can have a nongeneric method of a generic type or a generic method of a nongeneric type.
The fact that a method’s signature and body reference the type parameters of the parent type
doesn’t make the method generic. What makes a method generic is the presence of its own
type parameter list.

Generic Method Metadata
Recall, to define a nongeneric method, you need to supply its name, its parent, its signature,
and its flags—and, of course, the method’s body, unless the method is abstract, internal to the
CLR, CLR generated, or P/Invoked from an unmanaged module.

To define a generic method, as in the case of generic types, you need also to supply the
list of type parameters and define the constraints of each type parameter.

Again as in the case of generic types, the generic methods can be referenced only in the
form of their instantiations.

247

C H A P T E R 1 2

■ ■ ■

Ch12_6463_CMP2 7/18/06 9:25 PM Page 247

Figure 12-1 shows the full mutual reference graph between the metadata tables involved
in method defining and referencing. This figure is similar to Figure 10-1, except I omitted the
tables GenericParam and GenericParamConstraint in Figure 10-1 because these tables are
irrelevant to the nongeneric methods. The arrows indicate cross-table referencing by means
of metadata tokens and RIDs.

Figure 12-1. Metadata tables participating in method definition and referencing

The tables specific to the representation of generic methods are GenericParam, Generic-
ParamConstraint, and MethodSpec. I discussed the first two tables in Chapter 11, so I won’t
repeat this discussion here. This leaves the MethodSpec table.

Method
Table

TypeDef
Table

Param
Table

Constant
Table

MemberRef
Table

FieldMarshal
Table

TypeRef
Table

ModuleRef
Table

TypeSpec
Table

MethodImpl
Table

MethodSpec
Table

GenericParam
Table

GenericParamConstraint
Table

CHAPTER 12 ■ GENERIC METHODS248

Ch12_6463_CMP2 7/18/06 9:25 PM Page 248

MethodSpec Metadata Table
The MethodSpec table carries the information about generic method instantiations. Unlike
generic type instantiations represented by instantiation signatures stored as TypeSpecs, the
instantiations of generic methods have to be represented by two signatures, because the
method itself, generic or not, has a signature describing its calling convention, return type,
and parameter types. This signature is referenced from the Method and MemberRef tables (as
offset in the #Blob stream). The MethodSpec table provides the link of a generic method to the
second signature—the instantiation signature.

Each record in the MethodSpec table has two entries:

• Method (coded token of type MethodDefOrRef). A token of the generic method definition
being instantiated (references the Method or MemberRef table).

• Instantiation (offset in the #Blob stream). The instantiation signature, described in the
next section of this chapter, cannot be 0.

The MethodSpec records don’t need to be sorted in any metadata model.

Signatures of Generic Methods
The signature of a generic method differs from the signature of a nongeneric method,
described in Chapter 8, and has the following structure:

<gen_method_sig> ::= <callconv_gen_method> <num_of_type_pars> <num_of_args>
<return_type> [<arg_type>[, <arg_type>]*]

where <callconv_gen_method> is the method’s calling convention ORed with
IMAGE_CEE_CS_CALLCONV_GENERIC (0x10) and where <num_of_type_pars> is a compressed num-
ber of type parameters of this generic method.

The method calling conventions acceptable for generic methods are limited to CALLCONV_
GENERIC possibly in combination with CALLCONV_HASTHIS and CALLCONV_EXPLICITTHIS. The
vararg generic methods are not supported, and the nongeneric vararg methods in generic
types are not either.

The <return_type> and <arg_type> items of a generic method signature can be (or can
contain) references to the method’s type parameters. Such references have the form {E_T_MVAR,
<ordinal>}, where E_T_MVAR = 0x1E and <ordinal> is a compressed zero-based ordinal of the
method’s type parameter. As you may recall from Chapter 11, the references to the type param-
eters of generic types in signatures have the form {E_T_VAR, <ordinal>}, where E_T_VAR = 0x13.
So, you can declare a generic method of a generic class and easily tell a reference to the class’s
type parameter number N from a reference to the method’s type parameter number N.

The ILAsm notation for referencing the method’s type parameters is !!<ordinal> or
!!<name>, where <name> is the name of the type parameter and <ordinal> is the parameter’s
number (zero-based) in the type parameter list. The generic type’s type parameters, as you
remember, are referenced in ILAsm as !<ordinal> or !<name>.

CHAPTER 12 ■ GENERIC METHODS 249

Ch12_6463_CMP2 7/18/06 9:25 PM Page 249

There is no need for a special ILAsm keyword denoting IMAGE_CEE_CS_CALLCONV_GENERIC,
because the definitions and references to generic methods have specific syntax. I’ll come to
that in a moment, but now, while on the subject of signatures, let me show you what the
instantiation signatures look like.

An instantiation signature of a generic method carries only information about the types
the method is instantiated with, so its structure is relatively simple:

<gen_method_inst_sig> ::= <callconv_inst> <num_of_type_args>
<type_arg_type>[,<type_arg_type>]*

where <callconv_inst> is IMAGE_CEE_CS_CALLCONV_GENERICINST (0x0A), <num_of_type_args> is
a compressed number of type arguments (cannot be 0), and <type_arg_type> is a single
encoded type representing the respective type argument.

Defining Generic Methods in ILAsm
The ILAsm syntax for defining a generic type is as follows:

<gen_method_def> ::=
.method <flags> <call_conv> <ret_type> <name>< <gen_params> > (<arg_list>) <impl>

{ <method_body> }

For example:

.method public static !!T GetMedian<T>(!!T[] tarray)
{
ldarg.0
dup
ldlen
ldc.i4.1
shr
ldelem !!T
ret

}

As in the case of generic types, the only difference between a generic method definition
and nongeneric method definition is the presence of the <gen_params> clause (enclosed in
angular brackets). I described this clause in detail in Chapter 11, and the only difference
between generic types and generic methods in this regard is that the constraint flags + (covari-
ance) and – (contravariance) are not applicable to the type parameters of a generic method.

The implementation flags <impl> of a generic method definition cannot be native,
unmanaged, internalcall, or runtime, which leaves cil and managed, and as you know, cil
and managed are default flags and do not need to be specified.

The <flags> clause of a generic method definition cannot contain the pinvokeimpl flag.
And you know already, that <call_conv> of a generic method cannot be vararg.

Class constructors (.cctor) cannot be generic, because they are not called explicitly, so
there is no way to specify a type argument for a .cctor. The instance constructors (.ctor),
which are called explicitly (in the newobj directive) can be generic.

CHAPTER 12 ■ GENERIC METHODS250

Ch12_6463_CMP2 7/18/06 9:25 PM Page 250

Calling Generic Methods
Strictly speaking, you cannot call (or otherwise reference) a generic method; you can call only
an instantiation of a generic method. It is the same story as with the generic types.

When calling (or otherwise referencing) a generic method instantiation directly, you need
to specify its signature as it was defined, not as it became in the instantiation. It is the same
rule that applies to calling nongeneric methods of generic types: if a parameter or return type
of the method is declared as a “type parameter (of class or method) number 0,” it should be
specified as such at the call site, no matter what type substitutes for the type parameter num-
ber 0. For example:

.method public static void Exec()
{
.entrypoint
ldc.i4.3
newarr string
... // Fill in the string array here
call !!0 GetMedian<string>(!!0[]) // Execute direct call
call [mscorlib]System.Console::WriteLine(string)
ret

}

Calling a generic method instantiation indirectly is a different story. To call a method
(generic or not) indirectly, you need to load a function pointer to this method and then exe-
cute an indirect call on this function pointer. You reference the generic method instantiation
only when you load the function pointer to it; after that you work with the pointer and not
with the instantiation. The function pointer itself and the indirect call instruction carry the
signature of the method as it became an instantiation. They have to, because they carry no
reference to the method instantiation. The following example illustrates my point:

.method public static void Exec()
{
.entrypoint
.locals init (string[] sarr, method string*(string[]) fptr)
ldc.i4.3
newarr string
stloc.0 // Store string vector
... // Fill in the string array here
ldftn !!0 GetMedian<string>(!!0[]) // Load ptr to instantiation
stloc.1 // Store function pointer
...
ldloc.0 // Load string vector
ldloc.1 // Load function pointer
calli string(string[]) // Execute indirect call. Note the signature
call [mscorlib]System.Console::WriteLine(string)
ret

}

CHAPTER 12 ■ GENERIC METHODS 251

Ch12_6463_CMP2 7/18/06 9:25 PM Page 251

The previous code snippets are slightly modified parts of the sample Genfptr.il, which you
can download from the Apress Web site:

.assembly extern mscorlib { auto }

.assembly genfptr {}

.module genfptr.exe

.typedef method void [mscorlib]System.Console::WriteLine(string) as PrintString

.method public static !!T GetMedian<T>(!!T[] tarray)
{
ldstr "GetMedian<T> called"
call PrintString
ldarg.0
dup
ldlen
ldc.i4.1
shr
ldelem !!T
ret

}
.method public static !!T Invoke<T>(method !!T*(!!T[]) medFunc, !!T[] tarr)
{
ldstr "Invoke<T> called"
call PrintString
ldarg.1
ldarg.0
calli !!T (!!T[])
ret

}

#define CALL_VIA_INVOKE

.method public static void Exec()
{
.entrypoint

#ifdef CALL_VIA_INVOKE
ldftn !!0 GetMedian<string>(!!0[])

#endif
ldc.i4.3
newarr string
dup
dup
dup
ldc.i4.0
ldstr "One"
stelem.ref
ldc.i4.1

CHAPTER 12 ■ GENERIC METHODS252

Ch12_6463_CMP2 7/18/06 9:25 PM Page 252

ldstr "Two"
stelem.ref
ldc.i4.2
ldstr "Three"
stelem.ref

#ifdef CALL_VIA_INVOKE
call !!0 Invoke<string>(method !!0*(!!0[]), !!0[])

#else
ldftn !!0 GetMedian<string>(!!0[])
calli string(string[])

#endif
call PrintString
ret

}

Overriding Virtual Generic Methods
Declaring generic virtual methods is similar to declaring nonvirtual methods (just add type
parameters!):

.class interface public abstract IX
{
.method public abstract virtual int32 Do<T>(!!T theT) {}

}

Overriding the generic virtual methods, however, is severely limited compared to non-
generic virtual methods (including those of generic types): a generic virtual method can
override (or can be overridden by) only a generic method of the same generic arity—not a (or
by a) nongeneric method and not by an instantiation of a generic method. This goes for both
implicit and explicit overriding.

Think about the meaning of a virtual generic method. Let’s consider the “most virtual”
case—an abstract virtual method. An abstract virtual method is a contract between the super-
class and all possible subclasses requiring all subclasses to supply an implementation of that
method. By making the virtual abstract method generic, the superclass is requiring subclasses to
provide an infinite number of implementations (one for each possible instantiation with various
type arguments). The only mechanism that a subclass can use to provide an infinite number of
implementations is by providing the method implementation as a generic “template.”

For example, the following implicit override of IX::Do is acceptable:

.class public A implements IX
{
...
.method public virtual final int32 Do<T>(!!T argT) // Implicit override
{
...
}

...
}

CHAPTER 12 ■ GENERIC METHODS 253

Ch12_6463_CMP2 7/18/06 9:25 PM Page 253

Explicitly overriding generic virtual methods is slightly more complex than even explicitly
overriding virtual methods of generic classes: you have to supply the signature of the overrid-
den method and the generic arity of the overridden method itself (not the generic arity of the
overridden method’s class). So, the explicit override directives for generic virtual methods look
as follows (the construct <[1]> following the overridden method’s name is the method’s
generic arity):

.class public B implements IX
{
...
.method public virtual final int32 DoIt<T>(!!T argT) //Explicit override
{
.override method instance int32 IX::Do<[1]>(!!0) // !!0 is type arg of Do
...

}
...
}

.class public C implements IX
{
// Explicit override, long form:
.override method instance int32 IX::Do<[1]>(!!0) // !!0 is type arg of Do
with method instance int32 .this::DoIt<[1]>(!!0) // !!0 is type arg of DoIt

.method public virtual final int32 DoIt<T>(!!T argT)
{
...

}
...
}

To reiterate, overrides of generic methods by generic methods of different arity (including
nongeneric methods) or by instantiations of generic methods are illegal.

The type parameters of the overriding method cannot be constrained more restrictively
than the type parameters of the overridden method. The reason for this requirement is simple.
Suppose you override the method void A<T>() with the method void B<U>() and constrain U
more restrictively than T. Constraining a type parameter means narrowing the possible
choices of instantiation arguments, which means there will be types {Xi} that can substitute
for T but not for U. When you call virtually the instantiation of the overridden method, the CLR
checks the type argument compliance with the overridden method’s constraints, because it’s
the method that is called. So, you can call virtually void A<Xi>(), which means you will be
calling in fact void B<Xi>(), violating the constraints of U.

For example, the following code is wrong:

.class interface public abstract IX
{
.method public abstract virtual int32 Do<T>(!!T) {} // T unconstrained

}
...

CHAPTER 12 ■ GENERIC METHODS254

Ch12_6463_CMP2 7/18/06 9:25 PM Page 254

.class public A implements IX
{
...
.method public virtual int32 Do<.ctor T>(!!T t) // T constrained
{
...
}

...
}

The previous code snippets are slightly modified fragments of the sample Gen_virt.il,
which you can download from the Apress Web site. The sample also shows the definition and
usage of a generic .ctor:

.assembly extern mscorlib { auto }

.assembly gen_virt{}

.module gen_virt.exe

#define DEFLT_CTOR ".method public specialname void .ctor()
{ldarg.0; call instance void .base::.ctor(); ret;}"

.typedef method void [mscorlib]System.Console::WriteLine(string) as PrintString

.typedef method void [mscorlib]System.Console::WriteLine(int32) as PrintInt

.typedef [mscorlib]System.Type as SysType

// Non-generic interface with generic method
.class public interface IX
{
.method public virtual abstract int32 Do<T>(!!T theT){}

}

// Implicit override of generic virtual method
.class public A implements IX
{
DEFLT_CTOR
.method public virtual int32 Do<T>(!!T theT)
{
ldarga.s theT
constrained. !!T
callvirt instance string object::ToString()
call PrintString
ldc.i4.2
ret

}
}

// Explicit override of generic method, short form
.class public B implements IX

CHAPTER 12 ■ GENERIC METHODS 255

Ch12_6463_CMP2 7/18/06 9:25 PM Page 255

{
DEFLT_CTOR
.method public virtual int32 DoIt<T>(!!T theT)
{
.override method instance int32 IX::Do<[1]>(!!0)
ldarga.s theT
constrained. !!T
callvirt instance string object::ToString()
call PrintString
ldc.i4.3
ret

}
}

// Generic instance constructor and
// Explicit override of generic method, long form
.class public C implements IX
{
.method public specialname void .ctor<U>(!!U u)
{
ldarg.0
call instance void .base::.ctor()

ldtoken !!U
call class SysType SysType::GetTypeFromHandle(

valuetype [mscorlib]System.RuntimeTypeHandle)
callvirt instance string SysType::ToString()
call PrintString

ldarga.s u
constrained. !!U
callvirt instance string object::ToString()
call PrintString

ret
}
.override method instance int32 IX::Do<[1]>(!!0)
with method instance int32 .this::DoIt<[1]>(!!0)

.method public virtual int32 DoIt<T>(!!T theT)
{
ldarga.s theT
constrained. !!T
callvirt instance string object::ToString()
call PrintString
ldc.i4.4
ret

CHAPTER 12 ■ GENERIC METHODS256

Ch12_6463_CMP2 7/18/06 9:25 PM Page 256

}
}

// The executing method
.method public static void Exec()
{
.entrypoint

newobj instance void A::.ctor()
ldstr "Hehe"
callvirt instance int32 IX::Do<string>(!!0)
call PrintInt

newobj instance void B::.ctor()
ldstr "Haha"
callvirt instance int32 IX::Do<string>(!!0)
call PrintInt

ldstr "Huhu"
newobj instance void C::.ctor<string>(!!0)
ldstr "Hoho"
callvirt instance int32 IX::Do<string>(!!0)
call PrintInt

ret
}

Summary of the Metadata Validity Rules
One metadata table is specific to the generic methods—the MethodSpec table. The records of
this table contain two entries:

• Method (coded token of type MethodDefOrRef). A token of the instantiated generic
method definition. Must be a valid reference to the Method or MemberRef table.

• Instantiation (offset in the #Blob stream). The instantiation signature must be a valid
nonzero offset.

The signature of a generic method has the calling convention bit IMAGE_CEE_CS_CALLCONV_
GENERIC (0x10) set.

The generic methods cannot have a vararg calling convention.
The type parameters of a generic method should not have the constraint flags + (covari-

ance) and – (contravariance). These constraints are not applicable to the type parameters of
generic methods.

The flags of a generic method definition cannot contain the pinvokeimpl flag.
The implementation flags of a generic method definition cannot be native, unmanaged,

internalcall, or runtime.
Class constructors (.cctor) cannot be generic.

CHAPTER 12 ■ GENERIC METHODS 257

Ch12_6463_CMP2 7/18/06 9:25 PM Page 257

Ch12_6463_CMP2 7/18/06 9:25 PM Page 258

Inside the
Execution Engine

P A R T 4

■ ■ ■

Ch13_6463_FINAL 7/27/06 7:06 PM Page 259

Ch13_6463_FINAL 7/27/06 7:06 PM Page 260

IL Instructions

When a method is executed, three categories of memory local to the method plus one
category of external memory are involved. All these categories represent typed data slots,
not simply an address interval as is the case in the unmanaged world. The external memory
manipulated from the method is the community of the fields the method accesses (except the
fields of value types belonging to the local categories). The local memory categories include
an argument table, a local variable table, and an evaluation stack. Figure 13-1 describes data
transitions between these categories. As you can see, all IL instructions resulting in data trans-
fer have the evaluation stack as a source or a destination, or both.

Figure 13-1. Method memory categories

The number of slots in the argument table is inferred from the method signature at the
call site (not from the method signature specified when the method is defined—remember
vararg methods). The number of slots in the local variable table is inferred from the local

Fields the Method Accesses

Evaluation
Stack

Argument Table

Local Variable Table

Method

261

C H A P T E R 1 3

■ ■ ■

Ch13_6463_FINAL 7/27/06 7:06 PM Page 261

variable signature whose token is specified in the method header. The number of slots in the
evaluation stack is defined by the MaxStack value of the method header, specified in ILAsm by
the .maxstack directive.

The slots of the argument and local variable tables have static types, which can be any of
the types defined in the .NET Framework and the application. The slots of the evaluation stack
hold different types at different times during the course of the method execution. The types
of slots change as the computations progress, and the same stack slots are used for different
values. The execution engine of the common language runtime implements a coarser type
system for the evaluation stack: the only types a stack slot can have at a given moment are
int32, native int, int64, Float (the current implementation uses 64-bit floating-point repre-
sentation, which covers both float32 and float64 types), & (a managed pointer), ObjectRef
(an object reference, which is an instance pointer to an object), or an instance of a value type.

The IL instruction sequences that make up the IL code of a method can be valid or verifi-
able, or both, or neither. The concept of validity is easy to grasp: invalid instruction sequences
are rejected by the JIT compiler, so nothing really bad can happen if you emit an invalid
sequence—except that your code won’t run.

Verifiability of the code is a security issue, not a compilation issue. The verifiable code is
guaranteed to access only the memory it is allowed to access and hence is not capable of any
malice or hidden hacks, so you can download a verifiable component from a remote location
and run it without fear. If the code is deemed unverifiable—that is, if the code contains seg-
ments that just might contain a hack—the runtime security system will not allow it to be run
except from a local disk. (I’ll discuss the verifiability of IL code in the “Code Verifiability” sec-
tion.) Generally, it’s a good idea to check your executables with the PEVerify utility, distributed
with the Microsoft .NET Framework SDK. This utility provides metadata validation and IL
code verification, which includes checking both aspects—code validity and verifiability.

IL instructions consist of an operation code (opcode), which for some instructions is fol-
lowed by an instruction parameter. Opcodes are either 1 byte or 2 bytes long; in the latter case,
the first byte of the opcode is always 0xFE. In later sections of this chapter, opcodes are speci-
fied in parentheses following the instruction specification. Some instructions have synonyms,
which I’ve also listed in parentheses immediately after the principal instruction name.

Long-Parameter and Short-Parameter Instructions
Many instructions that take an integer or an unsigned integer as a parameter have two forms.
The long-parameter form requires a 4-byte integer, and the short-parameter form, recognized
by the suffix .s, requires a 1-byte integer. Short-parameter instructions are used when the
value of the parameter is in the range –128 through 127 for signed parameters and in the range
0 through 255 for unsigned parameters. The long-parameter form of an instruction can also be
used for parameters within these ranges, but it leads to unnecessary bloating of the IL code.

Instructions that take a metadata token as a parameter don’t have short forms: metadata
tokens are always used in the IL stream in uncompressed and uncoded form, as 4-byte
unsigned integers.

The byte order of the integers embedded in the IL stream must be little endian—that is,
the least significant byte comes first.

CHAPTER 13 ■ IL INSTRUCTIONS262

Ch13_6463_FINAL 7/27/06 7:06 PM Page 262

Labels and Flow Control Instructions
Flow control instructions include branching instructions, the switch instruction, exiting and
ending instructions used with managed EH blocks, and a return instruction.

All these instructions, except the return instruction, use integer offsets (in bytes) from the
current position within the method IL code to specify the target instruction. The “current posi-
tion” in this case is the offset of the beginning of the next instruction—the one following the
flow control instruction. The target offset (which is the sum of the current position and the off-
set specified in the branching instruction) must point at the beginning of some instruction of
this method. In other words, the target offset cannot be less than zero, cannot be larger than
the method’s code size, and cannot point at the middle of an instruction. If the target instruc-
tion is prefixed (the prefix instructions are discussed later in this chapter), the target offset
cannot point at the prefixed instruction directly and must point at the prefix instruction. From
the flow control point of view, a combination of a prefix instruction and a prefixed instruction
is a single instruction.

Unconditional Branching Instructions
Unconditional branching instructions take no arguments from the stack and have a signed
integer parameter. The parameter specifies the offset in bytes from the current position
(which is the beginning of the next instruction—the one following the branching instruction)
within the IL stream. The ILAsm notation does allow you to specify the offset explicitly (for
example, br -234), but this practice is not recommended for an obvious reason: it’s difficult to
calculate the offset correctly when you’re writing in a programming language.

It is much safer and less troublesome to use labels instead, letting the ILAsm compiler
calculate the correct offsets. Labels, which you’ve already encountered many times, are simple
names followed by a colon:

...
Loop:
...
br Loop
...

By default, the IL assembler does not automatically choose between long-parameter
and short-parameter forms. Thus, if you specify a short-parameter instruction and put the
target label farther away than the short parameter permits, the calculated offset is truncated
to 1 byte, and the IL assembler issues an error message. Version 2.0 of the IL assembler features
the command-line option /OPT, which turns on the automatic replacement of long-parameter
instructions by the short-parameter instructions whenever the parameter size permits.

Unconditional branching instructions take nothing from the evaluation stack and put
nothing on it.

• br <int32> (0x38). Branch <int32> bytes from the current position.

• br.s <int8> (0x2B). The short-parameter form of br.

CHAPTER 13 ■ IL INSTRUCTIONS 263

Ch13_6463_FINAL 7/27/06 7:06 PM Page 263

Conditional Branching Instructions
Conditional branching instructions differ from the unconditional instructions in one aspect
only: they branch only if the condition (<value>, which they take from the evaluation stack) is
true (nonzero) or false (zero):

• brfalse (brnull, brzero) <int32> (0x39). Branch if <value> is 0.

• brfalse.s (brnull.s, brzero.s) <int8> (0x2C). The short-parameter form of brfalse.

• brtrue (brinst) <int32> (0x3A). Branch if <value> is nonzero.

• brtrue.s (brinst.s) <int8> (0x2D). The short-parameter form of brtrue.

Comparative Branching Instructions
Comparative branching instructions take two values (<value1>, <value2>) from the evaluation
stack and compare them according to the <condition> specified by the opcode. Not all combi-
nations of types of <value1> and <value2> are valid; Table 13-1 lists the valid combinations.

Table 13-1. Valid Type Combinations in Comparison Instructions

Type of <valuei> Can Be Compared with Type

int32 int32, native int.

int64 int64.

native int int32, native int, & (equality or nonequality comparisons only).

Float Float. Without exception, all floating-point comparisons are formulated
as “<condition> or unordered”. Unordered is true when at least one of the
operands is NaN.

& (managed pointer) native int (equality or nonequality comparisons only), &. Unless the
compared values are pointers to the same array or value type or pointers
to pinned variables, comparing two managed pointers should be limited
to equality or nonequality comparisons, because the garbage collection
subsystem might move the managed pointers in an unpredictable way at
unpredictable moments.

ObjectRef ObjectRef (equality or nonequality comparisons only). “Greater-than”
unsigned comparison is also admissible and is used to compare an object
reference to null, because objects are subject to garbage collection, and
their references can be changed by the GC at will.

• beq <int32> (0x3B). Branch if <value1> is equal to <value2>.

• beq.s <int8> (0x2E). The short-parameter form of beq.

• bne.un <int32> (0x40). Branch if the two values are not equal. Integer values are inter-
preted as unsigned; floating-point values are compared unordered.

• bne.un.s <int8> (0x33). The short-parameter form of bne.un.

• bge <int32> (0x3C). Branch if <value1> is greater or equal to <value2>.

CHAPTER 13 ■ IL INSTRUCTIONS264

Ch13_6463_FINAL 7/27/06 7:06 PM Page 264

• bge.s <int8> (0x2F). The short-parameter form of bge.

• bge.un <int32> (0x41). Branch if greater or equal. Integer values are interpreted as
unsigned; floating-point values are compared unordered.

• bge.un.s <int8> (0x34). The short-parameter form of bge.un.

• bgt <int32> (0x3D). Branch if greater.

• bgt.s <int8> (0x30). The short-parameter form of bgt.

• bgt.un <int32> (0x42). Branch if greater. Integer values are interpreted as unsigned;
floating-point values are compared unordered.

• bgt.un.s <int8> (0x35). The short-parameter form of bgt.un.

• ble <int32>(0x3E). Branch if less or equal.

• ble.s <int8> (0x31). The short-parameter form of ble.

• ble.un <int32> (0x43). Branch if less or equal. Integer values are interpreted as
unsigned; floating-point values are compared unordered.

• ble.un.s <int8> (0x36). The short-parameter form of ble.un.

• blt <int32> (0x3F). Branch if less.

• blt.s <int8> (0x32). The short-parameter form of blt.

• blt.un <int32> (0x44). Branch if less. Integer values are interpreted as unsigned;
floating-point values are compared unordered.

• blt.un.s <int8> (0x37). The short-parameter form of blt.un.

The switch Instruction
The switch instruction implements a jump table. This instruction is unique in the sense that it
has not one, not two, but N+1 parameters following it, where N is the number of cases in the
switch. The first parameter is a 4-byte unsigned integer specifying the number of cases, and
the following N parameters are 4-byte signed integers specifying offsets to the targets (cases).
There is no short-parameter form of this instruction. The ILAsm notation is as follows:

switch(Label1, Label2,...,LabelN)
... // Default case
Label1:
...
Label2:
...
...
LabelN:
...

CHAPTER 13 ■ IL INSTRUCTIONS 265

Ch13_6463_FINAL 7/27/06 7:06 PM Page 265

As in the case of branching instructions, ILAsm syntax allows you to replace the labels in a
switch(...) instruction with explicit offsets, but I definitely do not recommend this.

The instruction takes one value from the stack and converts it to an unsigned integer.
It then switches to the target according to the value of this unsigned integer. A 0 value corre-
sponds to the first target offset on the list. If the value is greater than or equal to the number of
targets, the switch instruction is ignored, and control is passed to the instruction immediately
following it. In this sense, the default case in ILAsm is always the first (lexically) case of the
switch.

• switch <unsigned int32> <int32>...<int32> (0x45). Branch to one of the <unsigned
int32> offsets.

The break Instruction
This break instruction is not equivalent to the break statement in C, which is used as an exit
from the switch cases or loops. The break instruction in IL inserts a breakpoint into the IL
stream and is used to indicate that if a debugger is attached, execution will stop and control
will be given to the debugger. If a debugger is not present, the instruction does nothing. This
instruction does not have parameters and does not touch the evaluation stack.

• break (0x01). Debugging breakpoint.

Managed EH Block Exiting Instructions
The blocks of code involved in managed exception handling cannot be entered or exited by
simple branching because of the strict stack state requirements imposed on them. The leave
instruction, or its short-parameter form, is used to exit a guarded block (a try block) or an
exception handler block. You cannot use this instruction, however, to exit a filter, finally,
or fault block. (For more details about these blocks, see Chapter 14.)

The instruction has one integer parameter specifying the offset of the target and works
the same way as an unconditional branching instruction except that it empties the evaluation
stack before the branching. The ILAsm notation for this instruction is similar to the notation
for unconditional branching instructions: leave <label> or leave <int32>; the latter one is
highly unrecommended.

• leave <int32> (0xDD). Clear the stack, and branch <int32> bytes from the current
point.

• leave.s <int8> (0xDE). The short-parameter form of leave.

EH Block Ending Instructions
IL has two specific instructions to mark the end of filter, finally, and fault blocks. Unlike
leave, these instructions mark the lexical end of a block (the instruction that has the highest
offset in the block) rather than an algorithmic end or point of exit (which may just as well be
located in the middle of the block). These instructions have no parameters.

• endfilter (0xFE 0x11). The lexical end of a filter block. The instruction takes one
4-byte integer value from the evaluation stack and signals the execution engine
whether the associated exception handler should be engaged (a value of 1) or whether

CHAPTER 13 ■ IL INSTRUCTIONS266

Ch13_6463_FINAL 7/27/06 7:06 PM Page 266

the search for the handler for this particular exception should be continued (a value
other than 1), because this filter doesn’t know what to do with this particular exception.

• endfinally (endfault) (0xDC). The lexical end of a finally or fault block. This instruc-
tion clears the evaluation stack.

The ret Instruction
The return instruction—ret—returns from a called method to the call site (immediately after
the call site, to be precise). It has no parameters. If the called method should return a value of
a certain type, exactly one value of the required type must be on the evaluation stack at the
moment of return. The ret instruction causes this value to be removed from the evaluation
stack of the called method and put on the evaluation stack of the calling method. If the called
method returns void, its evaluation stack must be empty at the moment of return.

• ret (0x2A). Return from a method.

Arithmetical Instructions
Arithmetical operations deal with numeric data processing and include stack manipulation
instructions, constant loading instructions, indirect (by pointer) loading and storing instruc-
tions, arithmetical operations, bitwise operations, data conversion operations, logical
condition check operations, and block operations.

Stack Manipulation
Stack manipulation instructions work with the evaluation stack and have no parameters.

• nop (0x00). No operation; a placeholder only. The nop instruction is not exactly a stack
manipulation instruction, since it does not touch the stack, but I’ve included it here
rather than creating a separate category for it. The nop instruction is somewhat useful
only in that, as it is a distinct opcode, a line of source code can be bound to it in the
PDB file containing the debug information. The Visual Basic compiler introduces a lot
of nop instructions because it wants to bind each and every line of the source code to
the IL code. The reasoning behind this is not clear; perhaps the Visual Basic program-
mers want to be able to put breakpoints on comment lines.

Another useful application of the nop instructions is specific to version 2.0 of the com-
mon language runtime (or, more exactly, its JIT compiler). Compilers, emitting the
debug information into the PDB files, specify so-called code points, which bind source
code lines and columns to offsets in the method code. In versions 1.0 and 1.1, the JIT
compiler provided the ability to set the breakpoints at any code point specified in the
PDB file. In version 2.0, an “optimized” mode was introduced, in which the JIT compiler
effectively ignores the code points specified in the PDB and allows setting the break-
points only according to some “heuristics.” These heuristics include, for example, the
moments when the evaluation stack is empty or when nop is encountered. Empty
evaluation stack heuristics work for most imperative high-level languages, because, as a
rule, each completed statement in these languages translates into code that begins and
ends with the evaluation stack empty. This does not work, of course, for ILAsm, so in

CHAPTER 13 ■ IL INSTRUCTIONS 267

Ch13_6463_FINAL 7/27/06 7:06 PM Page 267

“optimized” mode you cannot set a breakpoint on an arbitrary instruction, and you
cannot “walk” the ILAsm code instruction by instruction under a debugger. Inserting
nop instructions after each meaningful instruction would probably help, but it is not a
feasible option. Fortunately, the traditional mode, which allows setting the breakpoints
according to PDB code points, is also supported in version 2.0. But I had to fight for
preserving it and explain at lengths why it is important. You can find more details of
debug modes in Chapter 16.

• dup (0x25). Duplicate the value on the top of the stack. If the stack is empty, the JIT
compiler fails because of the stack underflow.

• pop (0x26). Remove the value from the top of the stack. The value is lost. If the stack is
empty, the JIT compiler fails. It’s not healthy to invoke dup or pop on an empty stack.

Constant Loading
Constant loading instructions take at most one parameter (the constant to load) and load it
on the evaluation stack. The ILAsm syntax requires explicit specification of the constants (in
other words, you cannot use a variable or argument name), in decimal or hexadecimal form:

ldc.i4 –1
ldc.i4 0xFFFFFFFF

Some instructions have no parameters because the value to be loaded is specified by the
opcode itself.

Note that for integer and floating-point values, the slots of the evaluation stack are either
4- or 8-bytes wide, so the constants being loaded are converted to the suitable size.

• ldc.i4 <int32> (0x20). Load <int32> on the stack.

• ldc.i4.s <int8> (0x1F). Load <int8> on the stack.

• ldc.i4.m1 (ldc.i4.M1) (0x15). Load –1 on the stack.

• ldc.i4.0 (0x16). Load 0.

• ldc.i4.1 (0x17). Load 1.

• ldc.i4.2 (0x18). Load 2.

• ldc.i4.3 (0x19). Load 3.

• ldc.i4.4 (0x1A). Load 4.

• ldc.i4.5 (0x1B). Load 5.

• ldc.i4.6 (0x1C). Load 6.

• ldc.i4.7 (0x1D). Load 7.

• ldc.i4.8 (0x1E). Load 8. (I should have listed these in reverse order so then we could
imagine ourselves on Cape Canaveral.)

• ldc.i8 <int64> (0x21). Load <int64> on the stack.

CHAPTER 13 ■ IL INSTRUCTIONS268

Ch13_6463_FINAL 7/27/06 7:06 PM Page 268

• ldc.r4 <float32> (0x22). Load <float32> (single-precision) on the stack.

• ldc.r8 <float64> (0x23). Load <float64> (double-precision) on the stack. ILAsm
permits the use of integer parameters or byte arrays in both the ldc.r4 and ldc.r8
instructions; this is useful when you need to load special floating-point codes denoting
positive or negative infinity or NaN. In such cases, the integers are either converted to
floating-point numbers or interpreted as binary images of the floating-point numbers;
the byte arrays are always interpreted as such binary images:

• ldc.r4 1078530000 loads floating-point number 1078530000.0.

• ldc.r4 float32(1078530000) loads 3.1415901184082.

• ldc.r4 (D0 0F 49 40) loads 3.1415901184082.

Indirect Loading
An indirect loading instruction takes a managed pointer (&) or an unmanaged pointer (native
int) from the stack, retrieves the value at this pointer, and puts the value on the stack. The
type of the value to be retrieved is defined by the opcode. The indirect loading instructions
have no parameters.

• ldind.i1 (0x46). Load a signed 1-byte integer from the location specified by the pointer
taken from the stack.

• ldind.u1 (0x47). Load an unsigned 1-byte integer.

• ldind.i2 (0x48). Load a signed 2-byte integer.

• ldind.u2 (0x49). Load an unsigned 2-byte integer.

• ldind.i4 (0x4A). Load a signed 4-byte integer.

• ldind.u4 (0x4B). Load an unsigned 4-byte integer.

• ldind.i8 (ldind.u8) (0x4C). Load an 8-byte integer, signed or unsigned.

• ldind.i (0x4D). Load native int, an integer the size of a pointer.

• ldind.r4 (0x4E). Load a single-precision floating-point value.

• ldind.r8 (0x4F). Load a double-precision floating-point value.

• ldind.ref (0x50). Load an object reference.

Indirect Storing
Indirect storing instructions take a value and an address, in that order, from the stack and store
the value at the location specified by the address. Since we are copying the memory (stack slot to
specified location) without the need to interpret it, all we care about really is the size of the value
to be stored. That’s why the indirect storing instructions for integers don’t have “unsigned” mod-
ifications. The address can be a managed or an unmanaged pointer. The type of the value to be
stored is specified in the opcode. These instructions have no parameters.

CHAPTER 13 ■ IL INSTRUCTIONS 269

Ch13_6463_FINAL 7/27/06 7:06 PM Page 269

• stind.ref (0x51). Store an object reference.

• stind.i1 (0x52). Store a 1-byte integer.

• stind.i2 (0x53). Store a 2-byte integer.

• stind.i4 (0x54). Store a 4-byte integer.

• stind.i8 (0x55). Store an 8-byte integer.

• stind.i (0xDF). Store a pointer-size integer.

• stind.r4 (0x56). Store a single-precision floating-point value.

• stind.r8 (0x57). Store a double-precision floating-point value.

Arithmetical Operations
All instructions performing the arithmetical operations except the negation operation take
two operands from the stack and put the result on the stack. If the result value does not fit
the result type, the value is truncated. Table 13-2 lists the admissible type combinations of
operands and their corresponding result types.

Table 13-2. Admissible Operand Types and Their Result Types in Arithmetical Operations

Operand Type Operand Type Result Type

int32 int32 int32

native int native int native int

int32 native int native int

int64 int64 int64

int32, native int & (addition only, unverifiable) &

& int32, native int (addition or &
subtraction only, unverifiable)

Float Float (except unsigned division) Float

& & (addition only, unverifiable) native int

The arithmetical operation instructions are as follows:

• add (0x58). Addition.

• sub (0x59). Subtraction.

• mul (0x5A). Multiplication. For floating-point numbers, which have the special values
infinity and NaN, the following rule applies:

0 * infinity = NaN

• div (0x5B). Division. For integers, division by 0 results in a DivideByZero exception.
For floating-point numbers, the following rule applies:

0 / 0 = NaN, infinity / infinity = NaN, x / infinity = 0

CHAPTER 13 ■ IL INSTRUCTIONS270

Ch13_6463_FINAL 7/27/06 7:06 PM Page 270

• div.un (0x5C). Division of operands treated as unsigned (integer operands only).

• rem (0x5D). Remainder, modulo. For integers, modulo 0 results in a DivideByZero excep-
tion. For floating-point numbers, the following rule applies:

infinity rem x = NaN, x rem 0 = NaN, x rem infinity = x

• rem.un (0x5E). The remainder of unsigned operands (integer operands only).

• neg (0x65). Negate—that is, invert the sign. This is the only unary arithmetical opera-
tion. It takes one operand rather than two from the evaluation stack and puts the result
back. This operation is not applicable to managed pointers or object references but is
applicable to unmanaged pointers. With integers, a peculiar situation can occur in
which the maximum negative number does not change after negation because of the
overflow condition during the operation, as shown in this example:

ldc.i4 0x80000000 // Max. negative number for int32,
//-2147483648

neg
call void [mscorlib]System.Console::WriteLine(int32)
// Output: -2147483648;
// The same effect with subtraction:
ldc.i4.0
ldc.i4 0x80000000
sub
call void [mscorlib]System.Console::WriteLine(int32)
// Output: -2147483648;

The previous problem is not in any way IL specific; it stems from the binary representa-
tion of integer numbers. Floating-point numbers don’t have this problem. Negating NaN
returns NaN because NaN, which is not a number, has no sign.

If an arithmetical operation is applied to integer operands and the result overflows the
target, the result is bit truncated to fit the target type, with most significant bits thrown away:

ldc.i4 0xFFFFFFF0 // 4294967280
ldc.i4 0x000000FF // 255
add
call void [mscorlib]System.Console::WriteLine(int32)
// Output: 239 (0xEF);

When int32 and native int are used as operands of arithmetic instructions on a 64-bit
platform, int32 operand is sign extended to native int.

Overflow Arithmetical Operations
Overflow arithmetical operations are similar to the arithmetical operations described in the
preceding section except that they work with integer operands only and generate an Overflow
exception if the result does not fit the target type. The ILAsm notation for the overflow arithmeti-
cal operations contains the suffix .ovf following the operation kind. The type compatibility list,
shown in Table 13-3, is similar to the list shown in Table 13-2.

CHAPTER 13 ■ IL INSTRUCTIONS 271

Ch13_6463_FINAL 7/27/06 7:06 PM Page 271

Table 13-3. Acceptable Operand Types and Their Result Types in Overflow Arithmetical Operations

Operand Type Operand Type Result Type

int32 int32 int32

native int native int native int

int32 native int native int

int64 int64 int64

int32, native int & (unsigned addition only, unverifiable) &

& int32, native int (unsigned addition &
or subtraction only, unverifiable)

& & (unsigned subtraction, unverifiable) native int

• add.ovf (0xD6). Addition.

• add.ovf.un (0xD7). Addition of unsigned operands.

• sub.ovf (0xDA). Subtraction.

• sub.ovf.un (0xDB). Subtraction of unsigned operands.

• mul.ovf (0xD8). Multiplication.

• mul.ovf.un (0xD9). Multiplication of unsigned operands.

Bitwise Operations
Bitwise operations have no parameters and are defined for integer types only; floating-point,
pointer, and object reference operands are not allowed. As a result, the related operand type
compatibility list, shown in Table 13-4, is pretty simple.

Table 13-4. Acceptable Operand Types and Their Result Types in Bitwise Operations

Operand Type Operand Type Result Type

int32 int32 int32

int32 native int native int

int64 int64 int64

Three of the bitwise operations are binary, taking two operands from the stack and plac-
ing one result on the stack; and one is unary, taking one operand from the stack and placing
one result on the stack:

• and (0x5F). Bitwise AND (binary).

• or (0x60). Bitwise OR (binary).

• xor (0x61). Bitwise exclusive OR (binary).

CHAPTER 13 ■ IL INSTRUCTIONS272

Ch13_6463_FINAL 7/27/06 7:06 PM Page 272

• not (0x66). Bitwise inversion (unary). This operation (which is the equivalent of ldc.i4.1;
add; neg;), rather than neg, can be used (to some extent) for the integer sign inversion
of the maximum negative integer:

ldc.i4 0x80000000 // Max. negative number for int32,
// -2147483648

not
call void [mscorlib]System.Console::WriteLine(int32)
// Output: 2147483647 (0x7FFFFFFF);
// Of course, it's not +2147483648,
// which cannot be with int32,
// but at least we have the max. positive number

When int32 and native int are used as operands of bitwise instructions on a 64-bit
platform, int32 operand is sign-extended to native int.

Shift Operations
Shift operations have no parameters and are defined for integer operands only. The shift
operations are binary: they take from the stack the shift count and the value being shifted, in
that order, and put the shifted value on the stack. The result always has the same type as the
operand being shifted, which can be of any integer type. The type of the shift count cannot be
int64 and is limited to int32 or native int.

• shl (0x62). Shift left.

• shr (0x63). Shift right (the most significant bits of the result assume the value of the sign
bit of the value being shifted).

• shr.un (0x64). Shift right, treating the shifted value as unsigned (the most significant
bits of the result assume the zero value).

It is interesting that, as you can see, there are no rotational shift operations in the IL, and
it is not obvious how these operations could be implemented through shl and shr.un, because
rotational shift operations are size specific: rol(i, n) == (shl(i, n%sizeof(i)) | shr.un(i,
sizeof(i)-n%sizeof(i))), where i is the operand being shifted and n is the shift count.

Conversion Operations
The conversion operations have no parameters. They take a value from the stack, convert it
to the type specified by the opcode, and put the result back on the stack. The specifics of the
conversion obviously depend on the type of the converted value and the target type (the type
to which the value is converted). If the type of the value on the stack is the same as the target
type, no conversion is necessary, and the operation itself is doing nothing more than bloating
the IL code.

For integer source and target types, several rules apply. If the target integer type is
narrower than the source type (for example, int32 to int16, or int64 to int32), the value is
truncated—that is, the most significant bytes are thrown away. If the situation is the oppo-
site—if the target integer type is wider than the source—the result is either sign-extended or
zero-extended, depending on the type of conversion. Conversions to signed integers use sign-
extension, and conversions to unsigned integers use zero-extension.

CHAPTER 13 ■ IL INSTRUCTIONS 273

Ch13_6463_FINAL 7/27/06 7:06 PM Page 273

If the source type is a pointer, it can be converted to either unsigned int64 or native
unsigned int. In either case, if the converted pointer was managed, it is dropped from the
GC tracking and is not automatically updated when the GC rearranges the memory layout.
A pointer cannot be used as a target type.

If both source and target types are floating point, the conversion merely results in a
change of precision. In float-to-integer conversions, the values are truncated toward 0—for
example, the value 1.1 is converted to 1, and the value –2.3 is converted to –2. In integer-to-
float conversions, the integer value is simply converted to floating point, possibly losing less
significant mantissa bits.

Object references cannot be subject to conversion operations either as a source or as a
target.

• conv.i1 (0x67). Convert the value to int8.

• conv.u1 (0xD2). Convert the value to unsigned int8.

• conv.i2 (0x68). Convert the value to int16.

• conv.u2 (0xD1). Convert the value to unsigned int16.

• conv.i4 (0x69). Convert the value to int32.

• conv.u4 (0x6D). Convert the value to unsigned int32.

• conv.i8 (0x6A). Convert the value to int64.

• conv.u8 (0x6E). Convert the value to unsigned int64. This operation can be applied to
pointers.

• conv.i (0xD3). Convert the value to native int.

• conv.u (0xE0). Convert the value to native unsigned int. This operation can be applied
to pointers.

• conv.r4 (0x6B). Convert the value to float32.

• conv.r8 (0x6C). Convert the value to float64.

• conv.r.un (0x76). Convert an unsigned integer value to floating point.

Overflow Conversion Operations
Overflow conversion operations differ from the conversion operations described in the pre-
ceding section in two aspects: the target types are exclusively integer types, and an Overflow
exception is thrown whenever the value must be truncated to fit the target type. In short, the
story is the same as it is with overflow arithmetical operations and arithmetical operations.

• conv.ovf.i1 (0xB3). Convert the value to int8.

• conv.ovf.u1 (0xB4). Convert the value to unsigned int8.

• conv.ovf.i1.un (0x82). Convert an unsigned integer to int8.

• conv.ovf.u1.un (0x86). Convert an unsigned integer to unsigned int8.

CHAPTER 13 ■ IL INSTRUCTIONS274

Ch13_6463_FINAL 7/27/06 7:06 PM Page 274

• conv.ovf.i2 (0xB5). Convert the value to int16.

• conv.ovf.u2 (0xB6). Convert the value to unsigned int16.

• conv.ovf.i2.un (0x83). Convert an unsigned integer to int16.

• conv.ovf.u2.un (0x87). Convert an unsigned integer to unsigned int16.

• conv.ovf.i4 (0xB7). Convert the value to int32.

• conv.ovf.u4 (0xB8). Convert the value to unsigned int32.

• conv.ovf.i4.un (0x84). Convert an unsigned integer to int32.

• conv.ovf.u4.un (0x88). Convert an unsigned integer to unsigned int32.

• conv.ovf.i8 (0xB9). Convert the value to int64.

• conv.ovf.u8 (0xBA). Convert the value to unsigned int64.

• conv.ovf.i8.un (0x85). Convert an unsigned integer to int64.

• conv.ovf.u8.un (0x89). Convert an unsigned integer to unsigned int64.

• conv.ovf.i (0xD4). Convert the value to native int.

• conv.ovf.u (0xD5). Convert the value to native unsigned int.

• conv.ovf.i.un (0x8A). Convert an unsigned integer to native int.

• conv.ovf.u.un (0x8B). Convert an unsigned integer to native unsigned int.

Logical Condition Check Instructions
Logical condition check operations are similar to comparative branching instructions except
that they result not in branching but in putting the condition check result on the stack. The
result type is int32, and its value is equal to 1 if the condition checks and 0 otherwise; in other
words, logically the result is a Boolean value. The two operands being compared are taken
from the stack, and since no branching is performed, the condition check instructions have
no parameters.

The logical condition check instructions are useful when you want to store the result of
the condition check for multiple use or for later use. If you need the condition check to decide
only once and on the spot whether you need to branch, you would be better off using a com-
parative branching instruction.

The admissible combinations of operand types are the same as for comparative branch-
ing instructions (see Table 13-1). There are, however, fewer condition check instructions than
conditional branching operations: some conditions are just logical negations of other condi-
tions (“not equal” is not “equal,” “less or equal” is not “greater,” and so on), so it would be
redundant to introduce special check instructions for such conditions.

• ceq (0xFE 0x01). Check whether the two values on the stack are equal.

• cgt (0xFE 0x02). Check whether the first value is greater than the second value. It’s the
stack we are working with, so the “second” value is the one on the top of the stack.

CHAPTER 13 ■ IL INSTRUCTIONS 275

Ch13_6463_FINAL 7/27/06 7:06 PM Page 275

• cgt.un (0xFE 0x03). Check whether the first value is greater than the second; integer
values are compared as unsigned, and floating-point values are compared as
unordered.

• clt (0xFE 0x04). Check whether the first value is less than the second value.

• clt.un (0xFE 0x05). Check whether the first value is less than the second; integer values
are compared as unsigned, and floating-point values are compared as unordered.

• ckfinite (0xC3). This unary operation, which takes only one value from the stack, is
applicable to floating-point values only. It throws an Arithmetic exception if the value
is +infinity, -infinity, or NaN. Otherwise, the operation puts the same value back on
the stack.

Block Operations
Two IL instructions deal with blocks of memory regardless of the type or types that make up
this memory. Because of their type blindness, both instructions are unverifiable.

• cpblk (0xFE 0x17). Copy a block of memory. The instruction has no parameters and
takes three operands from the stack in the following order: the size (in bytes) of the
block to be copied (unsigned int32), the source address (a pointer or native int), and
the destination address (a pointer or native int). The source and destination addresses
must be aligned on the size of native int unless the instruction is prefixed with the
unaligned. instruction, described in “Prefix Instructions,” later in this chapter. The
cpblk instruction does not deduce the right direction of byte copying when the source
and destination areas overlap, so there is no guarantee in such case. The cpblk instruc-
tion puts nothing on the stack.

• initblk (0xFE 0x18). Initialize a block of memory. The instruction has no parameters
and takes three operands from the evaluation stack: the size of the block in bytes
(unsigned int32), the initialization value (int8), and the block start address (a pointer
or native int). The alignment rules mentioned apply to the block start address. The
initblk instruction puts nothing on the stack. As a result of this operation, each byte
within the specified block is assigned the initialization value.

Addressing Arguments and Local Variables
A special group of IL instructions is dedicated to loading the values of method arguments and
local variables on the evaluation stack and storing the values taken from the stack in local
variables and method arguments. It is to be noted that in the case of vararg methods, the
argument-addressing instructions described in the following sections cannot target the argu-
ments of the variable part of the signature.

CHAPTER 13 ■ IL INSTRUCTIONS276

Ch13_6463_FINAL 7/27/06 7:06 PM Page 276

Method Argument Loading
The following instructions are used for loading method argument values on the evaluation stack:

• ldarg <unsigned int16> (0xFE 0x09). Load the argument number <unsigned int16> on
the stack. The argument enumeration is zero based, but it’s important to remember
that instance methods have an “invisible” argument not specified in the method signa-
ture: the class instance pointer, this, which is always argument number 0. The static
methods don’t have such an “invisible” argument, so for them the argument number 0
is the first argument specified in the method signature. The total number of arguments
cannot exceed 65535 (0xFFFF), which means the argument ordinal cannot exceed
65534. This limitation stems from the fact that the Sequence entry of the Parameter
metadata table is only 2 bytes wide.

• ldarg.s <unsigned int8> (0x0E). The short-parameter form of ldarg.

• ldarg.0 (0x02). Load argument number 0 on the stack.

• ldarg.1 (0x03). Load argument number 1 on the stack.

• ldarg.2 (0x04). Load argument number 2 on the stack.

• ldarg.3 (0x05). Load argument number 3 on the stack.

Method Argument Address Loading
These two instructions are used for loading method argument addresses on the evaluation
stack:

• ldarga <unsigned int16> (0xFE 0x0A). Load the address of argument number
<unsigned int16> on the stack.

• ldarga.s <unsigned int8> (0x0F). The short-parameter form of ldarga.

Method Argument Storing
These two instructions are used for storing a value from the stack in a method argument slot:

• starg <unsigned int16> (0xFE 0x0B). Take a value from the stack and store it in argu-
ment slot number <unsigned int16>. The value on the stack must be of the same type
as the argument slot or must be convertible to the type of the argument slot. The con-
vertibility rules and effects are the same as those for conversion operations, discussed
earlier in this chapter.

• starg.s <unsigned int8> (0x10). The short-parameter form of starg.

CHAPTER 13 ■ IL INSTRUCTIONS 277

Ch13_6463_FINAL 7/27/06 7:06 PM Page 277

Method Argument List
The following instruction is used exclusively in vararg methods to retrieve the method argu-
ment list and put an instance of the value type [mscorlib]System.RuntimeArgumentHandle on
the stack. Chapter 10 discusses the application of this instruction.

• arglist (0xFE 0x00). Get the argument list handle.

Local Variable Loading
Local variable loading instructions are similar to argument loading instructions except that no
“invisible” items appear among the local variables, so local variable number 0 is always the
first one specified in the local variable signature.

• ldloc <unsigned int16> (0xFE 0x0C). Load the value of local variable number <unsigned
int16> on the stack. Like the argument numbers, local variable numbers can range from
0 to 65534 (0xFFFE). The value 65535, also admissible for unsigned 2-byte integers, is
excluded because otherwise the counter of local variables would have to be 4 bytes wide.
Limiting the number of the local variables, however standardized, seems arbitrary and
implementation specific, because the number of the local variables of a method is not
stored in the metadata or in the method header, so this limitation comes purely from one
particular implementation of the JIT compiler.

• ldloc.s <unsigned int8> (0x11). The short-parameter form of ldloc.

• ldloc.0 (0x06). Load the value of local variable number 0 on the stack.

• ldloc.1 (0x07). Load the value of local variable number 1 on the stack.

• ldloc.2 (0x08). Load the value of local variable number 2 on the stack.

• ldloc.3 (0x09). Load the value of local variable number 3 on the stack.

Local Variable Reference Loading
The following instructions load references (managed pointers) to the local variables on the
evaluation stack:

• ldloca <unsigned int16> (0xFE 0x0D). Load the address of local variable number
<unsigned int16> on the stack. The local variable number can vary from 0 to 0xFFFE.

• ldloca.s <unsigned int8> (0x12). The short-parameter form of ldloca.

Local Variable Storing
It would be strange to have local variables and be unable to assign values to them. The follow-
ing two instructions take care of this aspect of our life:

• stloc <unsigned int16> (0xFE 0x0E). Take the value from the stack, and store it in local
variable slot number <unsigned int16>. The value on the stack must be of the same
type as the local variable slot or must be convertible to the type of the local variable
slot. The convertibility rules and effects are the same as those for the conversion
operations discussed earlier in this chapter.

CHAPTER 13 ■ IL INSTRUCTIONS278

Ch13_6463_FINAL 7/27/06 7:06 PM Page 278

• stloc.s <unsigned int8> (0x13). The short-parameter form of stloc. You’ve probably
noticed that using short-parameter forms of argument and local variable manipulation
instructions results in a double gain against the standard form: not only is the parame-
ter 1 byte instead of 2, but also the opcode is shorter.

Local Block Allocation
With all due respect to the object-oriented approach, sometimes it is necessary (or just
convenient) to obtain a plain, C-style chunk of memory. The IL instruction set provides an
instruction for such allocation. It is to be noted, however, that this memory is available only
while the method is executing and is deallocated on the method exit (via ret or an exception).
Only the allocating method itself and the methods it calls can access this memory.

• localloc (0xFE 0x0F). Allocate a block of memory for the duration of the method execu-
tion. The instruction takes the block size (native unsigned int) from the evaluation
stack and puts a managed pointer (&) to the allocated block on the evaluation stack. If
not enough space is available on the native thread stack, a StackOverflow exception is
thrown. This instruction must not appear within any exception handling block. Like
any other block instruction, localloc is unverifiable.

Prefix Instructions
The prefix instructions listed in this section have no meaning per se but are used as prefixes
for the pointer-consuming instructions—that is, the instructions that take a pointer value
from the stack, such as ldind.*, stind.*, ldfld, stfld, ldobj, stobj, initblk, and stblk—that
immediately follow them. When used as prefixes of instructions that don’t consume pointers,
the prefix instructions are ignored and do not carry on to the nearest pointer-consuming
instruction.

• unaligned. <unsigned int8> (0xFE 0x12). Indicates that the pointer(s) on the stack are
aligned on <unsigned int8> rather than on the pointer size. The <unsigned int8>
parameter must be 1, 2, or 4.

• volatile. (0xFE 0x13). Indicates that the pointer on the stack is volatile—that is, the
value it points at can be modified from another thread of execution and the results of
its dereferencing therefore cannot be cached for performance considerations.

A prefix instruction affects only the immediately following instruction and does not mark
the respective pointer as unaligned or volatile throughout the entire method. Both prefixes can
be used with the same instruction—in other words, the pointer on the stack can be marked as
both unaligned and volatile; in such a case, the order of appearance of the prefixes does not
matter.

The ILAsm syntax requires the prefix instructions to be separated from the next instruc-
tion by at least a space symbol:

volatile. ldind.i4 // Correct

volatile.
ldind.i4 // Correct

volatile.ldind.i4 // Syntax error

CHAPTER 13 ■ IL INSTRUCTIONS 279

Ch13_6463_FINAL 7/27/06 7:06 PM Page 279

Such a mistake is unlikely with the unaligned. instruction because it requires an integer
parameter:

unaligned. 4 ldind.i4

The prefix instructions tail. and constrained. are specific to method calling, and the
prefix instruction readonly. is specific to array manipulation. These prefix instructions are
discussed in respective sections of this chapter.

Addressing Fields
Six instructions can be used to load a field value or an address on the stack or to store a value
from the stack in a field. A field signature does not indicate whether the field is static or instance,
so the IL instruction set defines separate instructions for dealing with instance and static fields.
Instructions dealing with instance fields take the instance pointer—an object reference if the
field addressed belongs to a class and a managed pointer if the field belongs to a value type—
from the stack.

• ldfld <token> (0x7B). Take the instance from the stack, and load the value of an
instance field on the stack. <token> specifies the field being loaded and must be a
valid FieldDef or MemberRef token, uncompressed and uncoded. The “instance” may
be an object reference, a managed pointer to instance of a value type, or an instance
of a value type itself. An unmanaged pointer to an instance of a value type can also be
used, but it renders the code unverifiable.

• ldsfld <token> (0x7E). Load the value of a static field on the stack.

• ldflda <token> (0x7C). Take the instance pointer from the stack, and load a managed
pointer to the instance field on the stack. Unlike ldfld, this instruction cannot use an
instance of a value type and takes only an object reference or a pointer (managed or
unmanaged) to an instance of a value type. Using an unmanaged pointer renders the
code unverifiable.

• ldsflda <token> (0x7F). Load a managed pointer to the static field on the stack.

• stfld <token> (0x7D). Take the value from the stack, take the instance pointer from the
stack, and store the value in the instance field. “The instance pointer” in this case, like
in ldflda instruction, is either an object reference or a pointer to an instance of a value
type. In this respect, stfld is asymmetric to ldfld.

• stsfld <token> (0x80). Store the value from the stack in the static field.

The ILAsm notation requires full field specification, which is resolved to <token> at
compile time:

ldfld int32 Foo.Bar::ii

The applicable conversion rules when loading and storing values are the same as those
discussed earlier. Note also that the fields cannot be of managed pointer type, as was dis-
cussed in Chapter 8.

CHAPTER 13 ■ IL INSTRUCTIONS280

Ch13_6463_FINAL 7/27/06 7:06 PM Page 280

Calling Methods
Methods can be called directly or indirectly. In addition, you can also use the special case
of a so-called tail call, discussed in this section. The method signature indicates whether
the method is instance or static, so separate instructions for instance and static methods are
unnecessary. What the method signature doesn’t hold, however, is information about whether
the method is virtual. As a result, separate instructions are used for calling virtual and nonvir-
tual methods. Besides, even a virtual method may be called as nonvirtual. In this case, the call
is not dispatched through the class’s virtual table, and all our nice overrides have no effect.
Because of that, the nonvirtual calls of the virtual methods have been declared unverifiable in
version 2.0 except in some specific contexts (see “Direct Calls”).

Method call instructions have one parameter: the token of the method being called,
either a MethodDef or a MemberRef. The arguments of the method call should be loaded on the
stack in order of their appearance in the method signature, with the last signature parameter
being loaded last, which is exactly the opposite of what you would normally expect. Instance
methods have an “invisible” first argument (an instance pointer, which is an object reference
for reference types or a managed pointer for value types) not present in the signature; when
an instance method is called, this instance pointer should be loaded on the stack first, preced-
ing all arguments corresponding to the method signature.

Unless the called method returns void, the return value is left on the stack by the callee
when the call is completed.

Direct Calls
The IL instruction set contains three instructions intended for the direct method calls (well,
“direct” in the sense that all these instructions directly specify the method being called; some
purists would not consider a virtual call “direct,” because under the hood it is done via the
v-table):

• jmp <token> (0x27). Abandon the current method and jump to the target method, spec-
ified by <token>, transferring the current arguments in their present state (which may
be different from the original state, because the calling method could change the argu-
ment values before the jump). Everything else of the current method, including local
variables and locally allocated memory, is abandoned. At the moment jmp is invoked,
the evaluation stack must be empty, and the arguments are transferred automatically.
Because of this, the signature of the target method must exactly match the signature of
the method invoking jmp. This instruction should not be used within EH blocks—.try,
catch, filter, fault, or finally blocks, discussed in Chapter 14—or within a synchro-
nized region (the code segment protected by a thread lock, such as a mutex). The jmp
instruction is unverifiable.

• call <token> (0x28). Call an instance or static method nonvirtually. You can also call a
virtual method, but in this case it is called not through the type’s v-table. (If this sounds
somehow vague to you, you might want to return to Chapter 10 and, more precisely, to
the sample file Virt_not.il.) The real difference between virtual and nonvirtual instance
methods becomes obvious when you create an instance of a class, cast it to the parent
type of the class, and then call instance methods on this “child-posing-as-parent”
instance. The nonvirtual methods are called directly, bypassing the child type’s v-table,

CHAPTER 13 ■ IL INSTRUCTIONS 281

Ch13_6463_FINAL 7/27/06 7:06 PM Page 281

so the parent’s methods will be called in this case. Virtual methods are called through
the v-table, and hence the overriding child’s methods will be called. To confirm this,
carry out a simple experiment: open the sample file Virt_not.il in a text editor, and
change callvirt instance void A::Bar() to call instance void A::Bar(). Then
recompile the sample, and run it.

• callvirt <token> (0x6F). Call the virtual method specified by <token>. This type of method
call is conducted through the instance’s v-table. It is possible to call a nonvirtual instance
method using callvirt. In this case, the method is called directly simply because the
method cannot be found in the v-table. But unlike call, the callvirt instruction first
checks the validity of the object reference (this pointer) before doing anything else, which
is a very useful feature. The C# compiler exploits it shamelessly, emitting callvirt to call
both virtual and nonvirtual instance methods of classes. I say “of classes” because callvirt
requires an object reference as the this pointer and will not accept a managed pointer to a
value type instance. To use callvirt with an instance of a value type, you need to box the
instance first, thus converting it to a class instance carrying the v-table.

CLR 2.0 considers nonvirtual calls of virtual methods unverifiable except in the following
cases:

• If the called method is final (cannot be overridden)

• If the instance reference is that of a boxed value type

• If the parent class of the called method is sealed

• If the calling method and the called method are instance methods of the same class

• If the instance pointer is a managed pointer to a value type

These exceptions cover almost all cases when the called virtual method is guaranteed not
to be overridden. I say “almost” because there is at least one such case not covered—when the
type of the object reference is reliably traceable and the called method belongs to this type:

.class public A
{

...

.method public virtual void f() { ... }
}
.class public B extends A
{

...

.method public virtual void f() { ... }
}
...
newobj instance void B::.ctor()
dup
// The objects on the stack are known to be B (not B's descendants cast to B)
call instance void B::f() // should be verifiable, the type matches the object
call instance void A::f() // unverifiable – the type doesn't match the object
...

CHAPTER 13 ■ IL INSTRUCTIONS282

Ch13_6463_FINAL 7/27/06 7:06 PM Page 282

Indirect Calls
Methods in IL can be called indirectly through the function pointer loaded on the evaluation
stack. This allows us to make calls to computed targets—for example, to call a method by a
function pointer returned by another method. Function pointers used in indirect calls are
unmanaged pointers represented by native int. Two instructions load a function pointer
to a specified method on the stack, and one other instruction calls a method indirectly:

• ldftn <token> (0xFE 0x06). Load the function pointer to the method specified by
<token> of MethodDef or MemberRef type.

• ldvirtftn <token> (0xFE 0x07). Take the object reference (the instance pointer) from
the stack, and load the function pointer to the method specified by <token>. The
method is looked up in the instance’s v-table.

• calli <token> (0x29). Take the function pointer from the stack, take all the arguments
from the stack, and make an indirect method call according to the method signature
specified by <token>. <token> must be a valid StandAloneSig token. The function
pointer must be on the top of the stack. If the method returns a value, it is pushed on
the stack at the completion of the call, just like in direct calls. The calli instruction is
unverifiable, which is not surprising, considering that the call is made via an unman-
aged pointer, which is itself unverifiable.

It’s easy enough to see that the combination ldftn/calli is equivalent to call, as long as
we don’t consider verifiability, and the combination ldvirtftn/calli is equivalent to callvirt.

The ILAsm notation requires full specification of the method in the ldftn and ldvirtftn
instructions, similar to the call and callvirt instructions. The method signature accompany-
ing the calli instruction is specified as <call_conv> <ret_type>(<arg_list>). For example:

.locals init (native int fnptr)

...
ldftn void [mscorlib]System.Console::WriteLine(int32)
stloc.0 // Store function pointer in local variable
...
ldc.i4 12345 // Load argument
ldloc.0 // Load function pointer
calli void(int32)
...

Tail Calls
Tail calls are similar to method jumps (jmp) in the sense that both lead to abandoning the
current method and passing the arguments to the tail-called (jumped-at) method. However,
since the arguments of a tail call have to be loaded on the evaluation stack explicitly (a tail
call discards the stack frame of the current method, unlike a jump, which preserves the stack
frame and can use the arguments already loaded), a tail call—unlike a jump—does not require
the entire signature of the called method to match the signature of the calling method; only
the return types must be the same or compatible. The tail calls are very useful in implement-
ing massively recursive methods: the caller’s stack frame is discarded in the process of a tail

CHAPTER 13 ■ IL INSTRUCTIONS 283

Ch13_6463_FINAL 7/27/06 7:06 PM Page 283

call, so there is no risk of overflowing the stack, no matter how deep the recursion is. This is
important for the functional languages, which use recursion instead of loops.

Tail calls are distinguished by the prefix instruction tail. immediately preceding a call,
callvirt, or calli instruction:

• tail. (0xFE 0x14). Mark the following call instruction as a tail call. This instruction has
no parameters and does not work with the stack. In ILAsm, this instruction—like the
other prefix instructions unaligned. and volatile., discussed earlier—must be sepa-
rated from the call instruction that follows it by at least a space symbol.

The difference between a method jump and a tail call is that the tail call instruction pair is
verifiable in principle, subject to the verifiability of the call arguments, as long as it is immedi-
ately followed (in the caller instruction stream) by the ret instruction. As is the case with other
prefix instructions, it is illegal to bypass the prefix and branch directly to the prefixed instruc-
tion, in this case, call, callvirt, or calli.

Constrained Virtual Calls
Constrained virtual calls were introduced in version 2.0 of the common language runtime in
order to deal with instantiations of generic types or methods when the type w

hose method is called is represented by a type parameter and hence equally might be a refer-
ence type or a value type:

.class public G<(IFoo)T> // Interface IFoo specifies method void Foo(int32)
{

.method public static void CallVirtFoo(!T t, int32 val)
{

// How do I get the object ref?
// If T is a reference type, I just need ldarg.0
// If T is a value type, I need ldarga.s 0 and then box
ldarg.1
callvirt instance void IFoo::Foo(int32)
...

Obviously, the applicable calling mechanism must be identified “on the spot,” when the
virtual call is about to be executed and the nature of the type instance becomes known. This
is not good—the IL code of the method becomes dependent on the nature of the generic
parameter.

The constrained virtual calls, unlike unconstrained calls and virtual calls, require a
managed pointer (&) to the type instance (this pointer), whether this instance is an object ref-
erence or a value type instance. In unconstrained calls, as you know, the this pointer must be
an object reference (O) or a managed pointer (&) to a value type instance. Uniform usage of a
managed pointer in constrained calls allows us to use the same IL instructions, “preparing”
the instance pointer for the virtual call:

.class public G<(IFoo)T> // Interface IFoo specifies method void Foo(int32)
{

.method public static void CallVirtFoo(!T t, int32 val)

CHAPTER 13 ■ IL INSTRUCTIONS284

Ch13_6463_FINAL 7/27/06 7:06 PM Page 284

{
ldarga.s 0 // load managed pointer to t
ldarg.1
constrained. !T
callvirt instance void IFoo::Foo(int32)

...

The applicable calling mechanism is identified as follows:

• If the type is a reference type (and hence the this pointer is a managed pointer to
object reference), then the this pointer is dereferenced yielding the object reference,
and the virtual call is executed on this object reference.

• If the type is a value type (and hence the this pointer is a managed pointer to a value
type instance) and the type implements the specified method, then the nonvirtual call
is executed on the this pointer; it is safe to do, because value types are sealed, and the
virtual methods implemented by them cannot be possibly overridden.

• If the type is a value type and it does not implement the specified method (must have
inherited it from its ancestors System.Object, System.ValueType and maybe System.Enum),
then the this pointer is dereferenced yielding a value type instance, which is then boxed
yielding an object reference, and the virtual call is executed on this object reference. We
cannot use the same trick here and call the method nonvirtually, because the value type
doesn’t implement it; but at least one of its ancestors does, so the method is present in the
(boxed) value type’s v-table.

Constrained calls are distinguished by the prefix instruction constrained. immediately
preceding a callvirt or ldvirtftn instruction:

• constrained. <token> (0xFE 0x16). Mark the following virtual call instruction as a
constrained call. The <token> usually is a TypeSpec token representing a generic type
variable ({E_T_VAR <ordinal>} or {E_T_MVAR <ordinal>}). However, <token> may be a
TypeRef or TypeDef token as well, which means that constrained virtual calls can be
used with nongeneric types.

The mechanism of constrained virtual calls unifies the way the methods can be called on
reference and value types and hence is very useful to compilers, which now don’t have to fig-
ure out whether the instance is an object reference or a value type instance. Considering that
some languages don’t even make a distinction between reference types and value types and
treat all types as objects, the constrained virtual call mechanism is indeed a good addition to
the IL instruction set.

Addressing Classes and Value Types
Being object oriented in its base, IL offers quite a few instructions dedicated specifically to
manipulating class and value type instances:

• ldnull (0x14). Load a null object reference on the stack. This is not the same as ldc.i4.0!
The resulting bits are the same (all zero), but the type of the top slot of the evaluation
stack becomes an object reference (O).

CHAPTER 13 ■ IL INSTRUCTIONS 285

Ch13_6463_FINAL 7/27/06 7:06 PM Page 285

• ldobj <token> (0x71). Load an instance of value type specified by <token> on the stack.
This instruction takes from the stack the managed pointer to the value type instance to
be loaded (obtained via the ldarga, ldloca, or ldflda/ldsflda instruction). <token>
must be a valid TypeDef, TypeRef, or TypeSpec token. The name of the instruction is
somewhat misleading, for it deals with value type instances rather than objects (class
instances). The ILAsm notation requires full specification of the value type so that it
can be resolved to the token. For example:

ldobj [.module other.dll]Foo.Bar

• stobj <token> (0x81). Take the value type value—no, that’s not a typo—from the stack,
take the managed pointer to the value type instance from the stack, and store the value
type value in the instance referenced by the pointer. <token> indicates the value type
and must be a valid TypeDef, TypeRef, or TypeSpec token. The ILAsm notation is similar
to that used for ldobj.

• ldstr <token> (0x72). Load a string reference on the stack. <token> is a token of a user-
defined string, whose RID portion is actually an offset in the #US blob stream. This
instruction performs a lot of work: by the token, the Unicode string is retrieved from
the #US stream, an instance of the [mscorlib]System.String class is created from the
retrieved string, and the object reference is pushed on the stack. In ILAsm, the string is
specified explicitly either as a composite quoted string:

ldstr "Hello"+" World!"

or as a byte array:

ldstr bytearray(A1 00 A2 00 A3 00 A4 00 A5 00 00 00)

In the first case, at compile time the composite quoted string is converted to Unicode
before being stored in the #US stream. In the second case, the byte array is stored “as is”
without conversion. It can be padded with one 0 byte to make the byte count even (if
you forget to do it, the IL assembler will do it as a courtesy). Storing a string in the #US
stream gives the compiler the string token, which it puts into the IL stream.

• cpobj <token> (0x70). Copy the value of one value type instance to another instance.
This instruction pops the source and the target instance pointers and pushes nothing
on the stack. Both instances must be of the value type specified by <token>, either a
TypeDef token or a TypeRef token. The ILAsm notation for this instruction is similar to
that used for ldobj or stobj.

• newobj <token> (0x73). Allocate memory for a new instance of a class—not a value
type—and call the instance constructor method specified by <token>. The object refer-
ence to newly created class instance is pushed on the stack. <token> must be a valid
MethodDef or MemberRef token of a .ctor. The instruction takes from the stack all the
arguments explicitly specified in the constructor signature but does not take the
instance pointer (no instance exists yet; it’s being created):

newobj instance void [mscorlib]System.Object::.ctor()

The newobj instruction is also used for array creation:

newobj instance void int32[0...,0...]::.ctor(int32, int32)

CHAPTER 13 ■ IL INSTRUCTIONS286

Ch13_6463_FINAL 7/27/06 7:06 PM Page 286

An array constructor takes as many parameters as there are undefined lower bounds
and sizes of the array being created. (Hence, the same number of integer values must
be loaded on the stack before newobj is invoked.) In the example just shown, both lower
bounds of the two-dimensional array are specified in the array type, so we need to
specify only two sizes.

• initobj <token> (0xFE 0x15). Initialize the value type instance. This instruction takes
an instance pointer—a managed pointer to a value type instance—from the stack.
<token> specifies the value type and must be a valid TypeDef, TypeRef, or TypeSpec
token. The initobj instruction zeroes all the fields of the value type instance, so if
you need more sophisticated initialization, you might want to define .ctor and call
it instead.

• castclass <token> (0x74). Cast a class instance to the class specified by <token>. This
instruction takes the object reference to the original instance from the stack and pushes
the object reference to the cast instance on the stack. <token> must be a valid TypeDef,
TypeRef, or TypeSpec token. If the specified cast is illegal, the instruction throws
InvalidCast exception.

• isinst <token> (0x75). Check to see whether the object reference on the stack is an
instance of the class specified by <token>. <token> must be a valid TypeDef, TypeRef,
or TypeSpec token. This instruction takes the object reference from the stack and
pushes the result on the stack. If the check succeeds, the result is an object reference,
as if castclass had been invoked; otherwise, the result is a null reference, as if ldnull
had been invoked. This instruction does not throw exceptions. The check succeeds
under the following conditions:

• If <token> indicates a class and the object reference on the stack is an instance of
this class or of any class derived from it

• If <token> indicates an interface and the object reference is an instance of the class
implementing this interface

• If <token> indicates a value type and the object reference is a boxed instance of this
value type

• box <token> (0x8C). Convert a value type instance to an object reference. <token> speci-
fies the value type being converted and must be a valid TypeDef, TypeRef, or TypeSpec
token. This instruction takes the value type instance from the stack, creates a new
instance of the type as an object, and pushes the object reference to this instance on
the stack. Since a copy of the instance is created, all further changes of the original
instance of the value type have no effect on the boxed instance.

• unbox <token> (0x79). Revert a boxed value type instance from the object form to its
value type form. <token> specifies the value type being converted and must be a valid
TypeDef, TypeRef, or TypeSpec token. This instruction takes an object reference from the
stack and pushes back a managed pointer to the value type instance. As you can see,
unbox is asymmetric to the box instruction: box takes an instance of value type, and
unbox returns a managed pointer to such instance; box creates a copy of the instance,
and unbox returns a pointer to the value part of the existing instance.

CHAPTER 13 ■ IL INSTRUCTIONS 287

Ch13_6463_FINAL 7/27/06 7:06 PM Page 287

• unbox.any <token> (0xA5). Introduced in version 2.0 of the CLR, this unboxing instruction
is symmetric to the box instruction, because it returns an instance of the value type.

• mkrefany <token> (0xC6). Take a pointer—either managed or unmanaged—from the
stack, convert it to a typed reference (typedref), and push the typed reference back on
the stack. The typed reference is an opaque handle that carries both type information
and an instance pointer. The type of the created typedref is specified by <token>, which
must be a valid TypeDef, TypeRef, or TypeSpec token. Typically, this instruction is used to
create the typedref values to be passed as arguments to methods that expect typedref
parameters. These methods split the typed references into type information and
instance pointers using the refanytype and refanyval instructions.

• refanytype <token> (0xFE 0x1D). Take a typed reference from the stack, retrieve the
type information, and push the internal type handle on the stack. This instruction has
no parameters.

• refanyval <token> (0xC2). Take a typed reference from the stack, retrieve the instance
pointer (& or native int), and push it on the stack. This instruction has one parameter
<token>, which must be a valid TypeDef, TypeRef, or TypeSpec token and must match the
type of the typed reference or be its ancestor. In other words, the type of the typed ref-
erence must be castable to the type specified by <token>; otherwise, the instruction
throws an exception. Why do we need to specify the type by <token> when the type is
already present in the typed reference? Well, the type is indeed present, but we need to
specify it explicitly for the sake of the verifier, which performs static analysis of the IL
code. Without explicit specification of the type, the result of the refanyval instruction
would have “whatever type was encoded in the typed reference,” unidentifiable in static
analysis. And we don’t want refanyval instruction to be absolutely unverifiable, now
do we?

• ldtoken <token> (0xD0). Convert <token> to an internal handle to be used in calls to
the [mscorlib]System.Reflection methods in the .NET Framework class library. The
admissible token types are MethodDef, MemberRef, TypeDef, TypeRef, and FieldDef.
The handle pushed on the stack is an instance of one of the following value types:
[mscorlib]System.RuntimeMethodHandle, [mscorlib]System.RuntimeTypeHandle, or
[mscorlib]System.RuntimeFieldHandle.

The ILAsm notation requires full specification for classes (value types), methods, and
fields used in ldtoken. This instruction is the only IL instruction that is not specific to
methods only or fields only, and thus the keyword method or field must be used:

ldtoken [mscorlib]System.String
ldtoken method instance void [mscorlib]System.Object::.ctor()
ldtoken field int32 Foo.Bar::ff

• sizeof <token> (0xFE 0x1C). Load the size in bytes of the value type specified by <token>
on the stack. <token> must be a valid TypeDef, TypeRef, or TypeSpec token. This instruction
can be applied to the reference types as well, but the usefulness of such an application is
questionable: for reference types, sizeof always returns pointer size (4 or 8, depending on
the underlying platform).

CHAPTER 13 ■ IL INSTRUCTIONS288

Ch13_6463_FINAL 7/27/06 7:06 PM Page 288

• throw (0x7A). Take the object reference from the stack and throw it as a managed
exception. See Chapter 14 for details about exception handling.

• rethrow (0xFE 0x1A). Throw the caught exception again. This instruction can be used
exclusively within exception handlers. This instruction does not take anything from the
stack. The rethrown exception is whatever was last thrown on the corresponding thread.

Vector Instructions
Arrays and vectors are the only true generics implemented in the first release of the common
language runtime. Vectors are “elementary” arrays, with one dimension and a zero lower bound.
In signatures, vectors are represented by type ELEMENT_TYPE_SZARRAY, whereas “true” arrays are
represented by ELEMENT_TYPE_ARRAY. The two different array types have different layouts and are
for the most part unrelated to each other. We can, of course, declare a single-dimensional, zero-
lower-bound array (whose ILAsm notation is <type>[0...]), which will be a true array, as
opposed to a vector (whose ILAsm notation is <type>[]).

The IL instruction set defines specific instructions dealing with vectors but not with
arrays. To handle array elements and arrays themselves, you need to call the methods of the
.NET Framework class [mscorlib]System.Array, from which all arrays are derived. However,
don’t look in vain among the System.Array’s methods to find the most useful ones—Get, Set,
and Address. These methods are provided by the runtime, and unlike other runtime-provided
methods, they are not reflected in the metadata of Mscorlib.dll. The Get method takes N
(where N is the rank of the array) arguments (all int32) representing indexes in respective
array dimensions and returns the value of the indexed element. The Address method takes
the same arguments and returns the managed pointer to the indexed element. The Set
method takes N indexes and the element value to be assigned, assigns the specified value
to the indexed element, and returns void.

Now let’s get back to the vectors.

Vector Creation
In order to work with a vector, it is necessary to create one. The IL instruction set contains
special instructions for vector creation and vector length querying:

• newarr <token> (0x8D). Create a vector. <token> specifies the type of vector elements
and must be a valid TypeDef, TypeRef, or TypeSpec token. This instruction pops the
number of vector elements (native int or int32) from the stack and pushes an object
reference to the created vector on the stack. If the operation fails, an OutOfMemory
exception is thrown. If the number of elements happens to be negative, an Overflow
exception is thrown. The elements of the newly created vector are zero initialized.
For example:

.locals init (int32[] arr)
ldc.i4 123
newarr [mscorlib]System.Int32 // newarr int32 would work too
stloc.0

For specific details about array creation, see the description of the newobj instruction.

CHAPTER 13 ■ IL INSTRUCTIONS 289

Ch13_6463_FINAL 7/27/06 7:06 PM Page 289

• ldlen (0x8E). Get the element count of a vector. This instruction takes an object reference
to the vector instance from the stack and puts the element count (native int) on the stack.

Element Address Loading
You can obtain a managed pointer to a single vector element by using the following instruction:

• ldelema <token> (0x8F). Get the address (a managed pointer) of a vector element.
<token> specifies the type of the element and must be a valid TypeDef, TypeRef, or
TypeSpec token. This instruction takes the element index (native int) and the vector
reference (an object reference) from the stack and pushes the managed pointer to the
element on the stack.

• readonly. (0xFE 0x1E). Prefix instruction, introduced in version 2.0 of the CLR, to
be used with the ldelema instruction. With this prefix, ldelema yields not a managed
pointer to the element but a controlled mutability managed pointer, which can be used
only as a source pointer but not as a destination pointer. For example, you can use a
controlled mutability pointer as an instance pointer when accessing instance fields or
methods, as a source pointer in cpobj instruction, or as a pointer in an ldind or ldobj
instruction. But it cannot be used in any instruction that would change the instance it
points to, such as initobj, stind, stobj, or mkrefany. The main reason for introducing
this prefix instruction is to avoid the type check ldelema must execute when the type
specified might be a reference class. If the ldelema instruction is preceded by the
readonly. prefix, the type check is suppressed, because it is known that the obtained
pointer cannot be used for writing purposes (the referent type instance cannot be
mutated). Of course, the type might have a method that mutates the instance, and
the controlled mutability pointer can be used to call this method and thus mutate
the instance. Also, you can use this pointer for the stfld instruction, and if it doesn’t
mutate the instance, I don’t know what does. So, a controlled mutability pointer is
not exactly a read-only pointer. However, you can only fiddle with this very instance
(pointed at by the controlled mutability pointer); you cannot replace it with another
instance, and in this sense the pointer is read-only.

Element Loading
Element loading instructions load a vector element of an elementary type on the stack. All
these instructions take the element index (native int) and the vector reference (an object
reference) from the stack and put the value of the element on the stack. If the vector reference
is null, the instructions throw a NullReference exception. If the index is negative or greater
than or equal to the element count of the vector, an IndexOutOfRange exception is thrown.

• ldelem.i1 (0x90). Load a vector element of type int8.

• ldelem.u1 (0x91). Load a vector element of type unsigned int8.

• ldelem.i2 (0x92). Load a vector element of type int16.

• ldelem.u2 (0x93). Load a vector element of type unsigned int16.

• ldelem.i4 (0x94). Load a vector element of type int32.

CHAPTER 13 ■ IL INSTRUCTIONS290

Ch13_6463_FINAL 7/27/06 7:06 PM Page 290

• ldelem.u4 (0x95). Load a vector element of type unsigned int32.

• ldelem.i8 (ldelem.u8) (0x96). Load a vector element of type int64.

• ldelem.i (0x97). Load a vector element of type native int.

• ldelem.r4 (0x98). Load a vector element of type float32.

• ldelem.r8 (0x99). Load a vector element of type float64.

• ldelem.ref (0x9A). Load a vector element of object reference type.

• ldelem (ldelem.any) <token> (0xA3). Load a vector element of the type specified by
<token>, which must be a valid TypeDef, TypeRef, or TypeSpec token. This instruction
was introduced in version 2.0 of the CLR to deal with, as you probably guessed, vectors
and arrays of a type defined by a generic type variable. The good thing about this
instruction (and its sister instruction stelem described next) is that it allows you
to load elements of vectors of an arbitrary value type.

Element Storing
Element storing instructions store a value from the stack in a vector element of an elementary
type. All these instructions take the value to be stored, the element index (native int), and the
vector reference (an object reference) from the stack and put nothing on the stack. Generally,
the instructions can throw the same exceptions as the ldelem.* instructions described in the
preceding section.

• stelem.i (0x9B). Store a value in a vector element of type native int.

• stelem.i1 (0x9C). Store a value in a vector element of type int8.

• stelem.i2 (0x9D). Store a value in a vector element of type int16.

• stelem.i4 (0x9E). Store a value in a vector element of type int32.

• stelem.i8 (0x9F). Store a value in a vector element of type int64.

• stelem.r4 (0xA0). Store a value in a vector element of type float32.

• stelem.r8 (0xA1). Store a value in a vector element of type float64.

• stelem.ref (0xA2). Store a value in a vector element of the object reference type. This
instruction involves the casting of the object on the stack to the type of the vector ele-
ment, so an InvalidCast exception can be thrown.

• stelem (stelem.any) <token> (0xA4). Store a value in a vector element of the type
specified by <token>, which must be a valid TypeDef, TypeRef, or TypeSpec token. This
instruction was introduced in version 2.0 of the CLR to support vectors and arrays of
the type defined by a generic type variable.

Special stelem.* instructions for unsigned integer types are missing for an obvious rea-
son: the stelem.i* instructions are equally applicable to signed and unsigned integer types.

CHAPTER 13 ■ IL INSTRUCTIONS 291

Ch13_6463_FINAL 7/27/06 7:06 PM Page 291

Code Verifiability
The verification algorithm associates IL instructions with the number of stack slots occupied
and available at each moment and with valid evaluation stack states. Stack overflows and
underflows render the code not only unverifiable but invalid as well. The verification algo-
rithm also requires that all local variables are zero initialized before the method execution
begins. As a result, the .locals directive—at least one, if several of these are used throughout
the method—must have the init clause in order for the method to be verifiable.

The verification algorithm simulates all possible control flow paths and branchings,
checking to see whether the stack state corresponding to every reachable instruction is legal
for this instruction. It is impossible, of course, to predict the actual values stored on the evalu-
ation stack at every moment, but the number of stack slots occupied and the types of the slots
can be analyzed.

As mentioned, the evaluation stack type system is coarser than the metadata type system
used for field, argument, and local variable types. Hence, the type validity of instructions
transferring data between the stack and other typed memory categories depends on the type
conversion performed during such transfers. Table 13-5 lists type conversions between differ-
ent type systems (for example, a value of a local variable of type int8 loaded on the stack
becomes int32, and the managed pointer to the same local variable is int8&).

Table 13-5. Evaluation Stack Type Conversions

Metadata Type Stack Type Managed Pointer to Type

[unsigned] int8, bool int32 int8&

[unsigned] int16, char int32 int16&

[unsigned] int32 int32 int32&

[unsigned] int64 int64 int64&

native [unsigned] int, native int native int&
function pointer

float32 Float float32&

float64 Float float64&

Value type Same type Same type&
(see substitution rules in this section)

Object Same type Same type&
(see substitution rules in this section)

According to verification rules, if top-of-stack has type A, then the current instruction,
expecting to find a type B, is verifiable in the following cases only:

• If A is a class and B is the same class or any class derived from A

• If A an interface and B is a class implementing this interface

• If both A and B are interfaces and the implementation of B requires the implementation
of A

• If A is a class or an interface and B is a null reference

CHAPTER 13 ■ IL INSTRUCTIONS292

Ch13_6463_FINAL 7/27/06 7:06 PM Page 292

• If both A and B are function pointers and the signatures of their respective methods
match

• If both A and B are vectors and their element types can be respectively substituted as
outlined previously

• If both A and B are arrays of the same rank and their element types can be respectively
substituted

• If both A and B are vectors or both are arrays of the same rank and their element types
are identically sized integers (for example, int32[] and uint32[])

These substitution rules set the limits of “type leeway” allowed for the IL code to remain
verifiable. As the verification algorithm proceeds from one instruction to another along every
possible path, it checks the simulated stack types against the types expected by the next
instruction. Failure to comply with the substitution rules results in verification failure and
possibly indicates invalid IL code.

A few verification rules, rather heuristic than formal, are based on the question “Is it
possible in principle to do something unpredictable using this construct?”

• Any code containing embedded native code is unverifiable.

• Any code using unmanaged pointers is unverifiable.

• Any code containing calls to methods that return managed pointers is unverifiable,
unless the managed pointers are to instances of reference types or their parts. The rea-
son is that, theoretically, the called method might return a managed pointer to one of
its local variables or another “perishable” item. The instances of reference types reside
in the GC heap and cannot be considered “perishable.”

• An instance constructor of a class must call the instance constructor of the base class.
The reason is that until the base class .ctor is called, the instance pointer (this) is
considered uninitialized; and until this is initialized, no instance methods should
be called.

• When a delegate is being instantiated—its constructor takes a function pointer as the
last argument—the newobj instruction must be immediately preceded by the ldftn or
ldvirtftn instruction, which loads the function pointer. If anything appears between
these two instructions, the code becomes unverifiable.

A great many additional rules regulate exception handling, but the place to discuss them is the
next chapter.

CHAPTER 13 ■ IL INSTRUCTIONS 293

Ch13_6463_FINAL 7/27/06 7:06 PM Page 293

Ch13_6463_FINAL 7/27/06 7:06 PM Page 294

Managed Exception Handling

Usually the exception handling model of a programming language is considered the domain of
that particular language’s runtime. Under the hood, each language has its own way of detecting
exceptions and locating an appropriate exception handler. Some languages perform exception
handling completely within the language runtime, whereas others rely on the structured excep-
tion handling (SEH) mechanism provided by the operating system—which in our case is Win32
or Win64.

In the world of managed code, exception handling is a fundamental feature of the com-
mon language runtime execution engine. The execution engine is fully capable of handling
exceptions without regard to language, allowing exceptions to be raised in one language and
caught in another. At that, the runtime does not dictate any particular syntax for handling
exceptions. The exception mechanism is language neutral in that it is equally efficient for all
languages.

No special metadata is captured for exceptions other than the metadata for the exception
classes themselves. No association exists between a method of a class and the exceptions that
the method might throw. Any method is permitted to throw any exception at any time.

Although we talk about managed exceptions thrown and caught within managed code, a
common scenario involves a mix of both managed and unmanaged code. Execution threads
routinely traverse managed and unmanaged blocks of code through the use of the common
language runtime’s platform invocation mechanism (P/Invoke) and other interoperability
mechanisms. (See Chapter 18.) Consequently, during execution, exceptions can be thrown or
caught in either managed code or unmanaged code.

The runtime exception handling mechanism integrates seamlessly with the Win32/Win64
SEH mechanism so that exceptions can be thrown and caught within and between the two
exception handling systems.

EH Clause Internal Representation
Managed exception handling tables are located immediately after a method’s IL code, with
the beginning of the table aligned on a double word boundary. It would be more accurate to
say that “additional sections” are located after the method IL code, but the existing releases
of the common language runtime allow only one kind of additional section—the exception
handling section.

295

C H A P T E R 1 4

■ ■ ■

Ch14_6463_FINAL 7/27/06 7:06 PM Page 295

This additional section begins with the section header, which comes in two varieties
(small and fat) and contains two entries, Kind and DataSize. In a small header, DataSize is rep-
resented by 1 byte, whereas in a fat header, DataSize is 3 bytes long. A Kind entry can contain
the following binary flags:

• Reserved (0x00). This should not be used.

• EHTable (0x01). The section contains an exception handling table. This bit must be set.

• OptILTable (0x02). Not used in the current releases of the runtime. This bit must not
be set.

• FatFormat (0x40). The section header has a fat format—that is, DataSize is represented
by 3 bytes.

• MoreSects (0x80). More sections follow this one.

The section header—padded with 2 bytes if small, which makes one wonder what the rea-
son was to introduce the small header at all—is followed by a sequence of EH clauses, which
can also have a small or fat format. Each EH clause describes a single triad made up of a
guarded block, an exception identification, and an exception handler. The entries of small and
fat EH clauses have the same names and meanings but different sizes, as shown in Table 14-1.

Table 14-1. EH Clause Entries

EH Clause Entry Size in Small Size in Fat Description
Clause (Bytes) Clause (Bytes)

Flags 2 4 Binary flags specifying the type of the EH
clause, which is the type of the exception
identification method.

TryOffset 2 4 Offset, in bytes, of the beginning of the
guarded code block from the beginning of
the method IL code. The guarded block
can begin only at code points where the
evaluation stack is empty.

TryLength 1 4 Length, in bytes, of the guarded block.

HandlerOffset 2 4 Offset of the exception handler block.

HandlerLength 1 4 Length of the exception handler block.

ClassToken/ 4 4 Exception type token or offset of the
FilterOffset exception filtering block, depending

on the type of the EH clause.

Branching into or out of guarded blocks and handler blocks is illegal. A guarded block
must be entered “through the top”—that is, through the instruction located at TryOffset—and
handler blocks are entered only when they are engaged by the exception handling subsystem
of the execution engine. To exit guarded and handler blocks, you must use the instruction
leave (or leave.s). You might recall that in Chapter 2, this principle was formulated as “leave
only by leave.” Another way to leave any block is to throw an exception using the throw or
rethrow instruction.

CHAPTER 14 ■ MANAGED EXCEPTION HANDLING296

Ch14_6463_FINAL 7/27/06 7:06 PM Page 296

Types of EH Clauses
Exception handling clauses are classified by the algorithm of the handler engagement. Four
mutually exclusive EH clause types are available, and because of that, the Flags entry must
hold one of the following values:

0x0000: The handler must be engaged if the type of the exception object matches
the type identified by the token specified in the ClassToken entry or any of this type’s
descendants. Theoretically, any object can be thrown as an exception, but it’s strongly
recommended that all exception types be derived from the [mscorlib]System.Exception
class. This is because throughout Microsoft .NET Framework classes the construct catch
[mscorlib]System.Exception is used in the sense of “catch any exception”—it is an analog
of catch(...) in C++. In other words, [mscorlib]System.Exception is presumed to be the
ultimate base class for all exceptions. This type of EH clause is called a catch type.

0x0001: A dedicated block of the IL code, called a filter, will process the exception and
define whether the handler should be engaged. The offset of the filter block is specified in
the FilterOffset entry. Since we cannot specify the filter block length—the EH clause struc-
ture contains no entry for it—a positioning limitation is associated with the filter block:
the respective handler block must immediately follow the filter block, allowing the length
of the filter block to be inferred from the offset of the handler. The filter block must end
with the endfilter instruction, described in Chapter 13. At the moment endfilter is exe-
cuted, the evaluation stack must hold a single int32 value, equal to 1 if the handler is to
be engaged and equal to 0 otherwise. This EH clause type is called a filter type. Branching
into or out of the filter block is illegal. Falling through into the filter block is also illegal.

0x0002: The handler will be engaged whether or not an exception has occurred. The EH
clause entry ClassToken/FilterOffset is ignored. This EH clause type is called a finally
type. The finally handlers are not meant to process an exception but rather to perform any
cleanup that might be needed when leaving the guarded block. The finally handlers must
end with the endfinally instruction. If no exception has occurred within the guarded block,
the finally handler is executed at the moment of leaving that block. If an exception has
been thrown within the guarded block, the finally handler is executed after any preceding
handler (of a nested guarded block) is executed or, if no preceding handler was engaged,
before any following handler is executed. If no catch or filter handlers are engaged—that
is, the exception is uncaught—the finally handler is engaged when the CLR registers the
uncaught exception, right before the application execution is aborted.

Figure 14-1 illustrates this process. If an exception of type A is thrown within the inner-
most guarded block, it is caught and processed by the first handler (catch A), and the
finally handler is engaged after the first handler executes the leave instruction. If an
exception of type B is thrown, it is caught by the third handler (catch B); this fact is regis-
tered by the runtime, and the finally handler is executed before the third handler. If no
exception is thrown within the guarded block, the finally handler is engaged when the
guarded block executes the leave instruction.

CHAPTER 14 ■ MANAGED EXCEPTION HANDLING 297

Ch14_6463_FINAL 7/27/06 7:06 PM Page 297

0x0004: The handler will be engaged if any exception occurs. This type of EH clause is called
a fault type. A fault handler is similar to a finally handler in all aspects except one: the
fault handler is not engaged if no exception has been thrown within the guarded block and
everything is nice and quiet. The fault handler must also end with the endfinally instruc-
tion, which for this specific purpose has been given the synonym endfault.

Figure 14-1. Engagement of the finally exception handler

Handler 1

Handler 2

Guarded Block 1

leave L1

Handler 3

leave L2

endfinally

L1:

leave L3

catch A

catch B

finally

B

A

L2:

L3:

Guarded Block 2
Guarded Block 3

CHAPTER 14 ■ MANAGED EXCEPTION HANDLING298

Ch14_6463_FINAL 7/27/06 7:06 PM Page 298

Label Form of EH Clause Declaration
The most generic form of ILAsm notation of an EH clause is as follows:

.try <label> to <label> <EH_type_specific> handler <label> to <label>

where <EH_type_specific> ::=

catch <class_ref> |
filter <label> |
finally |
fault

Take a look at this example:

BeginTry:
...
leave KeepGoing

BeginHandler:
...
leave KeepGoing

KeepGoing:
...
ret
.try BeginTry to BeginHandler catch [mscorlib]System.Exception

handler BeginHandler to KeepGoing

In the final lines of the example, the code .try <label> to <label> defines the guarded
block, and handler <label> to <label> defines the handler block. In both cases, the second
<label> is exclusive, pointing at the first instruction after the respective block. ILAsm imposes
a limitation on the positioning of the EH clause declaration directives: all labels used in the
directives must have already been defined. Thus, the best place for EH clause declarations in
the label form is at the end of the method scope.

In the case just presented, the handler block immediately follows the guarded block, but
we could put the handler block anywhere within the method, provided it does not overlap
with the guarded block or other handlers:

...
br AfterHandler // Can't enter the handler block on our own

BeginHandler:
...
leave KeepGoing

AfterHandler:
...

BeginTry:
...
leave KeepGoing

KeepGoing:
...
ret
.try BeginTry to KeepGoing catch [mscorlib]System.Exception

handler BeginHandler to AfterHandler

CHAPTER 14 ■ MANAGED EXCEPTION HANDLING 299

Ch14_6463_FINAL 7/27/06 7:06 PM Page 299

A single guarded block can have several catch or filter handlers:

...
br AfterHandler2 // Can't enter the handler block(s) on our own

BeginHandler1:
...
leave KeepGoing

AfterHandler1:
...

BeginHandler2:
...
leave KeepGoing

AfterHandler2:
...

BeginTry:
...
leave KeepGoing

KeepGoing:
...
ret
.try BeginTry to KeepGoing

catch [mscorlib]System.StackOverflowException
handler BeginHandler1 to AfterHandler1

.try BeginTry to KeepGoing catch [mscorlib]System.Exception
handler BeginHandler2 to AfterHandler2

In the case of multiple handlers—catch or filter but not finally or fault, as explained
next—the guarded block declaration need not be repeated:

.try BeginTry to KeepGoing
catch [mscorlib]System.StackOverflowException

handler BeginHandler1 to AfterHandler1
catch [mscorlib]System.Exception

handler BeginHandler2 to AfterHandler2

The lexical order of handlers belonging to the same guarded block is the order in which the
IL assembler emits the EH clauses and is the same order in which the execution engine of the
runtime processes these clauses. You must be careful about ordering the handlers. For instance,
if you swap the handlers in the preceding example, the handler for [mscorlib]System.Exception
will always be executed, and the handler for [mscorlib]System.StackOverflowException will
never be executed. This is because all standard exceptions are (and user-defined should be)
derived, eventually, from [mscorlib]System.Exception, and hence all exceptions are caught by
the first handler, leaving the other handlers unemployed.

The finally and fault handlers cannot peacefully coexist with other handlers, so if a
guarded block has a finally or fault handler, it cannot have anything else. To combine a
finally or fault handler with other handlers, you need to nest the guarded and handler
blocks within other guarded blocks, as shown in Figure 14-1, so that each finally or fault
handler has its own personal guarded block.

CHAPTER 14 ■ MANAGED EXCEPTION HANDLING300

Ch14_6463_FINAL 7/27/06 7:06 PM Page 300

Scope Form of EH Clause Declaration
The label form of the EH clause declaration is universal, ubiquitous, and close to the actual
representation of the EH clauses in the EH table. The only quality the label form lacks is con-
venience. In view of that, ILAsm offers an alternative form of EH clause description: a scope
form. You’ve already encountered the scope form in Chapter 2, which discussed protecting the
code against possible surprises in the unmanaged code being invoked. Just to remind you,
here’s what the protected part of the method (from the sample file Simple2.il on the Apress
Web site) looks like:

...

.try {
// Guarded block begins
call string [mscorlib]System.Console::ReadLine()
// pop
// ldnull
ldstr "%d"
ldsflda int32 Odd.or.Even::val
call vararg int32 sscanf(string,string,...,int32*)
stloc.0
leave.s DidntBlowUp
// Guarded block ends

}
catch [mscorlib]System.Exception
{ // Exception handler begins

pop
ldstr "KABOOM!"
call void [mscorlib]System.Console::WriteLine(string)
leave.s Return

} // Exception handler ends
DidntBlowUp:

...

The scope form can be used only for a limited subset of all possible EH clause configura-
tions: the handler blocks must immediately follow the previous handler block or the guarded
block. If the EH clause configuration is different, we must resort to the label form or a mixed
form in which the guarded block is scoped but the catch handler is specified by IL offsets, or
vice versa:

...
br AfterHandler

HandlerBegins:
// The exception handler code
...
leave KeepGoing

AfterHandler:
...
.try {

// Guarded code

CHAPTER 14 ■ MANAGED EXCEPTION HANDLING 301

Ch14_6463_FINAL 7/27/06 7:06 PM Page 301

...
leave KeepGoing

}
catch [mscorlib]System.Exception

handler HandlerBegins to AfterHandler
...

KeepGoing:
...

The IL disassembler by default outputs the EH clauses in the scope form—at least those
clauses that can be represented in this form. However, we have the option to suppress the
scope form and output all EH clauses in their label form (command-line option /RAW). But
let’s suppose for the sake of convenience that we can shape the code in such a way that the
contiguity condition is satisfied, allowing us to use the scope form. A single guarded block
with multiple handlers in scope form will look like this:

.try {
// Guarded code
...
leave KeepGoing

}
catch [mscorlib]System.StackOverflowException {

// The exception handler #1 code
...
leave KeepGoing

}
catch [mscorlib]System.Exception {

// The exception handler #2 code
...

leave KeepGoing
}

...
KeepGoing:

...

Much more readable, isn’t it? The nested EH configuration shown earlier in Figure 14-1 is
easily understandable when written in scope form:

.try {
.try {

.try {
// Guarded code
...
leave L1

}
catch A {

// This code works when exception A is thrown
...
leave L2

CHAPTER 14 ■ MANAGED EXCEPTION HANDLING302

Ch14_6463_FINAL 7/27/06 7:06 PM Page 302

}
} // No need for leave here!
finally {

// This code works in any case
...
endfinally

}
} // No need for leave here either!
catch B {

// This code works when exception B is thrown in guarded code
...
leave L3

}

The filter EH clauses in scope form are subject to the same limitation: the handler block
must immediately follow the guarded block. But in a filter clause the handler block includes
first the filter block and then, immediately following it, the actual handler, so the scope form
of a filter clause looks like this:

.try {
// Guarded code
...
leave KeepGoing

}
filter {

// Here we decide whether we should invoke the actual handler
...
ldc.i4.1 // OK, let's invoke the handler
endfilter

} {
// Actual handler code
...
leave KeepGoing

}

And, of course, we can easily switch between scope form and label form within a single
EH clause declaration. The general ILAsm syntax for an EH clause declaration is as follows:

<EH_clause> ::= .try <guarded_block>
<EH_type_specific> <handler_block>

Where
<guarded_block> ::= <label> to <label> | <scope>
<EH_type_specific> ::= catch <class_ref> |

filter <label> | filter <scope> |
finally |
fault

<handler_block> ::= handler <label> to <label> | <scope >

The nonterminals <label> and <class_ref> must be familiar by now, and the meaning of
<scope> is obvious: “code enclosed in curly braces.”

CHAPTER 14 ■ MANAGED EXCEPTION HANDLING 303

Ch14_6463_FINAL 7/27/06 7:06 PM Page 303

Processing the Exceptions
The execution engine of the CLR processes an exception in two passes. The first pass deter-
mines which, if any, of the managed handlers will process the exception. Starting at the top of
the EH table for the current method frame, the execution engine compares the address where
the exception occurred to the TryOffset and TryLength entries of each EH clause. If it finds that
the exception happened in a guarded block, the execution engine checks to see whether the
handler specified in this clause will process the exception. (The “rules of engagement” for
catch and filter handlers were discussed in previous sections.) If this particular handler can’t
be engaged—for example, the wrong type of exception has been thrown—the execution
engine continues traversing the EH table in search of other clauses that have guarded blocks
covering the exception locus. The finally and fault handlers are ignored during the first pass.

If none of the clauses in the EH table for the current method is suited to handling the
exception, the execution engine steps up the call stack and starts checking the exception
against EH tables of the method that called the method where the exception occurred. In
these checks, the call site address serves as the exception locus. This process continues from
method frame to method frame up the call stack, until the execution engine finds a handler to
be engaged or until it exhausts the call stack. The latter case is the end of the story: the execu-
tion engine cannot continue with an unhandled exception on its conscience, and the runtime
executes all finally and fault handlers and then either aborts the application execution or
offers the user a choice between aborting the execution and invoking the debugger, depend-
ing on the runtime configuration.

If a suitable handler is found, the execution engine swings into the second pass. The exe-
cution engine again walks the EH tables it worked with during the first pass and invokes all
relevant finally and fault handlers. Each of these handlers ends with the endfinally instruc-
tion (or endfault, its synonym), signaling the execution engine that the handler has finished
and that it can proceed with browsing the EH tables. Once the execution engine reaches the
catch or filter handler it found on its first pass, it engages the actual handler.

What happens to the method’s evaluation stack? When a guarded block is exited in any
way, the evaluation stack is discarded. If the guarded block is exited peacefully, without raising
an exception, the leave instruction discards the stack; otherwise, the evaluation stack is dis-
carded the moment the exception is thrown.

During the first pass, the execution engine puts the exception object on the evaluation
stack every time it invokes a filter block. The filter block pops the exception object from the
stack and analyzes it, deciding whether this is a job for its actual handler block. The decision,
in the form of int32 having the value 1 or 0 (engage the handler or don’t, respectively), is the
only thing that must be on the evaluation stack when the endfilter instruction is reached;
otherwise, the IL verification will fail. The endfilter instruction takes this value from the stack
and passes it to the execution engine.

During the second pass, the finally and fault handlers are invoked with an empty evalu-
ation stack. These handlers do nothing about the exception itself and work only with method
arguments and local variables, so the execution engine doesn’t bother providing the exception
object. If anything is left on the evaluation stack by the time the endfinally (or endfault)
instruction is reached, it is discarded by endfinally (or endfault).

When the actual handler is invoked, the execution engine puts the exception object on
the evaluation stack. The handler pops this object from the stack and handles it to the best of

CHAPTER 14 ■ MANAGED EXCEPTION HANDLING304

Ch14_6463_FINAL 7/27/06 7:06 PM Page 304

its abilities. When the handler is exited by using the leave instruction, the evaluation stack is
discarded.

Table 14-2 summarizes the stack evolutions.

Table 14-2. Changes in the Evaluation Stack

When the Block Is Entered, the Stack… Is Exited, the Stack…

try Must be empty Is discarded

filter Holds the exception object Must hold a single int32 value, equal to 1 or 0,
consumed by endfilter

handler Holds the exception object Is discarded

finally, fault Is empty Is discarded

Two IL instructions are used for raising an exception explicitly: throw and rethrow. The
throw instruction takes the exception object (ObjectRef) from the stack and raises the excep-
tion. This instruction can be used anywhere, within or outside any EH block.

The rethrow instruction can be used within catch handlers only (not within the filter
block), and it does not work with the evaluation stack. This instruction signals the execution
engine that the handler that was supposed to take care of the caught exception has for some
reason changed its mind and that the exception should therefore be offered to the higher-level
EH clauses. The only blocks where the words “caught exception” mean something are the
catch handler block and the filter block, but invoking rethrow within a filter block, though
theoretically possible, is illegal. It is legal to throw the caught exception from the filter block,
but it doesn’t make much sense to do so: the effect is the same as if the filter simply refused to
handle the exception, by loading 0 on the stack and invoking endfilter.

Rethrowing an exception is not the same as throwing the caught exception, which we
have on the evaluation stack upon entering a catch handler. The rethrow instruction preserves
the call stack trace of the original exception so that the exception can be tracked down to its
point of origin. The throw instruction starts the call stack trace anew, giving us no way to
determine where the original exception came from.

Exception Types
Chapter 13 mentioned some of the exception types that can be thrown during the execution of
IL instructions. Earlier chapters mentioned some of the exceptions thrown by the loader and
the JIT compiler. Now it’s time to review all these exceptions in an orderly manner.

All managed exceptions defined in the .NET Framework classes are descendants of the
[mscorlib]System.Exception class. This base exception type, however, is never thrown by the
common language runtime. In the following sections, I’ve listed the exceptions the runtime
does throw, classifying them by major runtime subsystems. Enjoying the monotonous repeti-
tion no more than you do, I’ve omitted the [mscorlib]System. part of the names, common to
all exception types. As you can see, many of the exception type names are self-explanatory.

CHAPTER 14 ■ MANAGED EXCEPTION HANDLING 305

Ch14_6463_FINAL 7/27/06 7:06 PM Page 305

Loader Exceptions
The loader represents the first line of defense against erroneous applications, and the excep-
tions it throws are related to the file presence and integrity:

• AppDomainUnloadedException.

• CannotUnloadAppDomainException.

• BadImageFormatException. Corrupt file headers or segments that belong in read-only
sections (such as the runtime header, metadata, and IL code) are located in writable
sections of the PE file.

• ArgumentException. This exception is also thrown by the JIT compiler and the interoper-
ability services.

• Security.Cryptography.CryptographicException.

• FileLoadException.

• MissingFieldException.

• MissingMethodException.

• TypeLoadException. This exception, which is most frequently thrown by the loader, indi-
cates that the type metadata is illegal.

• UnauthorizedAccessException. A user application is attempting to directly manipulate
the system assembly Mscorlib.dll.

• OutOfMemoryException. This exception, which is also thrown by the execution engine,
indicates memory allocation failure.

JIT Compiler Exceptions
The JIT compiler throws only two exceptions. The second one can be thrown only when the
code is not fully trusted (for example, comes from the Internet):

• InvalidProgramException. This exception, which is also thrown by the execution
engine, indicates an error in IL code.

• VerificationException. This exception, which is also thrown by the execution engine,
indicates that IL code verification has failed.

Execution Engine Exceptions
The execution engine throws a wide variety of exceptions, most of them related to the opera-
tions on the evaluation stack. A few exceptions are thrown by the thread control subsystem of
the engine.

• ArithmeticException. Base class for DivideByZeroException, OverflowException, and
NotFiniteNumberException.

• ArgumentOutOfRangeException.

CHAPTER 14 ■ MANAGED EXCEPTION HANDLING306

Ch14_6463_FINAL 7/27/06 7:06 PM Page 306

• ArrayTypeMismatchException. This exception is also thrown by the interoperability
services.

• DivideByZeroException.

• DuplicateWaitObjectException.

• ExecutionEngineException. This is the generic exception, indicating that some
sequence of IL instructions has brought the execution engine into a state of complete
perplexity—as a rule, by corrupting the memory. Verifiable code cannot corrupt the
memory and hence does not raise exceptions of this type.

• FieldAccessException. This exception indicates, for example, an attempt to load from
or store to a private field of another class.

• FormatException.

• IndexOutOfRangeException.

• InvalidCastException.

• InvalidOperationException.

• MethodAccessException. This exception indicates an attempt to call a method to which
the caller does not have access—for example, a private method of another class.

• NotSupportedException.

• NullReferenceException. This exception indicates an attempt to dereference a null
pointer (a managed or unmanaged pointer or an object reference).

• OverflowException. This exception is thrown when a checked conversion fails because
the target data type is too small.

• RankException. This exception is thrown when a method specific to an array is being
called on a vector instance.

• RemotingException.

• Security.SecurityException.

• StackOverflowException.

• Threading.SynchronizationLockException. This exception is thrown when an application
tries to manipulate or release a lock it has not acquired—for example, by calling the
Wait, Pulse, or Exit method before calling the Enter method of the
[mscorlib]System.Threading.Monitor class.

• Threading.ThreadAbortException.

• Threading.ThreadInterruptedException.

• Threading.ThreadStateException.

• Threading.ThreadStopException.

• TypeInitializationException. This exception is thrown when a type—a class or a value
type—failed to initialize.

CHAPTER 14 ■ MANAGED EXCEPTION HANDLING 307

Ch14_6463_FINAL 7/27/06 7:06 PM Page 307

Interoperability Exceptions
The following exceptions are thrown by the interoperability services of the common language
runtime, which are responsible for managed and unmanaged code interoperation:

• DllNotFoundException. This exception is thrown when an unmanaged DLL specified as
a location of the unmanaged method being called cannot be found.

• ApplicationException.

• EntryPointNotFoundException.

• InvalidComObjectException.

• Runtime.InteropServices.InvalidOleVariantTypeException.

• MarshalDirectiveException. This exception is thrown when data cannot be marshaled
between managed and unmanaged code in the specified way.

• Runtime.InteropServices.SafeArrayRankMismatchException.

• Runtime.InteropServices.SafeArrayTypeMismatchException.

• Runtime.InteropServices.COMException.

• Runtime.InteropServices.SEHException. This is the generic managed exception type for
unmanaged exceptions.

Subclassing the Exceptions
In addition to the plethora of exception types already defined in the .NET Framework classes,
you can always devise your own types tailored to your needs. The best way to do this is to
derive your exception types from the “standard” types listed in the preceding sections.

The following exception types are sealed and can’t be subclassed. Again, I’ve omitted the
[mscorlib]System. portion of the names.

• InvalidProgramException

• TypeInitializationException

• Threading.ThreadAbortException

• StackOverflowException

■Caution As mentioned earlier, I must warn you against devising your own exception types not derived
from [mscorlib]System.Exception or some other exception type of the .NET Framework classes.

CHAPTER 14 ■ MANAGED EXCEPTION HANDLING308

Ch14_6463_FINAL 7/27/06 7:06 PM Page 308

Unmanaged Exception Mapping
When an unmanaged exception occurs within a native code segment, the execution engine
maps it to a managed exception that is thrown in its stead. The different types of unmanaged
exceptions, identified by their status code, are mapped to the managed exceptions as
described in Table 14-3.

Table 14-3. Mapping Between the Managed and Unmanaged Exceptions

Unmanaged Exception Status Code Mapped to Managed Exception

STATUS_FLOAT_INEXACT_RESULT ArithmeticException

STATUS_FLOAT_INVALID_OPERATION ArithmeticException

STATUS_FLOAT_STACK_CHECK ArithmeticException

STATUS_FLOAT_UNDERFLOW ArithmeticException

STATUS_FLOAT_OVERFLOW OverflowException

STATUS_INTEGER_OVERFLOW OverflowException

STATUS_FLOAT_DIVIDE_BY_ZERO DivideByZeroException

STATUS_INTEGER_DIVIDE_BY_ZERO DivideByZeroException

STATUS_FLOAT_DENORMAL_OPERAND FormatException

STATUS_ACCESS_VIOLATION NullReferenceException

STATUS_ARRAY_BOUNDS_EXCEEDED IndexOutOfRangeException

STATUS_NO_MEMORY OutOfMemoryException

STATUS_STACK_OVERFLOW StackOverflowException

All other status codes Runtime.InteropServices.SEHException

Summary of EH Clause Structuring Rules
The rules for structuring EH clauses within a method are neither numerous nor overly complex.

All the blocks—try, filter, handler, finally, and fault—of each EH clause must be fully
contained within the method code. No block can protrude from the method.

The guarded blocks and the handler blocks belonging to the same EH clause or different
EH clauses can’t partially overlap. A block either is fully contained within another block or is
completely outside it. If one guarded block (A) is contained within another guarded block (B)
but is not equal to it, all handlers assigned to A must also be fully contained within B.

A handler block of an EH clause can’t be contained within a guarded block of the same
clause, and vice versa. And a handler block can’t be contained in another handler block that
is assigned to the same guarded block.

A filter block can’t contain any guarded blocks or handler blocks.
All blocks must start and end on instruction boundaries—that is, at offsets corresponding

to the first byte of an instruction. Prefixed instructions must not be split, meaning that you
can’t have constructs such as tail. .try { call ... }.

A guarded block must start at a code point where the evaluation stack is empty.

CHAPTER 14 ■ MANAGED EXCEPTION HANDLING 309

Ch14_6463_FINAL 7/27/06 7:06 PM Page 309

The same handler block can’t be associated with different guarded blocks:

.try Label1 to Label2 catch A handler Label3 to Label4

.try Label4 to Label5 catch B handler Label3 to Label4 // Illegal!

If the EH clause is a filter type, the filter’s actual handler must immediately follow the
filter block. Since the filter block must end with the endfilter instruction, this rule can be
formulated as “the actual handler starts with the instruction after endfilter.”

If a guarded block has a finally or fault handler, the same block can have no other
handler. If you need other handlers, you must declare another guarded block, encompassing
the original guarded block and the handler:

.try {
.try {

.try {
// Code that needs finally, catch, and fault handlers
...
leave KeepGoing

}
finally {

...
endfinally

}
}
catch [mscorlib]System.StackOverflowException
{

...
leave KeepGoing

}
}
fault {

...
endfault

}

CHAPTER 14 ■ MANAGED EXCEPTION HANDLING310

Ch14_6463_FINAL 7/27/06 7:06 PM Page 310

Special Components

P A R T 5

■ ■ ■

Ch15_6463_FINAL 7/27/06 7:07 PM Page 311

Ch15_6463_FINAL 7/27/06 7:07 PM Page 312

Events and Properties

Events and properties are special metadata components that are intended to make life easier
for the high-level language compilers. The most intriguing feature of events and properties is
that the JIT compiler and the execution engine are completely unaware of them. Can you
recall any IL instruction that deals with an event or a property? That’s because none exist.

To understand the indifference of the JIT compiler and the execution engine toward
events and properties, you need to understand the way these items are implemented.

Events and Delegates
The managed events I’m talking about here are not synchronization elements, similar to
Win32/Win64 event objects. Rather, they more closely resemble Visual Basic events and
On<event> functions. Managed events provide a means to describe the asynchronous execu-
tion of methods, initiated by certain other methods.

Figure 15-1 illustrates the general sequence of activities. A program unit—known as the
publisher, or source, of an event—defines the event. We can think of this program unit as a
class, for the sake of simplicity. Other program units (classes)—known as subscribers, event
listeners, or event sinks—define the methods to be executed when the event occurs and pass
this information to the event publisher. When the event publisher raises, or fires, the event by
calling a special method, all the subscriber’s methods associated with this event are executed.

In a nutshell, to implement a managed event, we need an entity that can collect the call-
back methods (event handlers) from the event subscribers and execute these methods when
the publisher executes a method that signifies the event.

We have a type (a class) designed to do exactly that: the delegate type, which is discussed
in Chapter 7. As you might remember, delegates are classes derived from the class [mscorlib]
System.MulticastDelegate and play the role of “politically correct” type-safe function pointers
in the managed world. The actual function pointer to a delegated method is passed to the
delegate as an argument of its constructor, and the delegated method can subsequently be
executed by calling the delegate’s Invoke method.

What Chapter 7 doesn’t mention is that several delegates can be aggregated into one
delegate. Calling the Invoke method of such an aggregated delegate invokes all the delegated
methods that make up the aggregate—which is exactly what we need to implement
an event.

The [mscorlib]System.MulticastDelegate class defines the virtual methods CombineImpl
and RemoveImpl, adding a delegate (more exactly, the callback function pointer it carries) to
the aggregate (more exactly, to the list of callback function pointers the aggregate carries) and

313

C H A P T E R 1 5

■ ■ ■

Ch15_6463_FINAL 7/27/06 7:07 PM Page 313

removing a delegate from the aggregate, respectively. These methods are defined in Mscorlib.dll
as follows. (I have omitted the resolution scope [mscorlib] of delegate types here because the
methods are defined in the same assembly; this doesn’t mean you can omit the resolution scope
when you refer to these types in your assemblies.)

Figure 15-1. The interaction of an event publisher and subscribers

.method family hidebysig final virtual
instance class System.Delegate
CombineImpl(class System.Delegate follow) cil managed

{ ... }
.method family hidebysig final virtual

instance class System.Delegate
RemoveImpl(class System.Delegate 'value') cil managed

{ ... }

The methods take the object reference to the delegate being added (or removed) as the
argument and return the object reference to the aggregated delegate. The parameter and
return type of both methods is System.Delegate rather than System.MulticastDelegate, but
this isn’t contradictory: System.MulticastDelegate is derived from System.Delegate and hence
can be used in its stead.

The principle of the delegate-based implementation of an event is more or less clear.
Each event subscriber creates a delegate representing its event handler and then subscribes
to the event by combining the handler delegate with the aggregate delegate, held by the event

HandlerEvent

Publisher

Subscribe

Raise the Event

Subscribers

CHAPTER 15 ■ EVENTS AND PROPERTIES314

Ch15_6463_FINAL 7/27/06 7:07 PM Page 314

publisher. To raise the event, the publisher simply needs to call the Invoke method of the
aggregate delegate, and everybody is happy.

One question remains, though: what does the publisher’s aggregate delegate look like
before any event subscriber has subscribed to the event? The answer is, it doesn’t exist at all.
The aggregate delegate is a result of combining the subscribers’ handler delegates. As long as
there are no subscribers, the publisher’s aggregate delegate does not exist. This poses a certain
problem: CombineImpl is an instance method, which has to be called on the instance of the
aggregated delegate, and hence each subscriber must worry about whether it is the first in line
(in other words, whether the aggregated delegate exists yet). That’s why the subscribers usu-
ally use the static methods Combine and Remove, inherited by System.MulticastDelegate from
System.Delegate:

.method public hidebysig static class System.Delegate
Combine(class System.Delegate a,

class System.Delegate b)
{ ... }
.method public hidebysig static class System.Delegate

Remove(class System.Delegate source,
class System.Delegate 'value')

{ ... }

If one of the arguments of these methods is a null reference, the methods simply return
the non-null argument. If both arguments are null references, the methods return a null refer-
ence. If the arguments are incompatible—that is, if the delegated methods have different
signatures—Combine, which internally calls CombineImpl, throws an Argument exception, and
Remove, which internally calls RemoveImpl, simply returns the aggregated delegate unchanged.

In general, delegates are fascinating types with more features than this book can discuss.
The best way to learn more about delegates first-hand is to disassemble Mscorlib.dll and have
a look at how System.Delegate and System.MulticastDelegate are implemented and used. The
same advice is applicable to other Microsoft .NET Framework classes you happen to be inter-
ested in: when in doubt, disassemble the respective DLL, and see for yourself.

Events, of course, can be implemented without delegates. But given the functionality
needed to implement events, I don’t see why anyone would waste time on an alternative
implementation when the delegates offer a complete and elegant solution.

MANAGED SYNCHRONIZATION ELEMENTS

You’re probably wondering whether managed code has any elements equivalent to the synchronization
events and APIs of the unmanaged world. It does, although this aspect is unrelated to the events discussed
in this chapter. The synchronization elements of the managed world are implemented as classes of the .NET
Framework class library. You can learn a lot about them by disassembling Mscorlib.dll and looking at the
namespace System.Threading—and especially at the WaitHandle class of this namespace. (You’ve
already encountered the System.Threading.WaitHandle class in the discussion of asynchronous
invocation of delegates in Chapter 7.) The WaitHandle class is central to the entire class system of the
System.Threading namespace and implements such methods as WaitOne, WaitAll, and WaitAny.
Sounds familiar, doesn’t it? The AutoResetEvent, ManualResetEvent, and Mutex classes, derived from
the WaitHandle class, are also worth a glance.

CHAPTER 15 ■ EVENTS AND PROPERTIES 315

Ch15_6463_FINAL 7/27/06 7:07 PM Page 315

Event Metadata
To define an event, we need to know the event type, which, as a rule, is derived from
[mscorlib]System.MulticastDelegate; the methods associated with the event (methods to
subscribe to the event, to unsubscribe, to fire the event, and perhaps to carry out other tasks
we might define); and, of course, the class defining the event. The events are never referenced
in IL instructions, so we needn’t worry about the syntax for referencing the events.

The event metadata group includes the Event, EventMap, TypeDef, TypeRef, Method,
and MethodSemantics tables. Figure 15-2 shows the mutual references between the tables of
this group.

Figure 15-2. The event metadata group

The Event Table
The Event table has the associated token type mdtEvent (0x14000000). An Event record has
three entries:

• EventFlags (2-byte unsigned integer). Binary flags of the event characteristics.

• Name (offset in the #Strings stream). The name of the event, which must be a simple
name no longer than 1,023 bytes in UTF-8 encoding.

• EventType (coded token of type TypeDefOrRef). The type associated with the event. The
coded token indexes a TypeDef, TypeRef, or TypeSpec record. The class indexed by this
token is either a delegate or a class providing the necessary functionality similar to that
of a delegate.

TypeDef
Table

EventMap
Table

Event
Table

MethodSemantics
Table

Method
Table

TypeRef
Table

TypeSpec
Table

CHAPTER 15 ■ EVENTS AND PROPERTIES316

Ch15_6463_FINAL 7/27/06 7:07 PM Page 316

Only two flag values are defined for events, and only one of them can be set explicitly:

• specialname (0x0200). The event is special in some way, as specified by the name.

• rtspecialname (0x0400). The event has a special name reserved for the internal use
of the common language runtime. This flag can’t be set explicitly. The IL disassembler
outputs this flag for information purposes, but the IL assembler ignores the keyword.

To my knowledge, the primary use of these event flags is to mark deleted events in edit-
and-continue scenarios. When an event record is marked as deleted, both flags are set, and
its name is changed to _Deleted. Some compilers, however, might find certain uses for the
specialname flag. After all, an event as a metadata item exists solely for the benefit of the
compilers.

The EventMap Table
The EventMap table provides mapping between the classes defining the events (the TypeDef
table) and the events themselves (the Event table). An EventMap record has two entries:

• Parent (record index [RID] in the TypeDef table). The type declaring the events.

• EventList (RID in the Event table). The beginning of the events declared by the type
indexed by the Parent entry. The mechanism of addressing the events in this case is iden-
tical to the mechanism used by TypeDef records to address the Method and Field records
belonging to a certain TypeDef. In the optimized metadata model (the #~ stream), the
records in the Event table are ordered by the declaring type. In the unoptimized model
(the #- stream), the event records are not so ordered, and an intermediate lookup meta-
data table, EventPtr, is used. (Chapter 5 describes the metadata models and intermediate
tables.)

The MethodSemantics Table
The MethodSemantics metadata table connects events and properties with their associated
methods and provides information regarding the type of this association. A record in this table
has three entries:

• Semantic (2-byte unsigned integer). The kind of method association.

• Method (RID in the Method table). The index of the associated method.

• Association (coded token of type HasSemantics). A token indexing an event or a prop-
erty the method is associated with.

The Semantic entry can have the following values, which look like binary flags but in fact
are mutually exclusive:

• msSetter (0x0001). The method sets a value of a property.

• msGetter (0x0002). The method retrieves a value of a property.

• msOther (0x0004). The method has another meaning for a property or an event

CHAPTER 15 ■ EVENTS AND PROPERTIES 317

Ch15_6463_FINAL 7/27/06 7:07 PM Page 317

• msAddOn (0x0008). The method subscribes to an event.

• msRemoveOn (0x0010). The method removes the subscription to an event.

• msFire (0x0020). The method fires an event.

The same method can be associated in different capacities with different events or
properties. An event must have one subscribing method and one unsubscribing method.
These methods return void and have one parameter of the same type as the event’s associated
type (the EventType entry of the respective Event record). The Visual C# and Visual Basic com-
pilers use uniform naming for subscribing and unsubscribing methods: add_<event_name> and
remove_<event_name>, respectively. In addition, these compilers mark these methods with the
specialname flag.

An event can have at most one firing method. The firing method usually boils down to an
invocation of the delegate implementing the event. The Visual C# and Visual Basic compilers,
for example, never bother to define a firing method for an event—that is, the method invoking
the delegate is there, but it is never associated with the event as a firing method. Such an
approach contains certain logic: the firing method is a purely internal affair of the event pub-
lisher and need not be exposed to the event subscribers. And since the compilers, as a rule,
use the event metadata to facilitate subscription and unsubscription, associating a firing
method with an event is not necessary. If an event does have an associated firing method,
however, this method must return void.

Event Declaration
In ILAsm, the syntax for an event declaration is as follows:

.event <class_ref> <name> { <method_semantics_decl>* }

where <class_ref> represents the type associated with the event, <name> is a simple name, and

<method_semantics_decl> ::= <semantics> <method_ref>
<semantics> ::= .addon | .removeon | .fire | .other

The following is an example of an event declaration:

// The delegate implementing the event
.class public sealed MyEventImpl

extends [mscorlib]System.MulticastDelegate
{

.method public specialname
void .ctor(object obj,

native int 'method') runtime { }
.method public virtual void
Invoke(int32 EventCode, string Msg) runtime
{ }

}
// The event publisher
.typedef class [mscorlib]System.Delegate as delegate
.class public A
{

CHAPTER 15 ■ EVENTS AND PROPERTIES318

Ch15_6463_FINAL 7/27/06 7:07 PM Page 318

.field private class MyEventImpl evImpl
// Aggregate delegate

.method public specialname void .ctor()
{

ldarg.0
dup
call instance void .base::.ctor()
ldnull
stfld class MyEventImpl A::evImpl
ret

}
.method public void Subscribe(class MyEventImpl aHandler)
{

ldarg.0
dup
ldfld class MyEventImpl A::evImpl
ldarg.1
call delegate

A::Combine(delegate,
delegate)

stfld class MyEventImpl A::evImpl
ret

}
.method public void Unsubscribe(class MyEventImpl aHandler)
{

ldarg.0
dup
ldfld class MyEventImpl A::evImpl
ldarg.1
call delegate

A::Remove(delegate,
delegate)

stfld class MyEventImpl A::evImpl
ret

}
.method public void Raise(int32 EventCode, string Msg)
{

ldarg.0
ldfld class MyEventImpl A::evImpl
ldarg.1
ldarg.2
call void MyEventImpl::Invoke(int32, string)
ret

}
.method public bool HasSubscribers()
{

ldc.i1.0

CHAPTER 15 ■ EVENTS AND PROPERTIES 319

Ch15_6463_FINAL 7/27/06 7:07 PM Page 319

ldarg.0
ldfld class MyEventImpl A::evImpl
brnull L1
pop
ldc.i1.1
L1: ret

}
.event MyEventImpl MyEvent
{
.addon instance void A::Subscribe(class MyEventImpl)
.removeon instance void A::Unsubscribe(class MyEventImpl)
.fire instance void A::Raise(int32, string)
.other instance bool A::HasSubscribers()

}
// Other class members
...

} // The end of the publisher class
// The event subscriber
.class public B
{
.method public void MyEvtHandler(int32 EventCode, string Msg)
{

// If EventCode > 100, print the message
ldarg.1
ldc.i4 100
ble.s Return
ldarg.2
call void [mscorlib]System.Console::WriteLine(string)

Return:
ret

}
.method private void SubscribeToMyEvent(class A Publisher)
{
// Publisher->Subscribe(new MyEventImpl
// (this,(int)(this->MyEvtHandler)))
ldarg.1
ldarg.0
dup
ldftn instance void MyEvtHandler(int32, string)
newobj instance void MyEventImpl::.ctor(object, native int)
call instance void A::Subscribe(class MyEventImpl)
ret

}
// Other class members
...

} // The end of the subscriber class

CHAPTER 15 ■ EVENTS AND PROPERTIES320

Ch15_6463_FINAL 7/27/06 7:07 PM Page 320

Property Metadata
Properties are considerably less fascinating than events. Typically, a property is some charac-
teristic of the class that declares it—for example, the value of a private field—accessible only
through the so-called accessor methods. Because of this, the only aspects of a property the
common language runtime is concerned with are the property’s accessors.

Let’s suppose that a property is based on a private field (you might also have heard the
phrase backed by a private field). Let’s also suppose that both read and write accessors are
defined. What is the sense in declaring such a property, when we could simply make the field
public and be done with it? At least two reasons argue for declaring it: the accessors can run
additional checks to ensure that the field has valid values at all times, and the accessors can
fire events signaling that the property has been changed or accessed. I’m sure you can think
of other reasons for implementing properties, even leaving aside cases in which the property
has no backing field or has only a read accessor or only a write accessor.

A property’s read and write accessors are referred to as getters and setters, respectively. The
Visual C# and Visual Basic compilers follow these naming conventions for the property acces-
sors: setters are named set_<property_name>, and getters are named get_<property_name>.
Both methods are marked with the specialname flag.

The property metadata group includes the following tables: Property, PropertyMap,
TypeDef, Method, MethodSemantics, and Constant. Figure 15-3 shows the structure of the
property metadata group. The following sections describe the Property and PropertyMap
tables. I discussed the MethodSemantics table in the preceding section of this chapter, and
Chapter 9 contains information about the Constant table.

Figure 15-3. The property metadata group

TypeDef
Table

PropertyMap
Table

Property
Table

MethodSemantics
Table

Method
Table

Constant
Table

CHAPTER 15 ■ EVENTS AND PROPERTIES 321

Ch15_6463_FINAL 7/27/06 7:07 PM Page 321

The Property Table
The Property table has the associated token type mdtProperty (0x17000000), and its records
have three entries:

• PropFlags (2-byte unsigned integer). Binary flags of the property characteristics.

• Name (offset in the #Strings stream). The name of the property, which must be a simple
name no longer than 1,023 bytes in UTF-8 encoding.

• Type (offset in the #Blob stream). The property signature. It’s about the only occurrence
in the metadata when an entry named Type has nothing to do with type (TypeDef,
TypeRef, or TypeSpec). Why this entry couldn’t be called Signature (which it is) remains
mystery to me.

So then, the Type entry holds an offset to the property signature residing in the #Blob
metadata stream. The structure of the property signature is similar to that of the method
signature, except that the calling convention is IMAGE_CEE_CS_CALLCONV_PROPERTY (0x08). The
return type and the parameter types of the property should correspond to those of the getter
and setter, respectively. The runtime, of course, pays no attention to what the property signa-
ture looks like, but the compilers do care.

Three flag values are defined for properties, and as in the case of events, only one of them
can be set explicitly:

• specialname (0x0200). The property is special in some way, as specified by the name.

• rtspecialname (0x0400). The event has a special name reserved for the internal use of
the common language runtime. This flag can’t be set explicitly.

• [no ILAsm keyword] (0x1000). The property has a default value, which resides in the
Constant table; that is, the Constant table contains a record, the Parent entry of which
refers to this property.

Like the event flags, the specialname and rtspecialname flags are used by the runtime
for marking deleted properties in edit-and-continue scenarios. The deleted property name
is changed to _Deleted*. The flag 0x1000 is set by the metadata emission API when a Constant
record is emitted for this property, signifying the property’s default value.

The PropertyMap Table
The PropertyMap table serves the same purpose for properties as the EventMap table does for
events: it provides mapping between the TypeDef table and the Property table. A PropertyMap
record has two entries:

• Parent (RID in the TypeDef table). The type declaring the properties.

• PropertyList (RID in the Property table). The beginning of the properties declared by
the type referenced by the Parent entry.

In the unoptimized model (the #- stream), an intermediate lookup metadata table,
PropertyPtr, is used to remap the properties so that they look as if they were ordered by parent.

CHAPTER 15 ■ EVENTS AND PROPERTIES322

Ch15_6463_FINAL 7/27/06 7:07 PM Page 322

Property Declaration
The ILAsm syntax for a property declaration is as follows:

.property <flags> <ret_type> <name>(<param_type>[,<param _type>*])
[<const_decl>] { <method_semantics_decl >* }

where

<method_semantics_decl> ::= <semantics> <method_ref>
<semantics> ::= .set | .get | .other
<const_decl> ::= = <const_type> [(<value>)]

The <ret_type> and the sequence of <param_type> nonterminals define the property’s
signature. <semantics> defines the kind of the associated methods: .set for the setter, .get
for the getter, and .other for any other method defined for this property. The optional
<const_decl> is the declaration of the property’s default value, similar to that of a field or a
method parameter. The parent of the property is the class in whose scope the property is
declared, as is the case for other class members (fields, methods, and events).

Now, as an exercise, let’s declare a simple property:

.class public A
{

// theTally is the backing field of the property Tally
.field private uint32 theTally = int32(0xFFFFFFFF)
// Constructor: set theTally to 0xFFFFFFFF (not used yet)
.method public void .ctor()
{

ldarg.0
dup
call instance void .base::.ctor()
ldc.i4 0xFFFFFFFF
stfld uint32 A::theTally
ret

}
// Setter: set Tally to Val if Val is not 0xFFFFFFFF
.method public void set_Tally(uint32 Val)
{

ldarg.1
ldc.i4 0xFFFFFFFF
beq.s Return
ldarg.0
ldarg.1
stfld uint32 A::theTally // set the backing field

Return:
ret

}
// Getter: return the value of Tally
.method public uint32 get_Tally()
{

CHAPTER 15 ■ EVENTS AND PROPERTIES 323

Ch15_6463_FINAL 7/27/06 7:07 PM Page 323

ldarg.0
ldfld uint32 A::theTally // get the backing field
ret

}
// Other method: reset the value of Tally to 0xFFFFFFFF
.method public void reset_Tally()
{

ldarg.0
ldc.i4 0xFFFFFFFF
stfld uint32 A::theTally
ret

}
.property uint32 Tally(uint32)
= int32(0xFFFFFFFF)

{
.set instance void A::set_Tally(uint32)
.get instance uint32 A::get_Tally()
.other instance void A::reset_Tally()

}
} // The end of class A

Summary of Metadata Validity Rules
The event-related and property-related metadata tables are Event, EventMap, Property,
PropertyMap, Method, MethodSemantics, TypeDef, TypeRef, TypeSpec, and Constant.
Earlier chapters have discussed the validity rules for Method, TypeDef, TypeRef, TypeSpec,
and Constant tables. The records of the remaining tables have the following entries:

• The Event table: EventFlags, Name, and EventType

• The EventMap table: Parent and EventList

• The Property table: PropFlags, Name, and Type

• The PropertyMap table: Parent and PropertyList

• The MethodSemantics table: Semantic, Method, and Association

Event Table Validity Rules

• The EventFlags entry must contain 0, must have the specialname flag set (0x0200), or
must have both the specialname and rtspecialname flags set (0x0600).

• The Name entry must contain a valid offset in the #Strings stream, indexing a string no
longer than 1,023 bytes in UTF-8 encoding.

• If the specialname and rtspecialname flags are set, the event name must be _Deleted*.

CHAPTER 15 ■ EVENTS AND PROPERTIES324

Ch15_6463_FINAL 7/27/06 7:07 PM Page 324

• No duplicate records—those with the same name belonging to the same class—can
exist unless the event name is _Deleted*.

• The EventType entry must contain a valid reference to the TypeDef, TypeRef, or
TypeSpec table.

EventMap Table Validity Rules

• The Parent entry must hold a valid reference to the TypeDef table.

• The EventList entry must hold a valid reference to the Event table.

Property Table Validity Rules

• The PropFlags entry must contain 0 or a combination of the binary flags specialname
(0x0200), rtspecialname (0x0400), and 0x1000.

• If the rtspecialname flag is set, the specialname flag must also be set.

• If the 0x1000 flag is set, the Constant table must contain a valid record whose Parent
entry holds the reference to this Property record, and vice versa.

• The Name entry must contain a valid offset in the #Strings stream, indexing a string no
longer than 1,023 bytes in UTF-8 encoding.

• If the specialname and rtspecialname flags are set, the property name must be _Deleted*.

• No duplicate records—those with the same name and signature belonging to the same
class—can exist unless the property name is _Deleted*.

• The Type entry must contain a valid offset in the #Blob stream, indexing a valid prop-
erty signature. Chapter 7 discussed the validity rules for property signatures.

PropertyMap Table Validity Rules

• The Parent entry must hold a valid reference to the TypeDef table.

• The PropertyList entry must hold a valid reference to the Property table.

MethodSemantics Table Validity Rules

• The Semantic entry must contain one of the following values: msSetter (0x0001),
msGetter (0x0002), msOther (0x0004), msAddOn (0x0008), msRemoveOn (0x0010), and
msFire (0x0020).

• The Method entry must contain a valid index to the Method table.

• The Association entry must contain a valid reference to the Event or Property table.

CHAPTER 15 ■ EVENTS AND PROPERTIES 325

Ch15_6463_FINAL 7/27/06 7:07 PM Page 325

• If the Semantic entry contains msSetter or msGetter, the Association entry must
reference the Property table.

• If the Semantic entry contains msAddOn, msRemoveOn, or msFire, the Association entry
must reference the Event table.

• No duplicate records that have the same Method and Association entries can exist.

• No duplicate records that have the same Association and Semantic entries can exist
unless the Semantic entry contains msOther.

• For each Event record referenced in the Association entry, the table can contain one
and only one MethodSemantics record with a Semantic entry equal to msAddOn.

• For each Event record referenced in the Association entry, the table can contain one
and only one MethodSemantics record with a Semantic entry equal to msRemoveOn.

• For each Event record referenced in the Association entry, the table can contain no
more than one MethodSemantics record with a Semantic entry equal to msFire.

CHAPTER 15 ■ EVENTS AND PROPERTIES326

Ch15_6463_FINAL 7/27/06 7:07 PM Page 326

Custom Attributes

Every system worth its salt needs extensibility. The languages that describe an extensible
system and their compilers need extensibility as well; otherwise, they are describing not the
system but rather its glorious past.

A system and the associated languages can be extended in three ways. The first way is to
tinker with the system itself, changing its inner structure and changing the languages accord-
ingly. This approach is good as long as the system has a negligible number of users, because
each new version of the system (and hence the languages) is basically different from the previ-
ous version. This approach is characteristic of the early stages of the life cycle of a complex
system.

The second way is to leave the system and the languages as they are and build a parallel
system (and parallel languages and their compilers), providing additional functionality. A
classic example of this approach was the introduction of the remote procedure call (RPC)
standard and the interface description language (IDL) in parallel with existing C runtime
and C/C++ compilers.

The third way is to build into the system (and the languages) some formal means of
extensibility and then employ these means when needed. This approach allows the system
developers to sneak in new features and subsystems without changing the basic characteris-
tics of the system. The only challenge is to devise means of extensibility that are both efficient
and universal—efficient because we need productivity, and universal because we don’t know
what we’ll need tomorrow or a year from now. These requirements are contradictory, and usu-
ally universality wins out. If efficiency wins at universality’s expense, sooner or later the
designers run out of options and must switch to the second way.

The Microsoft .NET platform, including the common language runtime, the .NET Frame-
work, and the compilers, has an extensibility mechanism built in. This mechanism employs
the metadata entities known as custom attributes.

Concept of a Custom Attribute
A custom attribute is a metadata item specifically designed as a universal tool for metadata
extension. Custom attributes do not, of course, change the metadata schema, which is hard-
coded and a sacrosanct part of the common language runtime. Custom attributes also don’t
play any role similar to the generics, which create new types based on some “templates.”
Rather, custom attributes provide a way to specify additional information about metadata
items—information not represented by a metadata item itself.

327

C H A P T E R 1 6

■ ■ ■

Ch16_6463_FINAL 7/27/06 7:08 PM Page 327

The information carried by custom attributes is intended mostly for various tools such as
compilers, linkers, and debuggers. The runtime recognizes only a small subset of custom
attributes.

Custom attributes are also lifesavers for compilers. If the designers of compilers and lan-
guages discover, to their surprise, that more features are required to describe a problem area
than were initially built into a language or its compiler, they can easily extend the descriptive
power of the language by introducing new custom attributes. Of course, the language and its
compiler must recognize the concept of a custom attribute to begin with, but that’s hardly a
problem—all managed languages and their compilers do this.

I’ve heard some slanderous statements to the effect that the number of custom attributes
used by a tool is in direct proportion to the degree of wisdom acquired by the tool designers
after the fact. But of course this can’t be true.

Jokes aside, custom attributes are extremely useful tools. Think of the following simple
example. If we want managed code to interoperate with classic COM applications, we need to
play by the classic COM rules. One of these rules is that every exported interface must have a
globally unique identifier (GUID) assigned to it. The runtime generates GUIDs on the fly, but
we might need not just any GUID but rather a specific GUID assigned to a class. What do we
do? Add another field to the TypeDef record to store an offset in the #GUID stream? This would
surely not help reduce the size of the metadata tables, especially when we consider that only
a small fraction of all TypeDefs might ever be used in COM interoperation. To solve the prob-
lem, we can introduce a GUID-carrying custom attribute—actually, we have one already,
System.Runtime.InteropServices.GuidAttribute—and assign this attribute to any TypeDef
participating in the COM interoperation.

The problem with custom attributes is that they are very expensive in terms of resources.
They bloat the metadata. Because they represent metadata add-ons, the IL code has no means
of accessing them directly. As a result, custom attributes must be resolved through Reflection
methods, an approach that approximates having a lively chat by means of mailing letters writ-
ten in Morse code—fun if you have an eternity at your disposal.

There’s bad news regarding custom attributes, and there’s also good news. The bad news
is that custom attributes keep breeding at an astonishing rate as new tools and new features
are introduced. And sometimes custom attributes are invented not because of need but
because “I can” or because someone wonders, “Why should I do it the hard way?” It’s so easy
to use, no wonder…. Ahem! The good news, however, is that most custom attributes are spe-
cific to certain tools and only a small fraction are actually used at run time.

CustomAttribute Metadata Table
The CustomAttribute table contains data that can be used to instantiate custom attributes at
run time. A record in this CustomAttribute table has three entries:

• Parent (coded token of type HasCustomAttribute). This entry references the metadata
item to which the attribute is assigned.

• Type (coded token of type CustomAttributeType). This entry defines the type of the
custom attribute itself.

• Value (offset in the #Blob stream). This entry is the binary representation of the custom
attribute’s parameters.

CHAPTER 16 ■ CUSTOM ATTRIBUTES328

Ch16_6463_FINAL 7/27/06 7:08 PM Page 328

Given their nature as informational add-ons to other metadata items, custom attributes
can be attached to any metadata item that has a specific token type assigned to it. The one
exception is that custom attributes cannot be attached to another custom attribute. Chapter 5
described the 23 token types. The token type mdtCustomAttribute (0x0C000000) belongs to the
custom attributes themselves. This leaves 22 tables providing potential owners of custom
attributes: Module, TypeRef, TypeDef, Field, Method, Param, InterfaceImpl, MemberRef,
DeclSecurity, StandAloneSig, Event, Property, ModuleRef, TypeSpec, Assembly, AssemblyRef,
File, ExportedType, ManifestResource, GenericParam, GenericParamConstraint, and Method-
Spec. No metadata table references the CustomAttribute table. Note that a custom attribute
can be assigned to a specific type (TypeRef, TypeDef), but not to an instance of the type.

The Type entry of a custom attribute is a coded token of type CustomAttributeType and
hence theoretically can be one of the following: TypeRef, TypeDef, Method, MemberRef, or String.
(See Chapter 5.) In fact, in the existing releases of the common language runtime, the choice is
limited to Method or MemberRef because of the requirement that the type of a custom attribute
must be an instance constructor and nothing else. The class whose instance constructor
represents the custom attribute type should be derived from the abstract class
[mscorlib]System.Attribute.

The Value entry of a custom attribute is a blob whose contents depend on the nature of
the custom attribute. If we were allowed to use a user-defined string as the custom attribute
type, Value would contain the Unicode text. But because the custom attribute type is limited
to instance constructors, the Value blob contains the encoded arguments of the constructor
and (possibly) encoded name/value pairs, setting the fields and properties of the custom
attribute’s class. If the constructor has no parameters, because the mere presence of the
custom attribute is considered sufficiently informational, the Value entry can hold 0.

Custom Attribute Value Encoding
The Value blob of a custom attribute might contain two categories of data: encoded argument
values of the instance constructor and additional encoded name/value pairs specifying the
initialization values of the fields and properties of the custom attribute class.

The Value blob encoding is based on serialization type codes enumerated in
CorSerializationType in the CorHdr.h file. The serialization codes for the primitive types,
strings, and vectors are the same as the respective ELEMENT_TYPE_* codes—that is,
ELEMENT_TYPE_BOOLEAN, and so on, as described in Chapter 8. Additional serialization codes
include TYPE (0x50), TAGGED_OBJECT (0x51), FIELD (0x53), PROPERTY (0x54), and ENUM (0x55).
All the constant names include the prefix SERIALIZATION_TYPE_, which I omit because of my
inherent laziness.

The encoded blob begins with the prolog, which is always the 2-byte value 0x0001. This
is actually the version of the custom attribute blob encoding scheme, which hasn’t changed
since its introduction, so the prolog is the same for all existing versions of the runtime. The
prolog is followed by the values of the constructor arguments. The size and byte layout of
these values are inferred from the constructor’s signature. For example, the value 0x1234 sup-
plied as an argument of type int32 is encoded simply as a little-endian 4-byte integer, that is,
as the following sequence of bytes:

0x34 0x12 0x00 0x00

CHAPTER 16 ■ CUSTOM ATTRIBUTES 329

Ch16_6463_FINAL 7/27/06 7:08 PM Page 329

If the argument is a vector, its encoding begins with a 4-byte element count, followed by
the element values. For example, a vector of the three unsigned int16 values 0x1122, 0x3344,
and 0x5566 is encoded as follows:

0x03 0x00 0x00 0x00 0x22 0x11 0x44 0x33 0x66 0x55

If the argument is a string, its encoding begins with the compressed string length,
followed by the string itself in UTF-8 encoding, without the terminating 0 byte. The length
compression formula was discussed in Table 5-1. For example, the string Common Language
Runtime is encoded as the following byte sequence, with the leading byte (0x17) representing
the string length (23 bytes):

0x17 0x43 0x6F 0x6D 0x6D 0x6F 0x6E 0x20 0x4C 0x61 0x6E 0x67 0x75 0x61
0x67 0x65 0x20 0x52 0x75 0x6E 0x74 0x69 0x6D 0x65

If the argument is an object reference to a boxed primitive value type—bool, char,
one of the integer types, or one of the floating-point types—the encoding consists of
SERIALIZATION_TYPE_TAGGED_OBJECT (0x51), followed by 1-byte primitive type encoding,
by the value of the primitive value type. The encoding does not support object references
to boxed nonprimitive value types.

Finally, if the argument is of type System.Type, its encoding is similar to that of a string,
with the type’s fully qualified name playing the role of the string constant. The rules of the fully
qualified type name formatting applied in the custom attribute blob encoding are those of
Reflection, which differ from ILAsm conventions. The full class name is formed in Reflection
and ILAsm almost identically, except for the separator symbols that denote the class nesting.
ILAsm notation uses a forward slash:

MyNamespace.MyEnclosingClass/MyNestedClass

whereas the Reflection standard uses a plus sign:

MyNamespace.MyEnclosingClass+MyNestedClass

We find greater difference, however, in the way resolution scope is designated. In ILAsm,
the resolution scope is expressed as the external assembly’s alias (see Chapter 6) in square
brackets preceding the full class name. In Reflection notation, the resolution scope is specified
after the full class name, separated by a comma. In addition, the concept of the external
assembly alias is specific to ILAsm, and Reflection does not recognize it. Thus, if the version,
public key token, or culture must be specified, it is done explicitly as part of the resolution
scope specification. The following is an ILAsm example:

.assembly extern OtherAssembly as OtherAsm2
{

.ver 1:2:3:4

.publickeytoken = (01 02 03 04 05 06 07 08)

.locale "fr-CA"
}
...
[OtherAsm2]MyNamespace.MyEnclosingClass/MyNestedClass

CHAPTER 16 ■ CUSTOM ATTRIBUTES330

Ch16_6463_FINAL 7/27/06 7:08 PM Page 330

In contrast, here is a Reflection example:

MyNamespace.MyEnclosingClass+MyNestedClass, OtherAssembly,
Version=1.2.3.4, PublicKeyToken=0102030405060708, Culture=fr-CA

According to Reflection conventions, the resolution scope specification can be omitted
if the referenced class is defined in the current assembly or in Mscorlib.dll. In ILAsm, as you
know, the resolution scope is omitted only if the class is defined in the current module.

The byte sequence representing the prolog and the constructor arguments is followed by
the 2-byte count of the name/value pairs. A name/value pair specifies which particular field or
property must be initialized to a certain value.

The name/value pair encoding begins with the serialization code of the target: FIELD or
PROPERTY. The next byte is the serialization code of the target type, which is limited to the
primitive types, enums, STRING, and TYPE. After the target type comes the name of the target,
encoded the same way a string argument would be: the compressed length, followed by the
string itself in UTF-8 encoding, without the 0 terminator. Immediately after the target name
is the target initialization value, encoded similarly to the arguments. For example, the name/
value pair initializing a field (0x53) of type bool (0x02) named Inherited (length 0x09) to true
(0x01) is encoded as this byte sequence:

0x53 0x02 0x09 0x49 0x6E 0x68 0x65 0x72 0x69 0x74 0x65 0x64 0x01

There is a specific way to encode the enumerations in name/value pairs. If the type of a field
or property is an enum, the target type encoding starts with SERIALIZATION_TYPE_ENUM (0x55)
rather than with ELEMENT_TYPE_VALUETYPE, as you would expect. The SERIALIZATION_TYPE_ENUM
byte is followed by the compressed length of the full enum’s name in Reflection notation and the
name itself without the zero terminator.

Verbal Description of Custom Attribute Value
Version 2.0 of the ILAsm compiler supports the verbal description of the custom attribute
value blob. This makes reading and writing the custom attribute values quite a lot easier.

The definition of a serialized primitive type is similar to the definition of the fields’ and
properties’ initialization values (see Chapter 9). For example, the value 0x1234 of an int32
parameter from the previous section is expressed as int32(0x1234). The values of Boolean
parameters are expressed as bool(true) or bool(false).

The definition of a string begins with the keyword string, followed by the single-quoted
string value in parentheses. For example, the string Common Language Runtime from the previ-
ous section would be represented as string('Common Language Runtime'). To express a
null-reference string, the construct string(nullref) is used.

The definition of the serialized types (instances of [mscorlib]System.Type) begins with
the keyword type, followed either by the type name in ILAsm notation or by keyword class
and the single-quoted class name in Reflection notation:

type([OtherAsm2]MyNamespace.MyEnclosingClass/MyNestedClass)

or

type(class 'MyNamespace.MyEnclosingClass+MyNestedClass, OtherAssembly,
Version=1.2.3.4,PublicKeyToken=0102030405060708, Culture=fr-CA')

CHAPTER 16 ■ CUSTOM ATTRIBUTES 331

Ch16_6463_FINAL 7/27/06 7:08 PM Page 331

To express a null-reference type, the construct type(nullref) is used.
The definition of a boxed value of a primitive value type begins with the keyword object,

followed by the definition of the primitive type in parentheses, such as
object(int32(0x1234)).

The definition of an array contains the element count in square brackets and the
space-delimited sequence of values in parentheses, such as int32[3](123 456 789) or
string[4]('One' 'Two' 'Three' 'Four').

The definition of a name/value pair, denoting the initialization of a field or a property,
begins with the keyword field or property, respectively, followed by the type of the field
(property) and its name, followed by the equality symbol and the definition of the serialized
initialization value as described previously. For example:

field int32[] xxx = int32[3](1 2 3)
property string yyy = string('Hello World!')
property enum MyEnum yyy = int32(2)

All definitions of the serialized initialization values comprising the custom attribute value
blob are written in space-delimited sequence and enclosed in curly braces.

Custom Attribute Declaration
The ILAsm syntax for declaring a custom attribute is as follows:

.custom <attribute_type> [= (<hexbytes>)]

or, considering the limitation imposed on <attribute_type> in the existing releases of the
common language runtime that the only legal <attribute_type> is an instance constructor,
is as follows:

.custom instance void <class_ref>::.ctor(<arg_list>)
[= (<hexbytes>)]

where <class_ref> is a fully qualified class reference, <arg_list> is an argument list of the
instance constructor, and <hexbytes> is the sequence of two-digit hexadecimal numbers
representing the bytes in the custom attribute’s blob.

The ILAsm v2.0 syntax for declaring a custom attribute with a verbal value description is
as follows:

.custom <attribute_type> [= { <serialized values> }]

or

.custom instance void <class_ref>::.ctor(<arg_list>)
[= { <serialized values> }]

To appreciate the difference between verbal and byte-array representations of a custom
attribute value, consider the following definition of a hypothetical custom attribute:

.custom instance void [System]System.SomeAttribute::.ctor(bool,object)
= { bool(true)

object(int32(1234))

CHAPTER 16 ■ CUSTOM ATTRIBUTES332

Ch16_6463_FINAL 7/27/06 7:08 PM Page 332

field type XXX = type([mscorlib]System.MulticastDelegate)
field int32[] YYY = int32[3](1 2 3)
field string[] ZZZ = string[3]('abc' 'def' 'ghe')
property enum MyEnum PPP = int32(2) }

versus the following:

.custom instance void [System]System.SomeAttribute::.ctor(bool,object)
= (01 00 01 08 D2 04 00 00 04 00 53 50 03 58 58 58

65 53 79 73 74 65 6D 2E 4D 75 6C 74 69 63 61 73
74 44 65 6C 65 67 61 74 65 2C 20 6D 73 63 6F 72
6C 69 62 2C 20 56 65 72 73 69 6F 6E 3D 32 2E 30
2E 30 2E 30 2C 20 43 75 6C 74 75 72 65 3D 6E 65
75 74 72 61 6C 2C 20 50 75 62 6C 69 63 6B 65 79
74 6F 6B 65 6E 3D 62 37 37 61 35 63 35 36 31 39
33 34 65 30 38 39 53 1D 08 03 59 59 59 03 00 00
00 01 00 00 00 02 00 00 00 03 00 00 00 53 1D 0E
03 5A 5A 5A 03 00 00 00 03 61 62 63 03 64 65 66
03 67 68 65 54 55 06 4D 79 45 6E 75 6D 03 50 50
50 02 00 00 00)

The owner of the custom attribute, or the metadata item to which the attribute is
attached, is defined by the positioning of the custom attribute declaration. At first glance,
the rule regarding the declaration of metadata items is simple: if the item declaration has a
scope (for example, an assembly, a class, or a method), the custom attributes of the item are
declared within this scope. Otherwise—that is, if the item declaration has no scope (such
items as a file, a module, or a field)—the custom attributes of the item are declared immedi-
ately after the item declaration. For example, take a look at these excerpts from the
disassembly of Mscorlib.dll:

.assembly mscorlib
{

// Assembly's custom attributes
.custom instance void System.CLSCompliantAttribute::.ctor(bool)

= (01 00 01 00 00)
.custom instance void

System.Resources.NeutralResourcesLanguageAttribute::.ctor(string)
= (01 00 05 65 6E 2D 55 53 00 00) // ...en-US..

...
}
...
.module CommonLanguageRuntimeLibrary
// Module's custom attribute
.custom instance void

System.Security.UnverifiableCodeAttribute::.ctor()
= (01 00 00 00)

...

.class interface public abstract auto ansi IEnumerable
{

CHAPTER 16 ■ CUSTOM ATTRIBUTES 333

Ch16_6463_FINAL 7/27/06 7:08 PM Page 333

// Class's custom attribute
.custom instance void

System.Runtime.InteropServices.GuidAttribute::.ctor(string)
= (01 00 24 34 39 36 42 30 41 42 45 2D 43 44 45 45

2D 31 31 64 33 2D 38 38 45 38 2D 30 30 39 30 32
37 35 34 43 34 33 41 00 00)

.method public hidebysig newslot virtual abstract
instance class System.Collections.IEnumerator
GetEnumerator()

{
// Method's custom attribute
.custom instance void

System.Runtime.InteropServices.DispIdAttribute::.ctor(int32)
= (01 00 FC FF FF FF 00 00)

...
} // End of method IEnumerable::GetEnumerator
...

} // End of class IEnumerable
...

This is in stark contrast to the way custom attributes are declared, for instance, in C#
where a custom attribute belonging to an item immediately precedes the item declaration. For
example, the following is an excerpt showing the C# declaration of the interface IEnumerable
mentioned in the preceding code:

[Guid("496B0ABE-CDEE-11d3-88E8-00902754C43A")]
public interface IEnumerable
{

[DispId(-4)]
IEnumerator GetEnumerator();

}

The ILAsm rule specifying that custom attribute ownership is defined by the position of
the attribute declaration can play tricks on you if you don’t pay attention. Don’t forget that
when a declaration of a nonscoped item is encountered within the scope of another item, the
custom attribute’s ownership immediately switches to this newly declared item. Because of
that, the custom attributes belonging to a scoped item cannot be declared just anywhere
within the item’s scope. The following code snippet illustrates the point:

.class public MyClass
{

.custom instance void MyClassAttribute::.ctor()=(01 00 00 00)

.field int32 MyField

.custom instance void MyFieldAttribute::.ctor()=(01 00 00 00)

.method public int32 MyMethod([opt]int32 J)
{

.custom instance void MyMethodAttribute::.ctor()=(01 00 00 00)

.param[1] = int32(123456)

.custom instance void MyParamAttribute::.ctor()=(01 00 00 00)

CHAPTER 16 ■ CUSTOM ATTRIBUTES334

Ch16_6463_FINAL 7/27/06 7:08 PM Page 334

...
}

}

To avoid possible confusion about the ownership of a custom attribute, it’s better to
declare an item’s custom attributes as soon as the item’s scope is opened, before any other
items are declared within the scope.

The preceding discussion covers the rules for assigning custom attributes to items that
are declared explicitly. Obviously, these rules cannot be applied to metadata items, which are
declared implicitly, simply by their appearance in ILAsm directives and instructions. After all,
such metadata items as TypeRefs, TypeSpecs, and MemberRefs might want their fair share of
custom attributes, too.

To resolve this problem, ILAsm offers another (full) form of the custom attribute declara-
tion, with the explicit specification of the custom attribute owner:

.custom (<owner_spec>) instance void <class_ref>::.ctor(<arg_list>)
[= (<hexbytes>)]

where

<owner_spec> ::= <class_ref> | <type_spec>
| method <method_ref> | field <field_ref>

For example:

.custom ([mscorlib]System.String)
instance void MyTypeRefAttribute::.ctor()=(01 00 00 00)

.custom ([mscorlib]System.String[])
instance void MyTypeSpecAttribute::.ctor()=(01 00 0 0 00)

.custom (method instance void [OtherAssem]Foo::Bar(int32,int32))
instance void MyMemberRefAttribute1::.ctor()=(01 00 00 00)

.custom (field int32 [.module OtherMod]Foo::Baz)
instance void MyMemberRefAttribute2::.ctor()=(01 00 00 00)

Custom attribute declarations in their full form can appear anywhere within the ILAsm
source code, because the owner of a custom attribute is specified explicitly and doesn’t have
to be inferred from the positioning of the custom attribute declaration. The IL disassembler
puts the custom attribute declarations in full form at the end of the source code dump, before
the data dump.

Note that version 2.0 of the IL assembler also supports the verbal description of custom
attribute values in the full form of custom attribute declaration.

Two additional categories of metadata items can in principle own custom attributes:
InterfaceImpls and StandAloneSigs. The existing releases of ILAsm offer no language means
to define custom attributes belonging to these items, an omission to be corrected in future
revisions of ILAsm and its compiler. Of course, so far no compiler or other tool has generated
custom attributes for these items, but you never know. The tools develop quickly, and the cus-
tom attributes proliferate even more quickly, so sooner or later somebody will manage to
assign a custom attribute to an interface implementation or a stand-alone signature.

CHAPTER 16 ■ CUSTOM ATTRIBUTES 335

Ch16_6463_FINAL 7/27/06 7:08 PM Page 335

Classification of Custom Attributes
Let’s concentrate on the custom attributes recognized by the common language runtime or
the tools dealing with managed PE files and see which custom attributes are intended for vari-
ous subsystems of the runtime and tools.

Before proceeding, however, I must mention one custom attribute that stands apart from
any classification and is truly unique. It is the attribute System.AttributeUsageAttribute, which
can (and should) be owned only by the custom attribute types. Make no mistake—custom
attributes can’t own custom attributes, but as we have already found out, the Type entry of a cus-
tom attribute is always a reference to an instance constructor of some class. This class should
own the custom attribute System.AttributeUsageAttribute, which identifies what kinds of
metadata items can own the custom attributes typed after this class, whether these custom
attributes are inheritable by the derived classes or overriding methods and whether multiple
custom attributes of this type can be owned by a concrete metadata item. Because all operations
concerning custom attributes are performed through Reflection, AttributeUsageAttribute can
be considered the only custom attribute intended exclusively for Reflection itself. The instance
constructor of the AttributeUsageAttribute type has one int32 parameter, representing the
binary flags for various metadata items as potential owners of the custom attribute typed after
the attributed class. The flags are defined in the enumeration System.AttributeTargets.

The following should save you the time of looking up this enumeration in the disassembly
of Mscorlib.dll:

.class public auto ansi serializable sealed AttributeTargets
extends System.Enum

{
// The following custom attribute is intended for the compilers
// And indicates that the values of the enum are binary flags
// And hence can be bitwise OR'ed
.custom instance void System.FlagsAttribute::.ctor()

= (01 00 00 00)
.field public specialname rtspecialname int32 value__
.field public static literal valuetype System.AttributeTargets

Assembly = int32(0x00000001)
.field public static literal valuetype System.AttributeTargets

Module = int32(0x00000002)
.field public static literal valuetype System.AttributeTargets

Class = int32(0x00000004)
.field public static literal valuetype System.AttributeTargets

Struct = int32(0x00000008) // Value type
.field public static literal valuetype System.AttributeTargets

Enum = int32(0x00000010)
.field public static literal valuetype System.AttributeTargets

Constructor = int32(0x00000020)
.field public static literal valuetype System.AttributeTargets

Method = int32(0x00000040)
.field public static literal valuetype System.AttributeTargets

Property = int32(0x00000080)
.field public static literal valuetype System.AttributeTargets

Field = int32(0x00000100)

CHAPTER 16 ■ CUSTOM ATTRIBUTES336

Ch16_6463_FINAL 7/27/06 7:08 PM Page 336

.field public static literal valuetype System.AttributeTargets
Event = int32(0x00000200)

.field public static literal valuetype System.AttributeTargets
Interface = int32(0x00000400)

.field public static literal valuetype System.AttributeTargets
Parameter = int32(0x00000800)

.field public static literal valuetype System.AttributeTargets
Delegate = int32(0x00001000)

.field public static literal valuetype System.AttributeTargets
ReturnValue = int32(0x00002000)

.field public static literal valuetype System.AttributeTargets
GenericParameter = int32(0x00004000)

.field public static literal valuetype System.AttributeTargets
All = int32(0x00007FFF)

} // End of class AttributeTargets

As you can see, Reflection’s list of potential custom attribute owners is somewhat narrower
than the metadata’s list of 22 tables. Perhaps we needn’t worry about the custom attributes of
the interface implementations and stand-alone signatures just yet.

The remaining two characteristics of AttributeUsageAttribute—the Boolean properties
Inherited and AllowMultiple—must be defined through the name/value pairs. The defaults are
All for the potential custom attribute owners, true for Inherited, and false for AllowMultiple.

You’ll find this information useful when (note that I’m not saying “if”) you decide to
invent your own custom attributes. And now, back to our classification scheme.

Execution Engine and JIT Compiler
The execution engine and the JIT compiler of the common language runtime recognize three
custom attributes:

System.Diagnostics.DebuggableAttribute: This attribute, which can be owned by the
assembly or the module, sets a special debug mode for the JIT compiler. There are two
instance constructors: one, inherited from versions 1.0 and 1.1, has two Boolean parame-
ters, the first enabling the JIT compiler tracking the extra information about the generated
code (mapping of the IL instruction offsets to the generated native code offsets) and the
second disabling JIT compiler optimizations. The second instance constructor, specific to
version 2.0, has one integer parameter—OR combination of flags “default behavior” (0x1),
“ignore sequence points defined in PDB” (0x2), “enable edit-and-continue mode” (0x4),
and “disable JIT optimizations” (0x100). Chapter 19 discusses these flags and their effects
in detail. The ILAsm compiler automatically emits this custom attribute when the /DEBUG
command-line option is specified. The ILDASM outputs this attribute but comments it out.

Other debugging-related custom attributes (DebuggerStepThroughAttribute,
DebuggerHiddenAttribute, DebuggerBrowsableAttribute, DebuggerTypeProxyAttribute,
DebuggerDisplayAttribute, and DebuggerVisualizerAttribute) are debugger-specific and
don’t affect the operation of the JIT compiler or the execution engine.

System.Security.UnverifiableCodeAttribute: This attribute, which can be owned by the
module, indicates that the module contains unverifiable code. Thus, because the result is

CHAPTER 16 ■ CUSTOM ATTRIBUTES 337

Ch16_6463_FINAL 7/27/06 7:08 PM Page 337

known, IL code verification procedures don’t have to be performed. The instance con-
structor has no parameters. A module owning this attribute can be executed only in
full-trust mode.

System.ThreadStaticAttribute: This attribute, which can be owned by a field, indicates that
the static field is not shared between threads. Instead, the common language runtime cre-
ates an individual copy of the static field for each thread. The effect is approximately the
same as mapping the static field to the TLS data, but this effect is achieved on the level of
the runtime rather than that of the operating system. The runtime-provided TLS is margin-
ally slower but does not introduce the platform dependence.

Interoperation Subsystem
I discuss the interoperation between managed and unmanaged code in Chapter 18, and here
I’m just listing the custom attributes related to this area. All the custom attribute types in this
group belong to the namespace System.Runtime.InteropServices. The following list refers to
them by their class names only:

ClassInterfaceAttribute: This attribute, which can be owned by an assembly or a
TypeDef (class), specifies whether a COM class interface is generated for the attributed
type. This attribute type has two instance constructors, each having a single parameter.
The first constructor takes a value of enumeration ClassInterfaceType; the second takes
an int16 argument. The acceptable argument values are 0 (no automatic interface gener-
ation), 1 (automatic IDispatch interface generation), or 2 (automatic dual interface
generation).

ComAliasNameAttribute: This attribute, which can be owned by a parameter (including the
return value), a field, or a property, indicates the COM alias for the attributed item. The
instance constructor has a single string parameter.

ComConversionLossAttribute: This attribute, which can be owned by any item, indicates
that information about a class or an interface was lost when it was imported from a type
library to an assembly. The instance constructor has no parameters.

ComRegisterFunctionAttribute: This attribute, which can be owned by a method, indi-
cates that the method must be called when an assembly is registered for use from COM.
This allows for the execution of user-defined code during the registration process. The
instance constructor has no parameters.

ComUnregisterFunctionAttribute: This attribute, which can be owned by a method, indi-
cates that the method must be called when an assembly is unregistered from COM. The
instance constructor has no parameters.

ComSourceInterfacesAttribute: This attribute, which can be owned by a TypeDef, identi-
fies a list of interfaces that are exposed as COM event sources for the attributed type. This
attribute type has five instance constructors; the most useful one has a single string
parameter, the value of which should contain a zero-separated list of all interface types
in Reflection notation. (See “Custom Attribute Value Encoding” earlier in this chapter.)

CHAPTER 16 ■ CUSTOM ATTRIBUTES338

Ch16_6463_FINAL 7/27/06 7:08 PM Page 338

ComVisibleAttribute: This attribute, which can be owned by an assembly, a TypeDef, a
method, a field, or a property, indicates whether the attributed item is visible to classic
COM. The instance constructor has one Boolean parameter with a value of true if the
item is visible.

DispIdAttribute: This attribute, which can be owned by a method, a field, a property, or
an event, specifies the COM DispId of the attributed item. The instance constructor has
one int32 parameter, the value of the DispId.

GuidAttribute: This attribute, which can be owned by an assembly or a TypeDef, specifies
an explicit GUID if the GUID automatically generated by the runtime is for some reason
not guid—I mean, good—enough. The instance constructor has one string parameter,
which should contain the GUID value in standard literal representation without the sur-
rounding curly braces.

IDispatchImplAttribute: This attribute, which can be owned by the assembly or a
TypeDef, indicates the kind of IDispatch interface implementation. The attribute is
deemed obsolete and is not recommended for use. The instance constructor has one
parameter of type IDispatchImplType (enum), indicating a system-defined implementa-
tion (0), internal implementation (1), or compatible implementation (2).

ImportedFromTypeLibAttribute: This attribute, which can be owned by the assembly,
indicates that the types defined within the assembly were originally defined in a COM
type library. The attribute is set automatically by the TlbImp.exe utility. The instance con-
structor has one string parameter, which should contain the filename of the imported
type library.

InterfaceTypeAttribute: This attribute, which can be owned by a TypeDef (interface),
indicates the COM-specific interface type this interface is exposed as. The instance con-
structor has one int16 parameter. A value of 0 indicates a dual interface, a value of 1
indicates IUnknown, and a value of 2 indicates IDispatch.

ProgIdAttribute: This attribute, which can be owned by a TypeDef (class), explicitly speci-
fies the COM ProgId of the attributed class. Normally, the ProgId strings are generated
automatically as a full class name (namespace plus name), but the ProgId length is lim-
ited to 39 bytes plus a 0 terminator. The namespaces and class names in .NET are rather
long-winded, so there’s a good chance 39 bytes won’t even cover the namespace. The
instance constructor has one string parameter, which should contain the ProgId string.

TypeLibFuncAttribute: This attribute, which can be owned by a method, specifies the COM
function flags that were originally imported from the type library. (The COM function flags
are described in COM literature and on the Microsoft Developer Network [MSDN].) This
attribute is generated automatically by the TlbImp.exe utility. The instance constructor has
one int16 parameter, the value of the flags.

TypeLibTypeAttribute: This attribute, which can be owned by a TypeDef, is similar to
TypeLibFuncAttribute except that COM type flags are specified instead of COM function
flags.

CHAPTER 16 ■ CUSTOM ATTRIBUTES 339

Ch16_6463_FINAL 7/27/06 7:08 PM Page 339

TypeLibVarAttribute: This attribute, which can be owned by a field, is similar to
TypeLibFuncAttribute and TypeLibTypeAttribute except that the flags in question
are COM variable flags.

Security
Security-related custom attributes are special attributes that are converted to DeclSecurity
metadata records (discussed in the next chapter). Usually, the security custom attributes
(except one, which is discussed in the next paragraph) don’t make it past the compilation
stage—the compiler uses them to create the DeclSecurity metadata and doesn’t include the
original custom attributes in the module’s metadata. In one scenario, however, the security
custom attributes do “survive” the compilation and are emitted into the PE file. This happens
when the security attributes owned by the assembly are specified in the assembly modules,
further linked to the assembly by the assembly linker tool. In this case, the assembly-owned
security attributes are converted to DeclSecurity metadata records by the assembly linker,
but they remain in the assembly modules, although they play no role.

One of the security custom attributes belongs to the namespace System.Security:
SuppressUnmanagedCodeSecurityAttribute. This attribute, which can be owned by a method
or a TypeDef, indicates that the security check of the unmanaged code invoked by the attribute
owner through the P/Invoke mechanism must be suppressed. Only trusted code can call
methods that have this attribute. The instance constructor has no parameters. This custom
attribute differs from other security attributes in that it is not converted to DeclSecurity
metadata and hence stays intact once emitted.

The rest of the security custom attributes belong to the namespace System.Security.
Permissions. The ownership of all security custom attributes is limited to the assembly, a
TypeDef (class or value type), or a method. The instance constructors of these attributes have
one int16 parameter, the action type code. Chapter 17 discusses the security action types and
their respective codes as well as various types of permissions.

The following list briefly describes the security custom attributes; you can find further
details in Chapter 17:

SecurityAttribute: The abstract base class of all other security attributes.

CodeAccessSecurityAttribute: The abstract base class of the code access security attrib-
utes. Other attributes derived from this one are used to secure access to the resources or
securable operations.

EnvironmentPermissionAttribute: This attribute sets the security action for the environ-
ment permissions that are to be applied to the code.

FileDialogPermissionAttribute: This attribute sets the security action for file open/save
dialog box permissions.

FileIOPermissionAttribute: This attribute sets the security action for the file input/out-
put permissions (read, write, append, and so on).

IsolatedStorageFilePermissionAttribute: This attribute sets the security action for the
permissions related to the isolated storage files (available storage per user, the kind of
isolated storage containment).

CHAPTER 16 ■ CUSTOM ATTRIBUTES340

Ch16_6463_FINAL 7/27/06 7:08 PM Page 340

KeyContainerPermissionAttribute: This attribute sets the security action for the permis-
sions related to the strong name key pair container.

PermissionSetAttribute: This attribute sets the security action not for one permission but
for a whole permission set, specified in a string, an XML file, or a named permission set.

PrincipalPermissionAttribute: This attribute sets the security action for the principal
security permissions (security checks against the active principal).

PublisherIdentityPermissionAttribute: This attribute sets the security action for the
security permissions related to the software publisher’s identity.

ReflectionPermissionAttribute: This attribute sets the security action for the Reflection
permissions.

RegistryPermissionAttribute: This attribute sets the security action for the registry
access permissions (read, write, create a key).

SecurityPermissionAttribute: This attribute sets the security action for the security
permissions.

SiteIdentityPermissionAttribute: This attribute sets the security action for the site
identity permissions.

StrongNameIdentityPermissionAttribute: This attribute sets the security action for the
assembly’s strong name manipulation permissions.

UIPermissionAttribute: This attribute sets the security action for the user interface
permissions (window flags, Clipboard manipulation flags).

UrlIdentityPermissionAttribute: This attribute sets the security action for the URL
permissions.

ZoneIdentityPermissionAttribute: This attribute sets the security action for the security
zone (MyComputer, Intranet, Internet, Trusted, Untrusted).

All intricacies of the .NET security are described in an excellent book .NET Framework
Security (Pearson, 2002), by Brian A. LaMacchia, Sebastian Lange, Matthew Lyons, Rudi
Martin, and Kevin T. Price. These guys created the .NET security.

Remoting Subsystem
The following custom attributes are recognized by the remoting subsystem of the common
language runtime and can be owned by a TypeDef:

System.Runtime.Remoting.Contexts.ContextAttribute: This custom attribute class, which
sets the remoting context, is a base class of all context attribute classes. It provides the
default implementations of the interfaces IContextAttribute and IContextProperty.
The instance constructor has one string parameter, the attribute name.

System.Runtime.Remoting.Contexts.SynchronizationAttribute: This custom attribute
specifies the synchronization requirement and the reentrance capability of the attributed
class. It defines the class behavior in the synchronized contexts (contexts having the

CHAPTER 16 ■ CUSTOM ATTRIBUTES 341

Ch16_6463_FINAL 7/27/06 7:08 PM Page 341

Synchronization property). The presence of an instance of this property in a context
enforces a synchronization domain for the context (and all contexts that share the same
instance). This means that at any instant, at most one thread could be executing in all
contexts that share this property instance. Table 16-1 describes the synchronization
requirement flags. This attribute type has four instance constructors, as described in
Table 16-2.

System.Runtime.Remoting.Activation.UrlAttribute: This attribute is used at the call site
to specify the URL of the site where the activation will happen. The instance constructor
has one string parameter, which contains the target URL.

Table 16-1. Synchronization Requirement Flags of SynchronizationAttribute

Value Meaning

1 The class should not be instantiated in a context that has synchronization.

2 It is irrelevant to the class whether the context has synchronization.

4 The class should be instantiated in a context that has synchronization.

8 The class should be instantiated in a context with a new instance of the Synchronization
property.

Table 16-2. Instance Constructors of SynchronizationAttribute

Constructor Description

Constructor with no parameters Defaults the synchronization requirement to 1
and the reentrancy flag to false

Constructor with one int32 parameter Sets the synchronization requirement and
defaults the reentrancy flag

Constructor with one Boolean parameter Sets the reentrancy flag and defaults the
synchronization requirement

Constructor with int32 and Boolean parameters Sets both values

The information provided here is rather brief, but a protracted discussion of the topics
related to remoting implementation goes far beyond the scope of this book. This is one of
those occasions when one has to remember that modesty is a virtue. I’d rather refer you to
the excellent book Advanced .NET Remoting, Second Edition (Apress, 2005), by Ingo Rammer.

Visual Studio Debugger
The following two custom attributes are recognized by the Microsoft Visual Studio debugger.
They are not recognized by the .NET Framework debugger (Cordbg.exe). Both of these custom
attributes belong to the namespace System.Diagnostics.

DebuggerHiddenAttribute: This attribute, which can be owned by a method or a property,
signals the debugger not to stop in the attributed method and not to allow a breakpoint to
be set in the method. The instance constructor has no parameters.

CHAPTER 16 ■ CUSTOM ATTRIBUTES342

Ch16_6463_FINAL 7/27/06 7:08 PM Page 342

DebuggerStepThroughAttribute: This attribute is similar to DebuggerHiddenAttribute
except that it does allow a breakpoint to be set in the method. The debugger won’t stop
in the attributed method (unless a breakpoint is set inside it).

Assembly Linker
The five custom attributes listed in this section are intended for the assembly linker tool
(Al.exe). This tool takes a set of nonprime modules, analyzes them, and constructs an addi-
tional prime module, creating a multimodule assembly. The prime module of this assembly
doesn’t carry any functionality and serves as an “official spokesperson” for the assembly. The
custom attributes I am about to discuss specify the characteristics of the multimodule assem-
bly that the assembly linker is about to create from several modules.

The most fascinating aspect of these attributes is their ownership. Think about it: when
the attributes are declared, no assembly exists yet; if it did, we wouldn’t need these attributes
in the first place. Hence, the attributes are declared in one or more of the modules that will
make up the future assembly. What in a module might serve as an owner of these attributes?
The solution is straightforward: the .NET Framework class library defines the System.Runtime.
CompilerServices.AssemblyAttributesGoHere class (the prize for this class’s name invention
goes to Ronald Laeremans of Visual Studio), and the assembly-specific attributes are assigned
to the TypeRef of this class. Ownership of the assembly-specific attributes is the only reason
this class exists.

All of the assembly-specific attributes, described in the following list, belong to the name-
space System.Reflection:

AssemblyCultureAttribute: This attribute specifies the culture of the assembly. The instance
constructor has one string parameter, which contains the culture identification string.

AssemblyVersionAttribute: This attribute specifies the version of the assembly. The
instance constructor has one string parameter, which contains the text representation
of the version: dot-separated decimal values of the major version, the minor version, the
build, and the revision. Everything beyond the major version can be omitted. If major and
minor versions are specified, the build and/or the revision can be omitted or specified as
an asterisk, which leads to automatic computation of these values at the assembly linker
run time. The build number is computed as the current day’s number counting since Jan-
uary 1, 2000. The revision number is computed as the number of seconds that have
elapsed since midnight, local time, modulo 2.

AssemblyKeyFileAttribute: This attribute specifies the name of the file containing the key
pair used to generate the strong name signature. The instance constructor has one string
parameter.

AssemblyKeyNameAttribute: This attribute specifies the name of the key container holding
the key pair used to generate the strong name signature. The instance constructor has
one string parameter.

AssemblyDelaySignAttribute: This attribute specifies whether the assembly is signed
immediately at the time of generation or delay signed—in other words, fully prepared to
be signed later by the strong name signing utility (Sn.exe). The instance constructor has
one Boolean parameter, true, indicating that the assembly is delay signed.

CHAPTER 16 ■ CUSTOM ATTRIBUTES 343

Ch16_6463_FINAL 7/27/06 7:08 PM Page 343

Common Language Specification (CLS) Compliance
The following two custom attributes are intended for the compilers and similar tools. Both
custom attributes belong to the System namespace.

ObsoleteAttribute: This attribute, which can be owned by a TypeDef, a method, a field,
a property, or an event, indicates that the item is not to be used anymore. The attribute
holds two characteristics: a string message to be produced when the obsolete item is
used and a Boolean flag indicating whether the use of the item should be treated as an
error. This attribute type has three instance constructors, as described in Table 16-3.

CLSComplianceAttribute: This attribute, which can be owned by anything, indicates the
(claimed) CLS compliance or noncompliance of the attributed item. The CLS is a subset
of the .NET type system and IL code constructs, understandable by all CLS-compliant
languages. If a compiler doesn’t recognize something (and don’t ask why it doesn’t—that’s
impolite), this “something” is out of the CLS. For example, int32 is CLS compliant, and
uint32 is not, because Visual Basic doesn’t recognize this type. Global fields and methods
are not CLS compliant, because C# doesn’t recognize them. And so on, and so on. I won-
der what happens to CLS if somebody writes a compiler that doesn’t recognize
System.Object. But I digress. Assigning this attribute to an assembly doesn’t make the
assembly CLS compliant or noncompliant; it’s simply an expression of your opinion on
the matter. The instance constructor has one Boolean parameter; a value of true indicates
CLS compliance.

Table 16-3. Instance Constructors of ObsoleteAttribute

Constructor Description

Constructor with no parameters Produces no message and no error

Constructor with a string parameter Produces a message but no error

Constructor with string and Boolean parameters Produces a message and an error flag

Pseudocustom Attributes
As mentioned earlier, custom attributes are a lifesaver for compilers. Once a language is given
the syntax to express a custom attribute, it’s free to use this syntax to describe various meta-
data oddities its principal syntax can’t express. The parallel evolution of the common language
runtime and the managed compilers, with the runtime getting ahead now and then, created
the concept of the so-called pseudocustom attributes. These attributes are perceived and
treated by the compilers as other custom attributes are, but they are never emitted as such.
Instead of emitting these attributes, the metadata emission API sets specific values of the
metadata.

The following are the 13 pseudocustom attributes:

System.Runtime.InteropServices.ComImportAttribute: This attribute sets the import flag
of a type definition. The instance constructor has no parameters.

CHAPTER 16 ■ CUSTOM ATTRIBUTES344

Ch16_6463_FINAL 7/27/06 7:08 PM Page 344

System.Runtime.InteropServices.DllImportAttribute: This attribute sets the method flag
pinvokeimpl, the implementation flag preservesig, and the name of the unmanaged
library from which the method is imported. The instance constructor has one string
parameter, the name of the unmanaged library. The entry point name and the marshaling
flags are specified through the name/value pairs of the EntryPoint, CharSet,
SetLastError, ExactSpelling, and CallingConvention properties.

System.SerializableAttribute: This attribute sets the serializable flag of a type defini-
tion. The instance constructor has no parameters.

System.NonSerializedAttribute: This attribute sets the notserialized field flag. The
instance constructor has no parameters.

System.Runtime.InteropServices.InAttribute: This attribute sets the parameter flag in.
The instance constructor has no parameters.

System.Runtime.InteropServices.OutAttribute: This attribute sets the parameter flag
out. The instance constructor has no parameters.

System.Runtime.InteropServices.OptionalAttribute: This attribute sets the parameter
flag opt. The instance constructor has no parameters.

System.Runtime.CompilerServices.MethodImplAttribute: This attribute sets the method
implementation flags. The instance constructor has one int16 parameter, the implemen-
tation flags.

System.Runtime.InteropServices.MarshalAsAttribute: This attribute is used on fields
and method parameters for managed/unmanaged marshaling. The instance constructor
has one int16 parameter, the native type.

System.Runtime.InteropServices.PreserveSigAttribute: This attribute sets the
preservesig method implementation flag. The instance constructor has no parameters.

System.Runtime.InteropServices.StructLayoutAttribute: This attribute sets the layout
flags of a type definition (auto, sequential, or explicit), the string marshaling flags (ansi,
unicode, or autochar), and the characteristics .pack and .size. The instance constructor
has one int16 parameter, the layout flag. The .pack and .size characteristics and the
string marshaling flags are specified through the name/value pairs of the Pack, Size, and
CharSet properties, respectively.

System.Runtime.InteropServices.FieldOffsetAttribute: This attribute sets the field off-
set (ordinal) in explicit or sequential class layouts. The instance constructor has one int32
parameter, the offset or ordinal value.

System.Security.DynamicSecurityMethodAttribute: This attribute sets the method flag
reqsecobj. The instance constructor has no parameters.

ILAsm syntax is adequate to describe all the parameters and characteristics listed here
and does not use the pseudocustom attributes.

CHAPTER 16 ■ CUSTOM ATTRIBUTES 345

Ch16_6463_FINAL 7/27/06 7:08 PM Page 345

■Caution As a matter of fact, I should warn you against using the pseudocustom attributes instead of
ILAsm keywords and constructs. Using pseudocustom attributes rather than keywords is not a bright idea in
part because the keywords are shorter than the custom attribute declarations. In addition, you should not
forget that the ILAsm compiler, which has no use for custom attributes, treats them with philosophical resig-
nation—in other words, it emits them just as they are, without analysis. Hence, if you specify important flags
through pseudocustom attributes, the compiler will not see these flags and as a result could come to the
wrong conclusions.

Summary of Metadata Validity Rules
A record of the CustomAttribute table has three entries: Parent, Type, and Value. The metadata
validity rules for the custom attributes are rather simple:

• The Parent entry (holding reference to the metadata item owning this custom attribute)
must hold a valid index to one of the following tables: Module, TypeRef, TypeDef,
Field, Method, Param, InterfaceImpl, MemberRef, DeclSecurity, StandAloneSig,
Event, Property, ModuleRef, TypeSpec, Assembly, AssemblyRef, File, ExportedType,
ManifestResource, GenericParam, GenericParamConstraint, or MethodSpec.

• The Type entry must hold a valid index to the Method or MemberRef table, and
the indexed method must be an instance constructor of a type derived from
[mscorlib]System.Attribute.

• The Value entry must hold either 0 or a valid offset in the #Blob stream.

• The blob indexed in the Value entry must be encoded according to the rules described
earlier in this chapter; see “Custom Attribute Value Encoding.”

• The fields and properties listed in the name/value pairs of the Value blob must be
accessible from the custom attribute owner (referenced in the Parent entry).

CHAPTER 16 ■ CUSTOM ATTRIBUTES346

Ch16_6463_FINAL 7/27/06 7:08 PM Page 346

Security Attributes

As a platform for massively distributed operations, the Microsoft .NET Framework must
have an adequate security mechanism. We all know that distributed platforms, especially
those exposed to the Internet, are the favorite targets of all sorts of pranks and mischief, which
can sometimes be very destructive.

The security system of the .NET Framework includes two major components: security
policies and embedded security requirements. Security policies are part of the .NET Frame-
work setup and reflect the opinions of the system administrator and the system user regarding
what managed applications can and cannot do. Which policies are established can depend in
part on the general origin of the application (for example, whether the application resides on
the local drive of a machine, is taken from a closed intranet, or comes from the Internet), on
the software publisher (for example, whether the system administrator feels differently about
applications published by Microsoft or IBM and those published by Tailspintoys.com), on the
URL specifying the application’s origin, on a particular application, and so forth. Important as
they are, these security policies and their definitions are beyond the scope of this book, so
with regret, I will forgo a detailed discussion of this topic.

Embedded security requirements are embedded in the applications themselves. Effec-
tively, the embedded security requirements tell the common language runtime which rights
an application needs in order to execute. The runtime checks the application’s security
requirements against the policy under which the application is executed and decides whether
it’s a go or a no-go.

Embedded security requirements are of two kinds: imperative security, which is part of
the application’s code, and declarative security, which is part of the application’s metadata.
Imperative security explicitly describes the operations necessary to perform a security
check—for example, calling a method to demand the right to write a file. Declarative security
is a set of security attributes assigned to certain metadata items (the assembly as a whole or a
certain class or method). Each of these attributes describes the rights that the corresponding
item needs in order to be loaded and executed.

This chapter concentrates on declarative security because it is an important part of meta-
data and because you need to know how it is defined in ILAsm. Besides, I have a feeling that
many aspects of imperative security, and even security policies, can be deduced from an
analysis of declarative security.

All aspects of security (at least those applicable to versions 1.0 and 1.1 of the CLR and
most of them applicable to version 2.0) are exhaustively analyzed in the excellent book .NET
Framework Security (Pearson, 2002), by Brian A. LaMacchia, Sebastian Lange, Matthew Lyons,
Rudi Martin, and Kevin T. Price. The book was written by the folks who created the .NET secu-
rity, and I am happy to refer you to it.

347

C H A P T E R 1 7

■ ■ ■

Ch17_6463_FINAL 7/27/06 7:09 PM Page 347

Declarative Security
Compared to imperative security, declarative security has two main advantages:

• Being part of the metadata, declarative security can be identified and assessed without
exhaustive analysis of the application’s IL code.

• Declarative security can be developed and modified independent of the functional
code. As a result, a division of labor is possible: developer X, the functionality guru,
writes the application, and developer Y, the security guru, tinkers with the security
attributes.

A disadvantage of declarative security is its coarse targeting. Declarative security can be
attributed to a class as a whole but not to the parts of the class and not to specific instances.
Declarative security can be attributed to a method as a whole, without the exact specification
of when and under what circumstances the special rights might be needed. Imperative secu-
rity, in contrast, allows the method to behave more flexibly: “Can I do this? No? OK, then I’ll
do it some other way. Let’s see. Can I do that?”

Declarative Actions
A declarative security attribute has three characteristics: the target, the metadata item to
which it is attributed; the permission, a description of the rights that interest the target; and
the action, a description of the precise way the target is interested in these rights.

The nine declarative security actions are intended for different targets and take effect at
different stages of the application execution. The earliest stage of execution is the initial load-
ing of the assembly’s prime module and analysis of its manifest. Three declarative actions,
targeting the assembly, take effect at this stage:

Request Minimum: This action specifies that the permission is a minimum requirement for
the assembly to be executed. If the minimal permissions are not specified, the assembly is
granted all rights according to the existing security policy. These rights, however, might be
reduced by other already running parts of the application, by means of a Deny or Permit
Only action.

Request Optional: This action specifies that the permission is useful to have but is not
vital for the assembly execution.

Request Refuse: This action specifies that the permission should not be granted even if
the security policy is willing to grant it. This action might be used to ensure that the
assembly does not have rights it does not need, thus providing a shield against possible
bugs in the assembly itself and against malicious code that might try to coerce the assem-
bly to do something it shouldn’t.

The next stage of the application execution is the loading of its classes and their mem-
bers. Only one declarative action, targeting classes and methods, plays a role at this stage:

CHAPTER 17 ■ SECURITY ATTRIBUTES348

Ch17_6463_FINAL 7/27/06 7:09 PM Page 348

Inheritance Demand: For classes, this action specifies the permission that all classes
descending from this one must have. For methods, this action specifies the permission
that all methods overriding this one must have. Obviously, this action makes sense for
virtual methods only.

After the classes and their members have been loaded, the IL code of the invoked
methods is JIT compiled. The declarative action targeting classes and methods takes effect
at this stage:

Link Demand: This action specifies the permission that all callers of this method must
have—or, if the target is a class, the permission that any method of this class must have.
For example, if you have a method that formats the system drive, you want to ensure that
this method cannot be successfully called from some rogue code that has no right to do
so. This action is limited to the immediate caller only. If method A link-demands permis-
sion P and method B calling A has this permission but method C calling B does not, the
call will go through.

The last stage of the application execution is the run time, when the JIT-compiled code is
actually executed. The declarative actions taking effect at this last stage and targeting classes
and methods are as follows:

Demand: This action is similar to Link Demand, but it demands that all callers in the call
chain have the specified permission.

Assert: This action specifies the permission that the current method must have. Even if
the callers of this method higher on the call stack don’t have the specified permission, the
security check succeeds. This action obviously weakens the declarative security model
and should be applied with caution. You cannot apply this action unless the code has
the access permission SecurityPermission, which is discussed in the next section.

Deny: This action specifies the permission that must be disabled for all callees down the
call stack for the duration of the called method. If a callee never had the specified permis-
sion in the first place, the action has no effect on it.

Permit Only: This action specifies the permission that must not be disabled for all callees
down the call stack, presuming that the rest of the permissions must be disabled. The
action seems excessively cruel (to strip the poor callees of all their privileges except one),
but you must not forget that the target might have multiple security attributes. Using a
series of Permit Only actions, you can create a set of permissions that remain for the
callees to enjoy while all other permissions are temporarily revoked. To clarify this, con-
sider the following example. If the called method has security attributes Deny P and Deny
Q, all methods it calls (and the methods those methods call, and so on) will have their per-
missions P and Q suspended. If the called method has security attributes Permit Only P
and Permit Only Q, all permissions except P and Q of all callees will be suspended.

And now, let’s see what these Ps and Qs stand for.

CHAPTER 17 ■ SECURITY ATTRIBUTES 349

Ch17_6463_FINAL 7/27/06 7:09 PM Page 349

Security Permissions
Security permissions define the kinds of activities the code requests (or demands, or denies,
and so on) the right to perform. The same permissions are used in security policy definitions,
specifying what sorts of applications have the right to perform these activities and under what
circumstances.

Special classes of the .NET Framework class library represent these permissions. Each
permission class is accompanied by a permission attribute class, whose instance constructor
is used as a type of security custom attribute. Applying a security custom attribute to a meta-
data item leads to instantiation of the security object targeting the associated metadata item.

In some sense, it’s easier to describe the permissions in terms of the accompanying
attribute classes, because the permission classes have instance constructors of different signa-
tures, whereas the instance constructors of the security attribute classes invariably have one
parameter—the security action code. All the parameters of the instance constructor(s) of the
respective permission class are represented by the attribute’s properties, set through
name/value pairs.

The permissions form three groups. The first group includes the permissions related to
access rights to certain resources. The second group consists of permissions related to identity
characteristics of the code, including its origin. The third group represents custom permissions,
invented by .NET Framework users for their particular purposes. It seems to be a general prin-
ciple of the .NET Framework that if you can’t find something satisfactory within the framework,
it at least provides you with the means to build your own better mousetrap.

Most of the permission classes belong to the namespace System.Security.Permissions,
of the Mscorlib.dll assembly, so I’ve specified the assembly and namespace in the following
sections only when they are different.

Access Permissions
The access permissions control access rights to various resources. The group includes the
following nine permissions:

• [System.DirectoryServices]System.DirectoryServices.DirectoryServicesPermission.
This permission defines access to the Active Directory. The attribute class has two
properties:

• Path (type string) indicates the path for which the permission is specified.

• PermissionAccess (type int32) specifies the type of access: a value of 0 indicates no
access, a value of 2 indicates browse access, and a value of 6 indicates write access.

• [System]System.Net.DnsPermission. This permission defines the right to use the
Domain Name System (DNS). The attribute class has no properties because there are
no details to specify: either you can use DNS or you can’t.

• EnvironmentPermission. This permission defines the right to access the environment
variables. The attribute class has three properties, all of type string, which specify the
names of the environment variables affected:

• All specifies the name of the environment variable that can be accessed in any way.

CHAPTER 17 ■ SECURITY ATTRIBUTES350

Ch17_6463_FINAL 7/27/06 7:09 PM Page 350

• Read specifies the name of the environment variable that can be read.

• Write specifies the name of the environment variable that can be written to.

• FileDialogPermission. This permission defines the right to access a file selected
through the standard Open or Save As dialog box. The attribute class has two proper-
ties, both of type bool, for which true indicates that the access is to be granted and
false indicates that it is to be denied:

• Open grants or denies the right to read the file.

• Save grants or denies the right to write to the file.

• FileIOPermission. This permission defines the right to access specified directories or
individual files. The attribute class has five properties, all of type string, which contain
either a path or a file specification (with a full path). If the path is specified, the permis-
sion is propagated to the whole directory subtree starting at this path. The attribute
class properties are as follows:

• All indicates full access to the specified path or file.

• Read indicates read access to the specified path or file.

• Write indicates write access, including file overwriting and new file creation.

• Append indicates append access—in other words, the existing file can be appended
but not overwritten, and a new file can be created.

• PathDiscovery indicates browse access—for example, querying the current direc-
tory, getting a filename back from the file dialog box, and so on.

• IsolatedStorageFilePermission. This permission defines the right to access the iso-
lated storage. Briefly, the isolated storage is a storage space allocated specifically for the
user’s application, providing a data store independent of the structure of the local file
system, a sort of “sandbox” for the application to play in without touching the rest of
the file system. Data compartments within the isolated storage are defined by the iden-
tity of the application or component code. Thus, there’s no need to work magic with the
file paths to ensure that the data storages specific to different applications don’t over-
lap. The attribute class has two properties:

• UsageAllowed (int32-based enumeration IsolatedStorageContainment)
indicates the isolated storage type. The UsageAllowed property can be assigned
the following int32 values: None (0x00), DomainIsolationByUser (0x10),
AssemblyIsolationByUser (0x20), DomainIsolationByRoamingUser (0x50),
AssemblyIsolationByRoamingUser (0x60), AdministerIsolatedStorageByUser
(0x70), and UnrestrictedIsolatedStorage (0xF0).

• UserQuota (type int64) indicates the maximum size in bytes of the isolated storage
that can be allocated for one user.

CHAPTER 17 ■ SECURITY ATTRIBUTES 351

Ch17_6463_FINAL 7/27/06 7:09 PM Page 351

• ReflectionPermission. This permission defines the right to invoke Reflection methods
on nonpublic class members and to create dynamic assemblies at run time using the
methods of Reflection.Emit. The attribute class has four properties:

• MemberAccess (type bool) grants or denies the right to access the nonpublic mem-
bers through Reflection methods.

• TypeInformation (type bool) grants or denies the right to invoke Reflection meth-
ods to retrieve information about the class, including information about the
nonpublic members.

• ReflectionEmit (type bool) grants or denies the right to invoke Reflection.Emit
methods.

• Flags (int32-based enumeration ReflectionPermissionFlag) summarizes the
three preceding properties, using a binary OR combination of flags 0x01 for
TypeInformation, 0x02 for MemberAccess, and 0x04 for ReflectionEmit.

• RegistryPermission. This permission defines the right to manipulate the registry keys
and values. This permission is analogous in all ways to FileIOPermission except that it
specifies the access rights to the registry rather than to the file system. The attribute
class has four properties, all of type string, which contain the registry path:

• Create grants the right to create the keys and values anywhere in the registry
subtree, starting with the node specified in the property.

• Read grants the right to read the keys and values.

• Write grants the right to change the existing keys and values.

• All grants all of the three preceding rights.

• SecurityPermission. This permission defines a set of 13 essential rights to modify the
behavior of the common language runtime security subsystem itself. The attribute class
has 13 properties of type bool (one for each right) plus one property (int32-based enu-
meration SecurityPermissionFlag) representing an OR combination of binary flags
corresponding to the Boolean properties:

• Assertion defines the right to override a security check for any granted permission.
The respective binary flag is 0x0001.

• UnmanagedCode defines the right to invoke the native unmanaged code, such as
through P/Invoke or COM interoperation (flag 0x0002). If this right is granted,
it is asserted every time the unmanaged code is invoked, which results in a
significant performance hit. To avoid this, the custom attribute System.Security.
SuppressUnmanagedCodeSecurityAttribute can be used. The presence of this attrib-
ute suppresses the repetitive security checks when the unmanaged code is invoked.

• SkipVerification defines the right to run the code without the IL verification pro-
cedures at JIT compilation time (flag 0x0004). This is an extremely dangerous right.
To avoid inviting trouble, this right should be granted only to code that is known to
be safe and that comes from a trusted source.

CHAPTER 17 ■ SECURITY ATTRIBUTES352

Ch17_6463_FINAL 7/27/06 7:09 PM Page 352

• Execution defines the right to run the code (flag 0x0008). This right, which is
granted to almost any code, is the opposite of SkipVerification. The right can be
revoked by the administrator or by user security policies regarding specific appli-
cations or specific sources that are known for or suspected of being the purveyors
of malicious code.

• ControlThread defines the right to perform thread control operations, such as sus-
pending a thread, interrupting a thread, stopping a thread, changing the thread
priority, and so on (flag 0x0010).

• ControlEvidence defines the right of the domain host to give evidence to the appli-
cations loaded in the domains created by this host (flag 0x0020). The evidence in
question usually includes information about the origin and strong name signature
of the loaded assembly. If the domain host does not have this right, it gives its own
evidence instead.

• ControlPolicy defines the right to access and modify security policies, both user-
specific and machinewide (flag 0x0040). This is another extremely dangerous right
that must be granted with great caution.

• SerializationFormatter defines the right to perform the serialization formatting
operations and to retrieve and change the characteristics of any nontransient
members of the serializable types, regardless of the accessibility of these members
(flag 0x0080). This permission resembles ReflectionPermission in the sense that
both are of a very low opinion about the accessibility rules and allow you to access
and invoke private class members at will.

• ControlDomainPolicy defines the right of the domain host to specify a domainwide
security policy (flag 0x0100).

• ControlPrincipal defines the right to replace the Principal object (carrying the
user’s identity characteristics) for a given thread, such as in order to implement
role-based security (flag 0x0200). In the role-based security model, the security
actions depend on the identity (Principal object) of the “code runner” and the
role in which the code runner operates.

• ControlAppDomain defines the right to create and manipulate the application
domains (flag 0x0400).

• RemotingConfiguration defines the right to configure the remoting types and
channels (flag 0x0800).

• Infrastructure defines the right to plug the code into the common language
runtime infrastructure, such as adding remoting context sinks, envoy sinks, and
dynamic sinks (flag 0x1000).

• Flags is a summary binary representation of the 13 rights just listed. The validity
mask is 0x1FFF.

CHAPTER 17 ■ SECURITY ATTRIBUTES 353

Ch17_6463_FINAL 7/27/06 7:09 PM Page 353

Identity Permissions
The access permissions discussed in the previous section describe the resources to be
accessed and the actions to be performed. The identity permissions, in contrast, describe the
identities of the agents that are accessing these resources and performing these actions. As a
trivial example, suppose you’ve created a method or a component so atrocious that you want
only components written by your company to be able to access it, because you can’t trust any-
one else to keep the beast in check.

It’s a good practice to use identity permissions to extend rather than limit the rights granted
to the code of a specific origin. Limiting the rights on the basis of the code’s identity is a poor
protection technique because the identity information of the code can easily be suppressed. A
software publisher you particularly dislike could simply neglect to sign its malicious software, for
instance, and you’d never know that this particular code must be treated with extra caution. Or
the obnoxious snooping marketing site you’d love to block could start operating through a differ-
ent Web server or spoof its IP address.

The five identity permissions all belong to the namespace System.Security.Permissions
and are defined in the Mscorlib.dll assembly:

• ZoneIdentityPermission. This permission identifies the zone from which the
calling code originates. The zones are defined and mapped from the URLs by APIs
of IInternetSecurityManager and related interfaces. The zones are not overlapping,
and any particular URL can belong to only one zone. The attribute class has one prop-
erty, Zone (int32-based enumeration [mscorlib]System.Security.SecurityZone). The
values of the enumeration are as follows:

• MyComputer (0x0) means that the application runs from the local drive.

• Intranet (0x1) means that the application runs from a closed intranet.

• Trusted (0x2) means that the application runs from a trusted server.

• Internet (0x3) means that the application originates from the Internet.

• Untrusted (0x4) means that the application’s origin is suspicious and that a high
level of security is required.

• NoZone (0xFFFFFFFF) means that no zone information is available.

• StrongNameIdentityPermission. This permission identifies an assembly by its strong
name attributes—namely, by the assembly name, the assembly version, and the public
encryption key. The public encryption key of the assembly must exactly match the one
specified in the permission.

The assembly name, however, might only partially match the one specified in the
permission because a wildcard character (*) can be used in the assembly name specifi-
cation in the permission. The name of the assembly is usually a dotted name, such as
System.DirectoryServices, and any right part of the name can be replaced with the
wildcard character. Thus, System.DirectoryServices denotes this specific assembly
only, System.* denotes any assembly whose name starts with System. (including
the assembly System), and * denotes any assembly. If, for example, the permission

CHAPTER 17 ■ SECURITY ATTRIBUTES354

Ch17_6463_FINAL 7/27/06 7:09 PM Page 354

includes the Microsoft private encryption key and the assembly name is given
as System.DirectoryServices, the permission identifies the assembly System.
DirectoryServices from the .NET Framework. If the assembly name included is
System.*, the permission identifies it as any Microsoft assembly whose name begins
with System. If the assembly name is given simply as *, the permission identifies it as
any assembly produced and signed by Microsoft. It is illegal to replace the left part of
the name with the wildcard character (for example, *.DirectoryServices).

The assembly version includes four components: the major version, the minor version,
the build number, and the revision number. The fourth component or both the third
and the fourth components can be omitted, but the first two components must be
specified, unless the version is not specified at all. The attribute class has three proper-
ties, all of type string:

• Name is the name of the assembly, possibly with a wildcard character in the right part.

• PublicKey is the encoded hexadecimal representation of the public encryption key.

• Version is the literal representation of the version—for example, 1.12.123.1 or 1.12.

• PublisherIdentityPermission. This permission specifies the software publisher’s iden-
tity, based on the public key defined by an X509v3 certificate. This certificate is issued
by a trusted certification authority and contains encrypted information authenticating
the publisher’s public encryption key. The name of the publisher is ignored. The associ-
ated attribute class has three properties, all of type string. Only one of the properties
can be set, because they represent alternate ways of obtaining the certificate:

• X509Certificate contains the explicit X509v3 certificate in a coded form.

• CertFile contains the name of the file containing the certificate.

• SignedFile contains the name of the file strong name signed with this certificate
so that the certificate can be obtained from the file’s strong name signature.

• SiteIdentityPermission. This permission identifies the Web site from which the
code originates. The attribute class has one property, Site, of type string, which
contains part of the Web site’s URL with a stripped protocol specification at the
start and the filename at the end—for example, www.microsoft.com in the URL
http://www.microsoft.com/ms.htm. The protocol is presumed to be HTTP, HTTPS,
or FTP. The wildcard character (*) is allowed in the site specifications, this time as
the left part of the specification.

• UrlIdentityPermission. This permission identifies the full URL of the site from which
the code originates. The attribute class has one property, Url, of type string, which
contains the full URL specification, including the protocol specification and file specifi-
cation—for example, http://oursite.microsoft.com/apps/foo/zzz.html. The wildcard
character is permitted, this time as the right part of the specification—for example,
http://oursite.microsoft.com/apps/foo/*.

CHAPTER 17 ■ SECURITY ATTRIBUTES 355

Ch17_6463_FINAL 7/27/06 7:09 PM Page 355

Custom Permissions
The custom permissions, similar to those already defined in the .NET Framework class library,
describe access rights to various resources. Once defined, a custom permission can be used in
the same way as any “standard” permission. Custom permissions are introduced, as a rule,
when it’s necessary to describe access to some new kind of resource not covered by existing
permissions, such as a new input or output device.

■Tip It’s a bad practice to try to redefine existing permissions as custom permissions. It is possible to
do so, but having multiple permissions pertaining to the same resource can only create pain for the system
administrators, who must then keep an eye on all alternative “doors” leading to the resource. As a matter of
practical advice, don’t make system administrators any unhappier than they already are; it might cost you.

To define a custom permission, you’ll need to do the following:

1. Define the new permission class.

2. Define constructors and methods of the permission class according to the permission
semantics.

3. Define the methods implementing the [mscorlib]System.Security.IPermission
interface: Copy, Intersect, Union, IsSubsetOf, and Demand.

4. If, in principle, full access to the resource can be granted, define the IsUnrestricted
method implementing [mscorlib]System.Security.IUnrestrictedPermission.

5. Define the methods implementing the [mscorlib]System.Security.ISecurityEncodable
interface that provide the XML encoding and decoding of the permission: FromXml and
ToXml.

6. If necessary, define the GetObjectData method implementing the
[mscorlib]System.Runtime.Serialization.ISerializable interface.

7. Define the accompanying attribute class.

8. Add support for declarative security.

9. Add the mechanism enforcing the permission wherever the associated resource is
exposed.

10. Modify the security policies to take your new permission into account.

Needless to say, the preceding list is meant to discourage you from defining custom
permissions.

The best way to define a custom permission is to pick a standard permission whose
semantics resemble your intended semantics most closely and use it as an example. It’s
always a good idea to derive the custom permission classes from [mscorlib]System.Security.
CodeAccessPermission and the accompanying attribute classes from [mscorlib]System.
Security.Permissions.CodeAccessSecurityAttribute.

CHAPTER 17 ■ SECURITY ATTRIBUTES356

Ch17_6463_FINAL 7/27/06 7:09 PM Page 356

One of the major design problems in defining a custom permission is the question of the
granularity of the resource access description. In other words, what level of detail is adequate
to describe the protected resource? If you were designing RegistryPermission, for example,
your choice of granularity could range from a 1-bit indication of whether full access to the reg-
istry is granted to a detailed description of a specific kind of access to a specific registry node.

Generally, four basic principles should guide your approach to permission granularity:

• Total Boolean, which grants or denies access to the resource

• Total enumerated, which grants one of the specified (enumerated) forms of access to
the resource

• Listed Boolean, which grants or denies access to the resource components listed in the
permission declaration

• Listed enumerated, which grants one of the specified forms of access to the resource
components listed in the permission

Although additional questions might arise about the level of detail involved in the access
form enumeration and the resource components list, the four basic principles, I think, stand.
You are welcome to introduce a fifth and put me to shame.

A custom permission class must implement the ISecurityEncodable interface, with its
methods ToXml and FromXml, to encode the permission in XML form and restore the permis-
sion object from the XML text. The outermost tag of the XML encoding is Permission:

<Permission class="MyPermission, MyOtherAssembly.dll" version="1">
...

</Permission>

To support the declarative security mechanism built into the common language runtime,
the custom permission class must be accompanied by the attribute class. The attribute class
must have properties that correspond to the parameters of the permission class’s construc-
tors. The attribute class must also implement at least one variant of the CreatePermission
method. The custom attribute System.AttributeUsageAttribute must be assigned to the
attribute class, defining its possible targets, inheritance, and multiplicity, as described in
Chapter 16.

Enforcing a newly created custom permission is the easy part; the items dealing with the
new resource must create security objects from the custom permission and also security
actions, such as Demand, Assert, and so on. The simplest way to do this is to assign the security
custom attribute to the respective item.

The last step in creating a custom permission is updating the security policies to include
the permission. This is done by writing an XML descriptor of the custom permission and
invoking the code access security policy tool, Caspol.exe:

caspol –addset cust_perm.xml cust_perm_name

Then, again by using the Caspol.exe utility, a new code group must be added, or the exist-
ing one changed, to specify the code identities that will be granted the custom permission.
Operating the Caspol.exe utility is rather complicated and well beyond the scope of this book;
for information, you can refer to the documentation on Caspol.exe and security administra-
tion included in the .NET Framework SDK.

CHAPTER 17 ■ SECURITY ATTRIBUTES 357

Ch17_6463_FINAL 7/27/06 7:09 PM Page 357

Permission Sets
Individual permission objects (the instances of the permission classes) can be combined
into permission sets. A permission set is an instance of the [mscorlib]System.Security.➥

PermissionSet class or of the [mscorlib]System.Security.NamedPermissionSet class, which
is derived from the former. A permission set can be constructed, such as by combining all
permissions relevant to a certain resource or to a certain metadata item (the assembly, a class,
or a method).

The PermissionSet class, after its constituent permission classes, implements the inter-
face IPermission with its methods Copy, Intersect, Union, IsSubsetOf, and Demand.

The declarative security is represented in the metadata by the unnamed permission sets,
grouped by the security action. Each such permission set is attributed to one metadata item
(assembly, class, or method).

Declarative Security Metadata
The declarative security metadata resides in the metadata table DeclSecurity. A record in this
table has these three entries:

• Action (2-byte unsigned integer). The security action code.

• Parent (coded token of type HasDeclSecurity). The index to the Assembly, TypeDef, or
Method metadata table, indicating the metadata item with which the DeclSecurity
record is associated.

• PermissionSet (offset in the #Blob stream). Encoded representation of the permission
set associated with a specific security action and a specific metadata item.

The following security action codes and their respective ILAsm keywords are defined for
the security actions listed in the “Declarative Actions” section of this chapter and for special-
purpose security actions:

Request: Code 0x0001. ILAsm keyword request.

Demand: Code 0x0002. ILAsm keyword demand.

Assert: Code 0x003. ILAsm keyword assert.

Deny: Code 0x0004. ILAsm keyword deny.

Permit Only: Code 0x0005. ILAsm keyword permitonly.

Link Demand: Code 0x0006. ILAsm keyword linkcheck.

Inheritance Demand: Code 0x0007. ILAsm keyword inheritcheck.

Request Minimum: Code 0x0008. ILAsm keyword reqmin.

Request Optional: Code 0x0009. ILAsm keyword reqopt.

Request Refuse: Code 0x000A. ILAsm keyword reqrefuse.

CHAPTER 17 ■ SECURITY ATTRIBUTES358

Ch17_6463_FINAL 7/27/06 7:09 PM Page 358

Pre-JIT Grant (persisted grant, set at pre-JIT compilation time by the Ngen.exe utility):
Code 0x000B. ILAsm keyword prejitgrant.

Pre-JIT Deny (persisted denial, set at pre-JIT compilation time): Code 0x000C. ILAsm
keyword prejitdeny.

Non-CAS Demand: Code 0x000D. ILAsm keyword noncasdemand. This action is similar to
Demand, but the permission classes that make up the permission set must not be derived
from System.Security.Permissions.CodeAccessPermission.

Non-CAS Link Demand: Code 0x000E. ILAsm keyword noncaslinkdemand. This action is
similar to Link Demand but has the same limitation as Non-CAS Demand.

Non-CAS Inheritance Demand: Code 0x000F. ILAsm keyword noncasinheritance. This
action is similar to Inheritance Demand but has the same limitation as Non-CAS Demand.

Permission Set Blob Encoding
The blob indexed in the PermissionSet entry of the DeclSecurity record contains an encoded
representation of the permission set object. In versions 1.0 and 1.1 of the common language
runtime, the blob contained simply a Unicode-encoded XML description of the permission set.

In version 2.0 of the CLR, new, more economical binary encoding has been introduced.
The blob begins with byte 0x2E (character .), followed by a compressed number of permis-
sions in the set, followed by the encoded permissions. An XML text cannot begin with a dot,
so the system identifies the type of encoding (XML or binary) by the very first byte.

A permission encoding begins with the compressed length of the fully qualified class
name in Reflection notation, followed by the name itself in UTF-8 encoding and without the
zero terminator. After that comes the compressed size of the permission’s blob, followed by
the compressed number of properties to be set (can be 0), followed by the property encodings
(if any). Unlike custom attributes in general, which allow both fields and properties to be ini-
tialized via name/value pairs, security attributes allow only properties to be set.

The property encoding follows the same pattern as the property name/value pair encoding
in custom attributes: it begins with byte SERIALIZATION_TYPE_PROPERTY (0x54), followed by
the property type, followed by the compressed length of the property name and the name itself,
and followed by the encoded value.

To summarize:

• Permission set blob encoding:

'.' // dot character
<compressed_uint> // number of permissions in the set
{ <permission> } // set of permission encodings

• Permission blob encoding:

<compressed_uint> // length of the class name (follows)
<class_name> // fully qualified class name in Reflection notation
<compressed_uint> // size of initialization blob
<compressed_uint> // number of properties, can be 0
[{ <property> }] // set of properties, absent if num=0

CHAPTER 17 ■ SECURITY ATTRIBUTES 359

Ch17_6463_FINAL 7/27/06 7:09 PM Page 359

• Permission property encoding:

SERIALIZATION_TYPE_PROPERTY // 1 byte, 0x54
<type_of_the_property> // property signature
<compressed_uint> // length of the property name (follows)
<property_name>
<encoded_value>

Security Attribute Declaration
ILAsm syntax offers two forms of security attribute declarations: separate permissions and
permission sets. You can use the form you find more convenient; the IL assembler will auto-
matically combine the separate permissions into permission sets. The owner of the security
attribute is the item whose scope contains the security attribute declaration. The syntax for
the permission declaration is as follows:

.permission <sec_action> <class_ref> [(<name_value_pairs>)]

where <sec_action> is one of the security action keywords listed in the preceding section,
<class_ref> is a class reference to the attribute class associated with the permission class,
and the optional <name_value_pairs> defines the values of the attribute class’s properties,
as shown here:

<name_value_pairs> ::= <nv_pair>[,<nv_pair>*]
<nv_pair> ::= <prop_name> = <prop_value>

<prop_name> is the property name of the attribute class, specified as a quoted string.
The form of <prop_value> depends on the type of property:

<prop_value> ::= true | false // For Boolean properties
| <int32> | int32(<int32>) // For integer properties

| <class_ref> (<int32>) // For enumerated properties,
// <class_ref> specifies the enumerator

| <class_ref>(<int_type> : <int32>) // <int_type>::=int8
// | int16 | int32

| <quoted_string> // For string properties

For example:

.method private void WriteToSystemDrive(string Str2BWritten)
{

.permission demand
[mscorlib]System.Security.Permissions.FileIOPermissionAttribute

= ("Write"="C:\\")
...

}

CHAPTER 17 ■ SECURITY ATTRIBUTES360

Ch17_6463_FINAL 7/27/06 7:09 PM Page 360

The IL assembler combines separate .permission declarations into permission sets
before emitting the DeclSecurity metadata. However, a permission set can be declared
explicitly using

.permissionset <sec_action> = (<hexbytes>)

where <hexbytes> is a byte array representing the PermissionSet blob. This byte array is usu-
ally fairly long—a “live” example would take a couple of pages. To see such an example, you
can simply disassemble any .NET Framework assembly (Mscorlib.dll or System.dll, for
instance) and have a look.

The new form of the permission set blob encoding, specific to version 2.0, is expressed in
ILAsm as follows:

.permissionset <sec_action> = {<class_ref> [= {<prop_value> [<prop_value>...]}]...}

For example:

.permissionset reqmin =
{[mscorlib]System.Security.Permissions.SecurityPermissionAttribute

= {property bool 'SkipVerification' = bool(true)}}

The IL disassembler always uses the .permissionset directive to reflect the DeclSecurity
metadata records.

Summary of Metadata Validity Rules
A record of the DeclSecurity metadata table has three entries: Action, the security action code;
Parent, the metadata item to which the security record is attached; and PermissionSet, the
blob containing the XML descriptor of the permission set. The metadata validity rules for the
DeclSecurity metadata records are as follows:

• [run time] The Action entry must hold a valid security action code in the range from 0x1
through 0xF.

• The Parent entry must hold a valid reference to the Assembly, TypeDef, or Method tables.

• If the Parent entry references a TypeDef record, this record must not define an interface.

• If the Parent entry references a TypeDef or Method record, the metadata item referenced
in the Parent entry must have its respective HasSecurity flag set (0x00040000 for
TypeDef records and 0x4000 for Method records).

• [run time] The PermissionSet entry must hold a valid offset in the #Blob heap. The blob
at this offset must contain a legal XML representation of the permission set, Unicode-
encoded, or a binary representation of the permission set, encoded according to the
scheme described previously.

CHAPTER 17 ■ SECURITY ATTRIBUTES 361

Ch17_6463_FINAL 7/27/06 7:09 PM Page 361

Ch17_6463_FINAL 7/27/06 7:09 PM Page 362

Managed and Unmanaged
Code Interoperation

There can be no question about the need to provide seamless interoperation between man-
aged and unmanaged code, and I’m not going to waste time discussing this obvious point.

Depending on the kind and the role of the unmanaged code, managed and unmanaged
code can interoperate in several scenarios. First, the unmanaged code participating in the
interoperation can be either “traditional” code, exposed as a set of functions, or classic COM
code, exposed as a set of COM interfaces. Second, the unmanaged code can play the role of
either a server, with the managed code initiating the interaction, or a client, with the unman-
aged code initiating the interaction. Third, the unmanaged code can reside in a separate
executable file, or it can be embedded in the managed module. The embedding option exists
only for a “traditional” unmanaged server and client, and its use is limited to the specifics of
the Microsoft Visual C++ compiler implementation.

These three dichotomies result in the classification of the interoperation scenarios shown
in Figure 18-1.

Figure 18-1. A classification of interoperation scenarios

Managed/
Unmanaged

Interoperation

Unmanaged:
COM

Unmanaged:
“Traditional”

COM Server
(External)

COM Client
(External)

“Traditional”
Server

“Traditional”
Client

External Embedded

External Embedded

363

C H A P T E R 1 8

■ ■ ■

Ch18_6463_CMP3 7/13/06 8:27 PM Page 363

We have six basic scenarios here; unmanaged code is acting as

• An external (separate executable file) COM server, implemented through the COM
interoperability subsystem of the common language runtime and runtime callable
wrappers (RCWs).

• An external COM client, implemented through the same subsystem and COM callable
wrappers (CCWs).

• An external “traditional” server, implemented through the platform invocation
(P/Invoke) subsystem of the runtime.

• An embedded “traditional” server, implemented through a special case of P/Invoke
known as IJW (“it just works”) or local P/Invoke.

• An external “traditional” client, implemented through the unmanaged export of the
managed methods (inverse P/Invoke).

• An embedded “traditional” client, implemented through IJW (inverse local P/Invoke).
In this case a managed module contains embedded unmanaged native code, and the
entry point of the module is unmanaged, so the unmanaged code “takes the initiative”
from the start and subsequently calls the managed methods.

Thunks and Wrappers
The interoperation between managed and unmanaged code requires the common language
runtime to build special interface elements that provide the target identification and neces-
sary data conversion, or marshaling. These runtime-generated interface elements are referred
to as thunks, or stubs, in interoperation with “traditional” unmanaged code; in COM interop-
eration, they are referred to as wrappers.

For details on COM interoperation, which I describe in the next section rather briefly,
please see the excellent and exhaustive book .NET and COM: The Complete Interoperability
Guide (Sams, 2002), by Adam Nathan. Adam worked for many years on the CLR team in the
COM interoperation area. If you cannot get Adam’s book, try COM and .NET Interoperability
(Apress, 2002), by Andrew Troelsen; it is a good book too.

P/Invoke Thunks
In order to build a client thunk for managed code to call unmanaged code, the common
language runtime needs the following information:

• The name of the module exporting the unmanaged method—for example, Kernel32.dll

• The exported method’s name or ordinal in the export table of this unmanaged module

• Binary flags reflecting specifics of how the unmanaged method is called and how its
parameters are marshaled

All these items constitute the metadata item known as an implementation map, discussed
in the following section.

CHAPTER 18 ■ MANAGED AND UNMANAGED CODE INTEROPERATION364

Ch18_6463_CMP3 7/13/06 8:27 PM Page 364

In general cases, the referenced unmanaged module must be located somewhere on the
path. However, there is a special case when it’s desirable to consider the unmanaged module
as part of the managed assembly and deploy them together. In this case, the unmanaged mod-
ule resides in the application directory (which doesn’t have to be on the path); the prime
module of the assembly must carry a File record associated with this unmanaged module.

The binary flag values and the respective ILAsm keywords are as follows:

• nomangle (0x0001). The exported method’s name must be matched literally.

• ansi (0x0002). The method parameters of type string must be marshaled as ANSI
zero-terminated strings unless explicitly specified otherwise.

• unicode (0x0004). The method parameters of type string must be marshaled as
Unicode strings.

• autochar (0x0006). The method parameters of type string must be marshaled as ANSI
or Unicode strings, depending on the underlying platform.

• bestfit:on (0x0010). Allow “best fit” guessing when converting the strings.

• bestfit:off (0x0020). Disallow “best fit” guessing.

• lasterr (0x0040). The native method supports the last error querying by the Win32 API
GetLastError.

• winapi (0x0100). The native method uses the calling convention standard for the under-
lying platform.

• cdecl (0x0200). The native method uses the C/C++-style calling convention; the call
stack is cleaned up by the caller.

• stdcall (0x0300). The native method uses the standard Win32 API calling convention;
the call stack is cleaned up by the callee.

• thiscall (0x0400). The native method uses the C++ member method (non-vararg)
calling convention. The call stack is cleaned up by the callee, and the instance pointer
(this) is pushed on the stack last.

• fastcall (0x0500). The native method uses the fastcall calling convention. This is
much like stdcall where the first two parameters are passed in registers if possible.

• charmaperror:on (0x1000). Throw an exception when an unmappable character is
encountered in a string.

• charmaperror:off (0x2000). Don’t throw an exception when an unmappable character
is encountered.

The flags ansi, unicode, and autochar are mutually exclusive and so are the flags defining
the calling convention.

The name of the exported method can be replaced with the method’s ordinal in the
unmanaged module’s export table. The ordinal is specified as a decimal number, preceded
by the # character—for example, #10.

CHAPTER 18 ■ MANAGED AND UNMANAGED CODE INTEROPERATION 365

Ch18_6463_CMP3 7/13/06 8:27 PM Page 365

If the specified name is a regular name rather than an ordinal, it is matched to the entries
of the Export Name table of the unmanaged module. If the nomangle flag is set, the name is
matched literally. Otherwise, things get more interesting.

Let’s suppose, for example, that the name is specified as Hello. If the strings are marshaled to
ANSI and the Export Name table does not contain Hello, the P/Invoke mechanism tries to find
HelloA. If the strings are marshaled as Unicode, the P/Invoke mechanism looks for HelloW; only if
HelloW is not found does P/Invoke look for Hello. If it still can’t find a match, it tries the mangled
name Hello@N, where N is a decimal representation of the total size of the method’s arguments in
bytes. For example, if method Hello has two 4-byte parameters (either integer or floating point),
the mangled name would be Hello@8. This kind of function name mangling is characteristic only
of the stdcall functions, so if the calling convention is different and the name is mangled in some
other way, the P/Invoke mechanism will not find the exported method.

You can see that the “name digging” methods employed by the P/Invoke mechanism are
intended for Windows API naming conventions and name mangling schemes of the C/C++
compiler.

The thunk is perceived by the managed code as simply another method, and hence it
must be declared as any method would be. The presence of the pinvokeimpl flag in the respec-
tive Method record signals the runtime that this method is indeed a client thunk and not a true
managed method. You already encountered the following declaration of a P/Invoke thunk in
Chapter 1:

.method public static pinvokeimpl("msvcrt.dll" cdecl)
vararg int32 sscanf(string,int8*) cil managed { }

The parameters within the parentheses of the pinvokeimpl clause represent the imple-
mentation map data. The string marshaling flag is not specified, and the marshaling defaults
to ANSI. The method name need not be specified because it is the same as the declared thunk
name. If you want to use sscanf but would rather call it Foo (sscanf is such a reptilian name!),
you could declare the thunk as follows:

.method public static pinvokeimpl("msvcrt.dll" as "sscanf" cdecl)
vararg int32 Foo(string,int8*) cil managed { }

The unmanaged method resides somewhere else and the thunk is generated by the run-
time, so the Method record of a “true” P/Invoke thunk has its RVA entry set to 0.

Implementation Map Metadata
The implementation map metadata resides in the ImplMap metadata table. A record in this
table has four entries:

• MappingFlags (unsigned 2-byte integer). Binary flags, which were described in the previ-
ous section. The validity mask (bits that can be set) is 0x3777.

• MemberForwarded (coded token of type MemberForwarded). An index to the Method table,
identifying the Method record of the P/Invoke thunk. This must be a valid index. The
indexed method must have the pinvokeimpl and static flags set. The token of type
MemberForwarded can, in principle, index the Field table as well; but the current releases
of the common language runtime do not implement the P/Invoke mechanism for fields,
and ILAsm syntax does not permit you to specify pinvokeimpl(...) in field definitions.

CHAPTER 18 ■ MANAGED AND UNMANAGED CODE INTEROPERATION366

Ch18_6463_CMP3 7/13/06 8:27 PM Page 366

• ImportName (offset in the #Strings stream). The name of the unmanaged method as it is
defined in the export table of the unmanaged module. The name must be nonempty
and fewer than 1,024 bytes long in UTF-8 encoding.

• ImportScope (RID in the ModuleRef table). The index of the ModuleRef record containing
the name of the unmanaged module. It must be a valid RID.

IJW Thunks
IJW thunks, similar in structure and function to “true” P/Invoke thunks, are created without
the implementation map information or with an incomplete implementation map. The infor-
mation regarding the identity of the target unmanaged method is not needed because the
method is embedded in the same PE file and can be identified by its RVA. IJW thunks cannot
have an RVA value of 0, as opposed to P/Invoke thunks, which must have an RVA value of 0.

The calling convention of the unmanaged method is defined by the thunk signature
rather than by the binary flags of the implementation map. The IJW thunk signature
usually has the modifier modopt or modreq on the thunk’s return type—for example,
modopt([mscorlib]System.Runtime.InteropServices.CallConvCdecl). The string
marshaling default is ansi.

If, however, there is a need to specify some implementation flags for an IJW thunk, it
may be assigned an incomplete implementation map. Such a map contains zero ImportName
entry and either contains zero ImportScope entry or contains ImportScope entry pointing at
a no-name ModuleRef. The last case is outright bizarre, but such is life in general in the
IJW domain.

To distinguish IJW thunks from P/Invoke thunks, the loader first looks at the implementa-
tion flags; IJW thunk declarations should have the flags native and unmanaged set. If the loader
doesn’t see these flags, it presumes that this is a “true” P/Invoke thunk and tries to find its imple-
mentation map. If the map is not found, or the found map is incomplete, the loader realizes that
this is an IJW thunk after all and proceeds accordingly. That’s why I noted that the native and
unmanaged flags should be set rather than specified that they must be set. The loader will discover
the truth even without these flags, but not before it tries to find the implementation map and
analyze it.

The following is a typical example of an IJW thunk declaration; it is a snippet from a disas-
sembly of a VC++-generated mixed-code PE file:

.method public static pinvokeimpl(/* No map */)
unsigned int32 _mainCRTStartup() native unmanaged preservesig

{
.entrypoint
.custom instance void [mscorlib]

System.Security.SuppressUnmanagedCodeSecurityAttribute::.ctor()
= (01 00 00 00)

// Embedded native code
// Disassembly of native methods is not supported
// Managed TargetRVA = 0x106f

} // End of global method _mainCRTStartup

CHAPTER 18 ■ MANAGED AND UNMANAGED CODE INTEROPERATION 367

Ch18_6463_CMP3 7/13/06 8:27 PM Page 367

As you can see, a thunk can be declared as an entry point, and custom attributes and
security attributes can be assigned to it. In these respects, a thunk has the same privileges as
any other method.

As you can also see, neither the IL disassembler nor ILAsm can handle the embedded
native code. The mixed-code PE files, employing the IJW interoperation, cannot be round-
tripped (disassembled and reassembled).

COM Callable Wrappers
Classic COM objects are allocated from the standard operating system heap and contain
internal reference counters. The COM objects must self-destruct when they are not referenced
anymore—in other words, when their reference counters reach 0.

Managed objects are allocated from the common language runtime internal heap, which
is controlled by the garbage collection subsystem (the GC heap). Managed objects don’t have
internal reference counters. Instead, the runtime traces all the object references, and the GC
automatically destroys unreferenced objects. But the references can be traced only if the
objects are being referenced by managed code. Hence, it would be a bad idea to allow unman-
aged COM clients to access managed objects directly.

Instead, for each managed object, the runtime creates a COM callable wrapper, which
serves as a proxy for the object. A CCW is allocated outside the GC heap and is not subject to the
GC mechanism, so it can be referenced from unmanaged code without causing any ill effects.

In addition to the lifetime control of the managed object, a CCW provides data marshal-
ing for method calls and handles managed exceptions, converting them to HRESULT returns,
which is standard for COM. If, however, a managed method is designed to return HRESULT (in
the form of unsigned int32) rather than throw exceptions, it must have the implementation
flag preservesig set. In this case, the method signature is exported exactly as defined.

The runtime carefully maintains a one-to-one relationship between a managed object
and its CCW in any given application domain, not allowing an alternative CCW to be created.
This guarantees that all interfaces of the same object relate to the same IUnknown and that the
interface queries are consistent.

Any CCW generated by the runtime implements IDispatch for late binding. For early
binding, which is done directly through the native v-table, the runtime must generate the
type information in a form consumable by COM clients—namely, in the form of a COM type
library. The Microsoft .NET Framework SDK includes the type library exporting the utility
TlbExp.exe, which generates an accompanying COM type library for any specified assembly.
Another tool, RegAsm.exe, also included in the .NET Framework SDK, registers the types
exposed by an assembly as COM classes and generates the type library.

When managed classes and their members are exposed to COM, their exposed names
might differ from the originals. First, the type library exporters consider all names that differ
only in case to be the same—for example, Hello, hello, HELLO, and hElLo are exported as Hello.
Second, classes are exported by name only, without the namespace part, except in the case of
a name collision. If a collision exists—if, for example, an assembly has classes A.B.IHello and
C.D.IHello defined—the classes are exported by their full names, with underscores replacing
the dots: A_B_IHello, C_D_IHello.

CHAPTER 18 ■ MANAGED AND UNMANAGED CODE INTEROPERATION368

Ch18_6463_CMP3 7/13/06 8:27 PM Page 368

Other COM parameters characterizing the CCW for each class are defined by the COM
interoperability custom attributes, listed in Chapter 16. All information pertinent to exposing
managed classes as COM servers is defined through custom attributes, so ILAsm does not
have or need any linguistic constructs specific to this aspect of the interoperation.

Runtime Callable Wrappers
A runtime callable wrapper is created by the common language runtime as a proxy of a classic
COM object that the managed code wants to consume. The reasons for creating an RCW are
roughly the same as those for creating a CCW: the managed objects know nothing about refer-
ence counting and expect their counterparts to belong to the GC heap. An RCW is allocated
from the GC heap and caches the reference-counted interface pointers to a single COM
object. In short, from the runtime point of view, an RCW is a “normal” managed server; and
from the COM point of view, an RCW is a “normal” COM client. So everyone is happy.

An RCW is created when a COM-exposed managed object is instantiated—for example,
by a newobj instruction. There are two approaches to binding to the COM classes: early bind-
ing, which requires a so-called interop assembly, and late binding by name, which is
performed through Reflection methods.

An interop assembly is a managed assembly either produced from a COM type library
by means of running the utility TlbImp.exe (included in the .NET Framework SDK) or, at run
time, produced by calling methods of the class [mscorlib]System.Runtime.InteropServices.
TypeLibConverter. From the point of view of the managed code, the interop assembly is sim-
ply another assembly, all classes of which happen to carry the import flag. This flag is the
signal for the runtime to instantiate an RCW every time it is commanded to instantiate
such a class.

Late binding through Reflection works in much the same way as IDispatch does, but it
has nothing to do with the interface itself. The COM classes that implement IDispatch can be
early-bound as well. And late binding isn’t restricted to imported classes only. “Normal” man-
aged types can also be late-bound by using the same mechanism.

Instantiating a late-bound COM object is achieved by consecutive calls to the
[mscorlib]System.Type::GetTypeFromProgID and [mscorlib]System.Activator::
CreateInstance methods, followed when necessary by calls to the [mscorlib]System.Type::
InvokeMember method. For example, if you want to instantiate a COM class Bar residing in the
COM library Foo.dll and then call its Baz method, which takes no arguments and returns an
integer, you could write the following code:

...

.locals init (class [mscorlib]System.Type Typ,
object Obj,
int32 Ret)

// Typ = Type::GetTypeFromProgID("Foo.Bar");
ldstr "Foo.Bar"
call class [mscorlib]System.Type

[mscorlib]System.Type::GetTypeFromProgID(string)
stloc Typ

CHAPTER 18 ■ MANAGED AND UNMANAGED CODE INTEROPERATION 369

Ch18_6463_CMP3 7/13/06 8:27 PM Page 369

// Obj = Activator::CreateInstance(Typ);
ldloc Typ
call instance object [mscorlib]System.Activator::CreateInstance(

class [mscorlib]System.Type)
stloc Obj
...
// Ret = (int)Typ->InvokeMember("Baz",BindingFlags::InvokeMethod,
// NULL,Obj,NULL);
ldloc Typ
ldstr "Baz"
ldc.i4 0x100 // System.Reflection.BindingFlags::InvokeMethod
ldnull // Reflection.Binder – don't need it
ldloc Obj
ldnull // Parameter array – don't need it
call instance object [mscorlib]System.Type::InvokeMember(string,

valuetype [mscorlib]System.Reflection.BindingFlags,
class [mscorlib]System.Reflection.Binder,
object,
object[])

unbox valuetype [mscorlib]System.Int32
stloc Ret
...

An RCW converts the HRESULT returns of COM methods to managed exceptions. The only
problem with this is that the RCW throws exceptions only for failing HRESULT values, so sub-
tleties such as S_FALSE go unnoticed. The only way to deal with this situation is to set the
implementation flag preservesig on the methods that might return S_FALSE and forgo the
automated HRESULT to exception transformation.

Another problem arises when the COM method has a variable-length array as one
parameter and the array length as another. The type library carries no information about
which parameter is the length, and the runtime is thus unable to marshal the array correctly.
In this case, the signature of the method must be modified to include explicit marshaling
information.

Yet another problem requiring manual intervention involves unions with overlapped ref-
erence types. Perfectly legal in the unmanaged world, such unions are outlawed in managed
code. Therefore, these unions are converted into value types with .pack and .size parame-
ters specified but without the member fields.

The manual intervention mentioned usually involves disassembling the interop assembly,
editing the text, and reassembling it. Since the interop assemblies don’t contain embedded
native code, this operation can easily be performed.

Data Marshaling
All thunks and wrappers provide data conversions between managed and unmanaged data
types, which is referred to as marshaling. Marshaling information is kept in the FieldMarshal
metadata table, which is described in Chapter 9. The marshaling information can be associ-
ated with Field and Param metadata records.

CHAPTER 18 ■ MANAGED AND UNMANAGED CODE INTEROPERATION370

Ch18_6463_CMP3 7/13/06 8:27 PM Page 370

Blittable Types
One significant subset of managed data types directly corresponds to unmanaged types, requir-
ing no data conversion across managed and unmanaged code boundaries. These types, which
are referred to as blittable, include pointers (not references), function pointers, signed and
unsigned integer types, and floating-point types. Formatted value types (the value types having
sequential or explicit class layout) that contain only blittable elements are also blittable.

The nonblittable managed data types that might require conversion during marshaling
because of different or ambiguous unmanaged representation are as follows:

• bool (1-byte, true = 1, false = 0) can be converted either to native type bool (4-byte,
true = 1, false = 0) or to variant bool (2-byte, true = 0xFFFF, false = 0).

• char (Unicode character, unsigned 2-byte integer) can be converted either to int8
(an ANSI character) or to unsigned int16 (a Unicode character).

• string (class System.String) can be converted either to an ANSI or a Unicode zero-
terminated string (an array of characters) or to bstr (a Unicode Visual Basic–style
string).

• object (class System.Object) can be converted either to a structure or to a COM inter-
face (CCW/RCW) pointer.

• class can be converted either to a COM interface pointer or, if the class is a delegate,
to a function pointer.

• valuetype (nonblittable) is converted to a structure with a fixed layout.

• An array and a vector can be converted to a safe array or a C-style array.

The references (managed pointers) are marshaled as unmanaged pointers. The managed
objects and interfaces are references in principle, so they are marshaled as unmanaged pointers
as well. Consequently, references to the objects and interfaces (class IFoo&) are marshaled as
double pointers (IFoo**). All object references passed to the unmanaged code must be pinned;
otherwise, the GC subsystem might move them during the call to an unmanaged method.

In/Out Parameters
The method parameter flags in and out can be (but are not necessarily) taken into account
by the marshaler. When that happens, the marshaler can optimize the process by abandoning
the marshaling in one direction. By default, parameters passed by reference (including refer-
ences to objects but excluding the objects) are presumed to be in/out parameters, whereas
parameters passed by value (including the objects, even though managed objects are in
principle references) are presumed to be in parameters. The exceptions to this rule are the
[mscorlib]System.Text.StringBuilder class, which is always marshaled as in/out, and the
classes and arrays containing the blittable types that can be pinned, which, if the in and out
flags are explicitly specified, can be two-way marshaled even when passed by value. The
StringBuilder class is used to represent a mutable string in the unmanaged world, that is,
a string that might be changed within the unmanaged method (in C/C++ notation, char*
as opposed to const char*); that’s why StringBuilder is always marshaled as in/out.

CHAPTER 18 ■ MANAGED AND UNMANAGED CODE INTEROPERATION 371

Ch18_6463_CMP3 7/13/06 8:27 PM Page 371

Considering that managed objects don’t necessarily stay in one place and can be moved
any time the garbage collector does its job, it is vital to ensure that the arguments of an
unmanaged call don’t wander around while the call is in progress. This can be accomplished
in the following two ways:

• Pin the object for the duration of the call, preventing the garbage collector from moving
it. This is done for the instances of formatted, blittable classes that have fixed layout in
memory, invariant to managed or unmanaged code.

• Allocate some unmovable memory, that is, a block of memory outside of the GC heap.
If the parameter has an in flag, marshal the data from the argument to this unmovable
memory. Call the method, passing this memory as the argument. If the parameter has
an out flag, marshal this memory back to the original argument upon completion of
the call.

Chapter 10 describes the ILAsm syntax for the explicit marshaling definition of method
parameters. Chapter 8 discusses the native types used in explicit marshaling definitions.
Rather than reviewing that information here, I’ll discuss some interesting marshaling cases
instead.

String Marshaling
String marshaling is defined in at least three places: in a string conversion flag of a TypeDef
(ansi, unicode, or autochar), in a similar flag of a P/Invoke implementation map, and, explicitly,
in marshal(...) clauses—for all parameters of all methods of a given class, for all parameters of
a given method, and for one concrete parameter, respectively. Lower-level specifications over-
ride the higher-level specifications.

As method arguments, managed strings (instances of the System.String class) can be
marshaled as the following native types:

• lpstr, a pointer to a zero-terminated ANSI string

• lpwstr, a pointer to a zero-terminated Unicode string

• lptstr, a pointer to a zero-terminated ANSI or Unicode string, depending on the
platform

• bstr, a Unicode Visual Basic–style string with a prepended length

• ansi bstr, an ANSI Visual Basic–style string with a prepended length

• tbstr, an ANSI or Unicode Visual Basic–style string, depending on the platform

The COM wrappers marshal the string arguments as lpstr, lpwstr, or bstr only. Other
unmanaged string types are not COM compatible.

At times, a string buffer must be passed to an unmanaged method in order to be filled
with some particular contents. Passing a string by value does not work in this case because
the called method cannot modify the string contents even if the string is passed as an in/out
parameter (in the managed world, strings are immutable—once a string object is created,

CHAPTER 18 ■ MANAGED AND UNMANAGED CODE INTEROPERATION372

Ch18_6463_CMP3 7/13/06 8:27 PM Page 372

it cannot be changed). Passing the string by reference does not initialize the buffer to the
required length. The solution, then, is to pass not a string (an instance of System.String)
but rather an instance of System.Text.StringBuilder, initialized to the required length:

.typedef [mscorlib]System.Text.StringBuilder as StrB

.method public static pinvokeimpl("user32.dll" stdcall)
int32 GetWindowText(int32 hndl,

class StrB s, // Default marshaling: ANSI
int32 nMaxLen) { }

.method public static string GetWText(int32 hndl)
{

.locals init(class StrB sb)
ldc.i4 1024 // Buffer size
newobj instance void StrB::.ctor(int32)
stloc.0
ldarg.0 // Load hndl on stack
ldloc.0 // Load StringBuilder instance on stack
ldc.i4 1024 // Buffer size again
call int32 GetWindowText(int32,

class StrB,
int32)

pop // Discard the return of GetWindowText
ldloc.0 // Load StringBuilder instance (filled in) on stack
call instance string StrB::ToString()

// Resulting string has length less than 1024
ret

}

The string fields of the value types are marshaled as lpstr, lpwstr, lptstr, bstr, or fixed
sysstring[<size>], which is a fixed-length array of ANSI or Unicode characters, depending on
the string conversion flag of the field’s parent TypeDef and on the marshaling specification of
the fields (if specified).

Object Marshaling
Objects (instances of reference types) are marshaled as struct (converted to a COM-style
variant), interface (converted to IDispatch if possible and otherwise to IUnknown), iunknown
(converted to IUnknown), or idispatch (converted to IDispatch). The default marshaling is as
struct.

When an object is marshaled as struct to a COM variant, the type of the variant can be
explicitly set by those object types that implement the [mscorlib]System.IConvertible inter-
face. The types that do not implement this interface are marshaled to and from variants as
shown in Table 18-1. All listed types belong to the System namespace.

CHAPTER 18 ■ MANAGED AND UNMANAGED CODE INTEROPERATION 373

Ch18_6463_CMP3 7/13/06 8:27 PM Page 373

Table 18-1. Marshaling of Managed Objects to and from COM Variants

Type of Object Marshaled To… …COM Variant Type… …Marshaled to Type of Object

Null reference VT_EMPTY Null reference

DBNull VT_NULL DBNull

Runtime.InteropServices.
ErrorWrapper VT_ERROR UInt32

Reflection.Missing VT_ERROR with UInt32
E_PARAMNOTFOUND

Runtime.InteropServices. VT_DISPATCH ___ComObject or null reference if
IdispatchWrapper the variant value is null

Runtime.InteropServices. VT_UNKNOWN ___ComObject or null reference if
IunknownWrapper the variant value is null

Runtime.InteropServices. VT_CY Decimal
CurrencyWrapper

Boolean VT_BOOL Boolean

Sbyte VT_I1 Sbyte

Byte VT_UI1 Byte

Int16 VT_I2 Int16

UInt16 VT_UI2 UInt16

Int32 VT_I4 Int32

UInt32 VT_UI4 UInt32

Int64 VT_I8 Int64

UInt64 VT_UI8 UInt64

Single VT_R4 Single

Double VT_R8 Double

Decimal VT_DECIMAL Decimal

DateTime VT_DATE DateTime

String VT_BSTR String

IntPtr VT_INT Int32

UintPtr VT_UINT UInt32

Array VT_ARRAY Array

If you wonder why, for example, System.Int16 and System.Boolean should be used instead
of int16 and bool, respectively, I should remind you that our discussion concerns the conver-
sion of the objects.

When a managed object is passed to unmanaged code by reference, the marshaler creates
a new variant and copies the contents of the object reference into this variant. The unman-
aged code is free to tinker with the variant contents, and these changes are propagated back to
the referenced object when the method call is completed. If the type of the variant has been

CHAPTER 18 ■ MANAGED AND UNMANAGED CODE INTEROPERATION374

Ch18_6463_CMP3 7/13/06 8:27 PM Page 374

changed within the unmanaged code, the back propagation of the changes can result in a
change of the object type, so you might find yourself with a different type of object after the
call. The same story happens (in reverse order) when unmanaged code calls a managed
method, passing a variant by reference: the type of the variant can be changed during the call.

The variant can contain a pointer to its value rather than the value itself. (In this case, the
variant has its type flag VT_BYREF set.) Such a “reference variant,” passed to the managed code
by value, is marshaled to a managed object, and the marshaler automatically dereferences
the variant contents and retrieves the actual value. Despite its reference type, the variant is
nonetheless passed by value, so any changes made to the object in the managed code are not
propagated back to the original variant.

If a “reference variant” is passed to the managed code by reference, it is marshaled to an
object reference, with the marshaler dereferencing the variant contents and copying the value
into a newly constructed managed object. But in this case, the changes made in the managed
code are propagated back to the unmanaged code only if they did not lead to a change in the
variant type. If the changes did affect the variant type, the marshaler throws an InvalidCast
exception.

More Object Marshaling
Objects are always marshaled by COM wrappers as COM interfaces. Every managed class can
be seen as implementing an implicit interface that contains all nonprivate members of the
class.

When a type library is generated from an assembly, a class interface and a coclass are
produced for each accessible managed class. The class interface is marked as a default inter-
face for the coclass.

A CCW generated by the common language runtime for each instance of the exposed
managed class also implements other interfaces not explicitly implemented by the class. In
particular, a CCW automatically implements IUnknown and IDispatch.

When an interop assembly is generated from a type library, the coclasses of the type
library are converted to the managed classes. The member sets of these classes are defined
by the default interfaces of the coclasses.

An RCW generated by the runtime for a specific instance of a COM class represents this
instance and not a specific interface exposed by this instance. Hence, an RCW must imple-
ment all interfaces exposed by the COM object. This means that the identity of the COM
object itself must be determined by one of its interfaces because COM objects are not passed
as method arguments, but their interfaces are. In order to do this, the runtime queries the
passed interface for IProvideClassInfo2. If this interface is unavailable, the runtime queries
the passed interface for IProvideClassInfo. If either of the interfaces is available, the runtime
obtains the class identifier (CLSID) of the COM class exposing the interface—by calling the
IProvideClassInfo2::GetGUID() or IProvideClassInfo::GetClassInfo() method—and uses it
to retrieve full information about the COM class from the registry. If this action sequence fails,
the runtime instantiates a generic wrapper, System.ComObject.

CHAPTER 18 ■ MANAGED AND UNMANAGED CODE INTEROPERATION 375

Ch18_6463_CMP3 7/13/06 8:27 PM Page 375

Array Marshaling
Unmanaged arrays can be either C-style arrays of fixed or variable length or COM-style safe
arrays. Both kinds of arrays are marshaled to managed vectors, with the unmanaged element
type of the array marshaled to the respective managed element type of the vector. For exam-
ple, a safe array of BSTR is marshaled to string[].

The rank and bound information carried by a safe array is lost in the transition. If this
information is vital for correct interfacing, manual intervention is required again: the interop
assembly produced from the COM type library must be disassembled, the array definitions
must be manually edited, and the assembly must be reassembled. For example, if a three-
dimensional safe array of BSTR is marshaled as string[], the respective type must be manually
edited to string[0…,0…,0…] in order to restore the rank of the array.

C-style arrays can have a fixed length or a length specified by another parameter of the
method or a combination thereof, the total length being a sum of fixed (base) length and the
value of the length parameter. Both values, the base length and the length parameter’s zero-
based ordinal, can be specified for the marshaler so that a vector of appropriate size can be
allocated. Chapter 8 describes the ILAsm syntax for specifying the array length. For example:

// Array length is fixed (128)
.method public static pinvokeimpl("unmanaged.dll" stdcall)

void Foo(string[] marshal(bstr[128]) StrArray) {}

// Array length is specified by arrLen (parameter #1)
.method public static pinvokeimpl("unmanaged.dll" stdcall)

void Boo(string[] marshal(bstr[+1]) StrArray, int32 arrLen) {}

// Base length is 128, additional length specified by moreLen
.method public static pinvokeimpl("unmanaged.dll" stdcall)

void Goo(int32 moreLen, string[] marshal(bstr[128+0]) StrArray) {}

Managed vectors and arrays can be marshaled to unmanaged code as safe arrays or as
C-style arrays. Marshaling as safe arrays preserves the rank and boundary information of the
managed arrays. This information is lost when the managed arrays are marshaled as C-style
arrays. Vectors of vectors—for example, int32[][]—cannot be marshaled.

Delegate Marshaling
Delegates are marshaled as interfaces by COM wrappers and as unmanaged function pointers
by P/Invoke thunks. The type library Mscorlib.tlb defines the Delegate interface, which repre-
sents delegates in the COM world. This interface exposes the DynamicInvoke method, which
allows the COM code to call a delegated managed method.

CHAPTER 18 ■ MANAGED AND UNMANAGED CODE INTEROPERATION376

Ch18_6463_CMP3 7/13/06 8:27 PM Page 376

Marshaling a delegate as an unmanaged function pointer represents a certain risk. The
unmanaged code may cache the received callback pointer “for future use.” Such a reference
cached on the unmanaged side does not count as a live reference to the delegate, so the
garbage collector may destroy the delegate before the unmanaged side is done using it as a
callback. The calling managed code must take steps to ensure the delegate’s survival until
interaction with the unmanaged code is complete, such as by storing the delegate reference
in a field or in a pinned local variable.

Providing Managed Methods
As Callbacks for Unmanaged Code
In a P/Invoke interaction, the initiative must come from the managed code’s side. The process
starts in managed mode and makes calls to the unmanaged functions. However, the exchange
can’t always go in only one direction; that model would be too simplistic to be usable.

Many unmanaged methods require callback functions, and the managed code must have
the means to provide those functions. Thus, it’s necessary to have a way to pass a managed
method pointer to an unmanaged function, permitting the unmanaged function to call the
managed method. The managed callback method might be simply a P/Invoke thunk of
another unmanaged method, but that changes nothing—it’s still a managed method.

The way to pass managed methods as callbacks to unmanaged functions involves the
use of delegates. The delegates are marshaled by P/Invoke thunks as unmanaged function
pointers, which makes them suitable for the task.

Let’s look at a sample to review the way delegates are used for callback specifications.
You can find this sample, Callback.il, on the Apress Web site. The sample implements a simple
program that sorts 15 integer values in ascending order, employing the well-known C function
qsort, called through P/Invoke. The difference between the P/Invoke calls you’ve encountered
so far and this one is that qsort requires a callback function, which compares the two elements
of the array being sorted, thus defining the sorting order.

I’ll let the sample speak for itself:

// I can't pass the managed method pointer to the unmanaged function,
// and even the ldftn instruction will not help me.
// This delegate will serve as an appropriate vehicle.
.class public sealed CompareDelegate

extends [mscorlib]System.MulticastDelegate
{

.method public specialname
void .ctor(object Object,

native uint MethodPtr)
runtime {}

CHAPTER 18 ■ MANAGED AND UNMANAGED CODE INTEROPERATION 377

Ch18_6463_CMP3 7/13/06 8:27 PM Page 377

// Note the modopt modifier of the Invoke signature -- it's very
// important. Without it, the calling convention of the callback
// function is marshaled as stdcall (callee cleans the stack).
// But qsort expects the callback function to have the cdecl
// calling convention (caller clears the stack). If we supply the
// callback with the stdcall calling convention, qsort blows
// the stack away and causes a memory access violation. You are
// welcome to comment out the modopt line and see what happens.
// Note also that the modopt modifier is placed on the delegate's
// Invoke signature, not on the signature of the delegated method.
.method public virtual int32

modopt([mscorlib]System.Runtime.CompilerServices.CallConvCdecl)
Invoke(void*, void*) runtime {}

// Well, I don't really need asynchronous invocation here,
// but, you know, dura lex sed lex.
.method public newslot virtual

class [mscorlib]System.IAsyncResult
BeginInvoke(object,

class [mscorlib]System.AsyncCallback,
object) runtime {}

.method public newslot virtual
void EndInvoke(class [mscorlib]System.IAsyncResult)

runtime {}
}

// The hero of the occasion: the qsort function.
.method public static pinvokeimpl("msvcrt.dll" ansi cdecl)

void qsort(void*,int32,int32,class CompareDelegate) preservesig {}

// This is the comparison method I'm going to offer as
// a callback to qsort. What can be simpler than comparing
// two integers?
.method public static int32 compInt32(void* arg1,void* arg2)
{

// return(*arg1 - *arg2);
ldarg.0
ldind.i4
ldarg.1
ldind.i4
sub
ret

}

CHAPTER 18 ■ MANAGED AND UNMANAGED CODE INTEROPERATION378

Ch18_6463_CMP3 7/13/06 8:27 PM Page 378

// And now, let's get this show on the road.
.method public static void Exec()
{

.entrypoint

.locals init(class CompareDelegate)

// Print the unsorted values.
ldstr "Before Sorting:\n"
call vararg int32 printf(string)
pop
ldsflda valuetype SixtyBytes DataToSort
ldc.i4.s 15
call void printInt32(void*, int32)

// Create the delegate.
// Null object ref indicates the global method.
ldnull
ldftn int32 compInt32(void*,void*)
newobj instance void

CompareDelegate::.ctor(object,native uint)
stloc.0

// Invoke qsort.
ldsflda valuetype SixtyBytes DataToSort // Pointer to data
ldc.i4.s 15 // Number of items to sort
ldc.i4.4 // Size of an individual item
ldloc.0 // Callback function pointer (delegate)
call void qsort(void*,int32,int32,class CompareDelegate)

// Print the sorted values.
ldstr "After Sorting:\n"
call vararg int32 printf(string)
pop
ldsflda valuetype SixtyBytes DataToSort
ldc.i4.s 15
call void printInt32(void*, int32)

ret
}

CHAPTER 18 ■ MANAGED AND UNMANAGED CODE INTEROPERATION 379

Ch18_6463_CMP3 7/13/06 8:27 PM Page 379

Managed Methods As Unmanaged Exports
Exposing managed methods as unmanaged exports provides a way for unmanaged, non-COM
clients to consume managed services. In fact, this technique opens the managed world in all
its glory—with its secure and type-safe computing and with all the wealth of its class
libraries—to unmanaged clients.

Of course, the managed methods are not exposed as such. Instead, inverse P/Invoke thunks,
automatically created by the common language runtime, are exported. These thunks provide the
same marshaling functions as “conventional” P/Invoke thunks, but in the opposite direction.

In order to expose managed methods as unmanaged exports, the IL assembler builds a
v-table, a v-table fixup (VTableFixup) table, and a group of unmanaged export tables, which
include the Export Address table, the Name Pointer table, the Ordinal table, the Export Name
table, and the Export Directory table. Chapter 4 discusses all of these tables, their structures,
and their positioning within a managed PE file. Now let’s see how it all is done.

The VTableFixup table is an array of VTableFixup descriptors, with each descriptor carry-
ing the RVA of a v-table entry, the number of slots in the entry, and the binary flags indicating
the size of each slot (32-bit or 64-bit) and any special features of the entry. One special feature
is the creation of the marshaling thunk to be exposed to the unmanaged client.

The v-table and the VTableFixup table of a managed module serve two purposes. One
purpose—relevant only to the VC++ compiler, the only compiler that produces mixed-code
modules—is to provide the intramodule managed/unmanaged code interoperation. Another
purpose is to provide the means for the unmanaged export of managed methods.

Each slot of a v-table in a PE file carries the token of the managed method the slot represents.
At run time, after respective methods have been compiled to native code, the v-table fixups are
executed, replacing the method tokens with actual addresses of the compiled methods.

The ILAsm syntax for a v-table fixup definition is as follows:

.vtfixup [<num_slots>] <flags> at <data_label>

where square brackets are part of the definition and do not mean that <num_slots> is optional.
<num_slots> is an integer constant, indicating the number of v-table slots grouped into one
entry because their flags are identical. This grouping has no effect other than saving some
space—you can emit a single slot per entry, but then you’ll have to emit as many v-table
fixups as there are slots.

The flags specified in the definition can be those that are described in the following list:

• int32. Each slot in this v-table entry is 4 bytes wide (32-bit target platform).

• int64. Each slot in this v-table entry is 8 bytes wide (64-bit target platform). The int32
and int64 flags are mutually exclusive.

• fromunmanaged. The entry is to be called from the unmanaged code, so the marshaling
thunk must be created by the runtime.

• callmostderived. This flag is not currently used.

The order of appearance of .vtfixup declarations defines the order of the respective
VTableFixup descriptors in the VTableFixup table.

The v-table entries are defined simply as data entries. Note that the v-table must be
contiguous—in other words, the data definitions for the v-table entries must immediately
follow one another.

CHAPTER 18 ■ MANAGED AND UNMANAGED CODE INTEROPERATION380

Ch18_6463_CMP3 7/13/06 8:27 PM Page 380

For example:

...

.vtfixup [1] int32 fromunmanaged at VT_01

...

.vtfixup [1] int32 at VT_02

...

.data VT_01 = int32(0x0600001A)

.data VT_02 = int32(0x0600001B)

...

The actual data representing the method tokens is automatically generated by the IL
assembler and placed in designated v-table slots. To achieve that, it is necessary to indicate
which method is represented by which v-table slot. ILAsm provides the .vtentry directive for
this purpose:

.vtentry <entry_number> : <slot_number>

where <entry_number> and <slot_number> are 1-based integer constants. The .vtentry
directive is placed within the respective method’s scope, as shown in the following code:

...

.vtfixup [1] int32 fromunmanaged at VT_01

...

.method public static void Foo()
{

.vtentry 1:1 // Entry 1, slot 1

...
}
...
.data VT_01 = int32(0) // The slot will be filled automatically.
...

Export Table Group
The export table group (in managed and unmanaged modules) consists of five tables:

• The Export Address table (EAT), containing the RVA of the exported unmanaged
functions.

• The Export Name table (ENT), containing the names of the exported functions.

• The Name Pointer table (NPT) and the Ordinal table (OT), together forming a lookup
table that rearranges the exported functions in lexical order of their names. In special
cases when an unmanaged module exports its methods exclusively by ordinal, ENT,
NPT, and OT may be missing. Managed modules always export their methods by name.

• The Export Directory table, containing the location and size information about the
other four tables.

CHAPTER 18 ■ MANAGED AND UNMANAGED CODE INTEROPERATION 381

Ch18_6463_CMP3 7/13/06 8:27 PM Page 381

Location and size information concerning the Export Directory table itself resides in
the first of 16 data directories in the PE header. Figure 18-2 shows the structure of the export
table group.

Figure 18-2. The structure of the export table group

In an unmanaged PE file, the EAT contains the RVA of the exported unmanaged methods.
In a managed PE file, the picture is more complicated. The EAT cannot contain the RVA of the
managed methods because it’s not the managed methods that are exported—rather, it’s their
marshaling thunks, generated at run time.

The only way to address a yet-to-be-created thunk is to define a slot in a v-table
entry for the exported managed method and a VTableFixup descriptor for this entry,
carrying the fromunmanaged flag. In this case, the contents of the v-table slot (a token of the
exported method) are replaced at run time with the address of the marshaling thunk. (If the
fromunmanaged flag is not specified, the thunk is not created, and the method token is replaced
with this method’s address; but this is outside the scenario being discussed.)

For each exported method, the IL assembler creates a tiny native stub—yes, you’ve
caught me: the IL assembler does produce embedded native code after all—consisting of the

Export Data Directory

Export Directory Table

0:Addr.of Yabba()

2:Addr.of Doo()

1:Addr.of Dabba()

“Yabba”

“Doo”

“Dabba”

1

0

2

PE Header

EAT ENTNPTOT

CHAPTER 18 ■ MANAGED AND UNMANAGED CODE INTEROPERATION382

Ch18_6463_CMP3 7/13/06 8:27 PM Page 382

x86 command jump indirect (0x25FF) followed by the RVA of the v-table slot allocated for
the exported method. The native stubs produced by version 2.0 of the IL assembler for X64
or Itanium targets look, of course, different but are functionally similar: they execute an
indirect jump. The EAT contains the RVA of these tiny stubs.

The generation of the jump stubs renders the module strictly platform specific, but we’ve
already made our module platform specific when we chose the width of the v-table slots (4 or
8 bytes).

The tiny stubs are necessary because the EAT must contain solid addresses of the
exported methods as soon as the operating system loads the PE file. Otherwise, the unman-
aged client won’t be able to match the entries of its Import Address table (IAT) to the entries
of the managed module’s EAT. The addresses of the methods or their thunks don’t exist at the
moment the file is loaded. But the tiny stubs exist and have solid addresses. It’s true that at
that moment they cannot perform any meaningful jumps, because the v-table slots they are
referencing contain method tokens instead of addresses. But by the time the stubs are called,
the methods and thunks will have been generated and the v-table slots will be fixed up, with
the method tokens replaced with thunk addresses.

Figure 18-3 illustrates this scenario.

Figure 18-3. Indirect referencing of v-table entries from the EAT

0:Addr.of Yabba()

2:Addr.of Doo()

1:Addr.of Dabba()

0x06000001

0x06000003

0x06000002

0x25FF

EAT V-Table

0x25FF

0x25FF

Jump Stubs

int32 from unmanaged

VT Fixup Table
void Yabba()
(0x06000001)

void Dabba()
(0x06000002)

void Doo()
(0x06000003)

Managed Methods Marshaling Thunks
(Created at Run Time)

int32 from unmanaged

int32 from unmanaged

CHAPTER 18 ■ MANAGED AND UNMANAGED CODE INTEROPERATION 383

Ch18_6463_CMP3 7/13/06 8:27 PM Page 383

The unmanaged exports require that relocation fixups are executed at the module load
time. When a program runs under the Microsoft Windows XP operating system or later, this
requirement can create a problem similar to those encountered with TLS data and data on data.
As described in Chapter 4, if the common language runtime header flag COMIMAGE_FLAGS_ILONLY
is set, the loader of Windows XP ignores the .reloc section, and the fixups are not executed.
To avoid this, the IL assembler automatically replaces the COMIMAGE_FLAGS_ILONLY flag with
COMIMAGE_FLAGS_32BITREQUIRED whenever the source code specifies TLS data or data on data.
Unfortunately, the versions 1.0 and 1.1 of the compiler neglected to do this automatically when
unmanaged exports were specified in the source code, and it was thus necessary to explicitly set
the runtime header flags using the directive .corflags 0x00000002. Version 2.0 of the compiler
is free of this deficiency, it automatically removes the ILONLY flag and then, if the target architec-
ture is x86, sets the 32BITREQUIRED flag.

The ILAsm syntax for declaring a method as an unmanaged export is very simple:

.export [<ordinal>] as <export_name>

where <ordinal> is an integer constant. The <export_name> provides an alias for the exported
method. In versions 1.0 and 1.1 of ILAsm, it was necessary to specify <export_name> even if the
method is exported under its own name. In version 2.0, it is not necessary.

The .export directive is placed within the scope of the respective method together with
the .vtentry directive, as shown in this example:

...

.corflags 0x00000002

...

.vtfixup [1] int32 fromunmanaged at VT_01

...

.method public static void Foo()
{

.vtentry 1:1 // Entry 1, slot 1

.export [1] as Bar // Export #1, Name="Bar"

...
}
...
.data VT_01 = int32(0) // The slot will be filled automatically.
...

The source code for the small sample described earlier in Figure 18-2 could look like the
following, which was taken from the sample file YDD.il on the Apress Web site:

.assembly extern mscorlib { auto }

.assembly YDD { }

.module YDD.dll

.corflags 0x00000002

.vtfixup [1] int32 fromunmanaged at VT_01 // First v-table fixup

.vtfixup [1] int32 fromunmanaged at VT_02 // Second v-table fixup

.vtfixup [1] int32 fromunmanaged at VT_03 // Third v-table fixup

.data VT_01 = int32(0) // First v-table entry

.data VT_02 = int32(0) // Second v-table entry

.data VT_03 = int32(0) // Third v-table entry

CHAPTER 18 ■ MANAGED AND UNMANAGED CODE INTEROPERATION384

Ch18_6463_CMP3 7/13/06 8:27 PM Page 384

.method public static void Yabba()
{

.vtentry 1:1

.export [1]
ldstr "Yabba"
call void [mscorlib]System.Console::WriteLine(string)
ret

}
.method public static void Dabba()
{

.vtentry 2:1

.export [2]
ldstr "Dabba"
call void [mscorlib]System.Console::WriteLine(string)
ret

}
.method public static void Doo()
{

.vtentry 3:1

.export [3]
ldstr "Doo!"
call void [mscorlib]System.Console::WriteLine(string)
ret

}

Now you can compile the sample to a managed DLL, remembering to use the /DLL
command-line option of the IL assembler, and then write a small unmanaged program that
calls the methods from this DLL. This unmanaged program can be built with any unmanaged
compiler—for example, Microsoft Visual C++ 6—but don’t forget that YDD.dll cannot run
unless the .NET Framework is installed. It’s still a managed assembly, even if your unmanaged
program does not know about it.

As you’ve probably noticed, all .vtfixup directives of the sample sport identical flags.
This means that three single-slot v-table entries can be grouped into one three-slot entry:

.vtfixup [3] int32 fromunmanaged at VT_01

.data VT_01 = int32(0)[3]

Then the .vtentry directives of the Dabba and Doo methods must be changed to .vtentry
1:2 and .vtentry 1:3, respectively.

It’s worth making a few additional points about the sample. First, it’s good practice to
define all VTableFixup and v-table entries in the beginning of the source code, before any
methods or other data constants are defined. This ensures that you will not attempt to assign
a nonexistent v-table slot to a method and that the v-table will be contiguous.

Second, in the sample, the export ordinals correspond to v-table entry numbers. In fact,
no such correspondence is necessary. But if you’re using the v-table only for the purpose of
unmanaged export, it might not be a bad idea to maintain this correspondence simply to keep
track of your v-table slots. It won’t do you any good to assign the same v-table slot or the same
export ordinal to two different methods.

CHAPTER 18 ■ MANAGED AND UNMANAGED CODE INTEROPERATION 385

Ch18_6463_CMP3 7/13/06 8:27 PM Page 385

Third, you should remember that the export ordinals are relative. The Export Directory
table has a Base entry, which contains the base value for the export ordinals. The IL assembler
simply finds the lowest ordinal used in the .export directives throughout the source code and
assigns this ordinal to the Base entry. If you start numbering your exports from 5, it does not
mean that the first four entries in the EAT will be undefined. The common practice is to use
1-based export ordinals.

At this moment, if you were paying attention, you would say, “Wait a minute! You are
talking about the v2.0 IL assembler targeting different platforms, and at the same you are
suggesting to put the platform-specific details right in the source code?!”

But I’m not sure you were, so I’m saying it myself. Yes, if you look at the code of the sample
YDD.il, you will see that the directives .corflags, .vtfixup, and .data are platform specific (in
this case, x86 specific), so in order to generate YDD.DLL for, say, the X64 platform, you would
need to change the source code. This is the bad news.

The good news is that version 2.0 of the IL assembler does not require these directives at
all, as long as the v-table and VTFixup table are used for unmanaged exports only. Just specify
the .export directives in the methods you want to export to the unmanaged world, and the
flags, the v-table, and its fixups will be generated automatically by the compiler, with the slot
size adjusted for the target platform:

.assembly extern mscorlib { auto }

.assembly YDD { }

.module YDD.dll

.method public static void Yabba()
{

.export [1]
ldstr "Yabba"
call void [mscorlib]System.Console::WriteLine(string)
ret

}
.method public static void Dabba()
{

.export [2]
ldstr "Dabba"
call void [mscorlib]System.Console::WriteLine(string)
ret

}
.method public static void Doo()
{

.export [3]
ldstr "Doo!"
call void [mscorlib]System.Console::WriteLine(string)
ret

}

CHAPTER 18 ■ MANAGED AND UNMANAGED CODE INTEROPERATION386

Ch18_6463_CMP3 7/13/06 8:27 PM Page 386

In the case of an embedded “traditional” unmanaged client (that is, when the unmanaged
code of a mixed-code module takes the initiative and calls the managed methods), the man-
aged/unmanaged code interoperation is performed along the lines similar to the previously
described case of external “traditional” unmanaged client. The embedded case is simpler
because there is no need to involve the export tables (the calling code is embedded in this very
module), and hence there is no need to generate the jump stubs. So in the case of the embed-
ded unmanaged client, all interoperation is done via the module’s v-table and VTFixup table,
with the CLR automatically generating the marshaling thunks for inverse P/Invoke (unman-
aged code calling the managed). Just in case, let me remind you that existing versions of the IL
assembler cannot generate the mixed-code modules.

Summary
In this chapter, I discussed six possible scenarios of managed/unmanaged code interopera-
tion, based on three dichotomies: COM interoperation vs. “traditional” interoperation,
unmanaged code as client (calling) vs. unmanaged code as server (being called), and external
unmanaged code (residing in different module) vs. embedded unmanaged code (residing in
the same module). With three dichotomies, one would expect eight scenarios, but there are
only six, because the COM interoperation always involves external unmanaged code.

COM interoperation involves the generation of RCWs for representing the COM objects
in the managed world (COM as server) and of CCWs for exposing the managed objects to the
COM world (COM as client). Both RCWs and CCWs are generated by the CLR at run time, and
both serve two main purposes: marshaling the parameters across the managed/unmanaged
boundaries and coordinating GC reference tracking on the managed side and COM-specific
reference counting on the unmanaged side.

“Traditional” interoperation with unmanaged code posing as the server is based on the
platform invocation mechanism (P/Invoke) and involves the generation of marshaling thunks.
The marshaling thunks are automatically generated by the CLR at run time according to the
implementation map metadata (ImplMap table) and to the called method’s signature.

“Traditional” interoperation with unmanaged code posing as the client is based on the
inverse P/Invoke mechanism and also involves the generation of marshaling thunks. This
interoperation takes place via the module’s v-table and VTFixup table, and the marshaling
thunks are automatically generated by the CLR at run time according to data stored in these
tables (which are not part of the metadata) and to the called method’s signature. In case of
external “traditional” unmanaged client, the unmanaged export tables and unmanaged jump
stubs must be generated by the compiler and persisted in the managed module.

“Traditional” interoperation within mixed-code modules is known as IJW and is (so far)
specific to the VC++ compiler, because no other compiler (so far) can produce the mixed-code
modules.

CHAPTER 18 ■ MANAGED AND UNMANAGED CODE INTEROPERATION 387

Ch18_6463_CMP3 7/13/06 8:27 PM Page 387

Ch18_6463_CMP3 7/13/06 8:27 PM Page 388

Multilanguage Projects

The Microsoft .NET paradigm is multilanguage by its very nature. You can derive your class
from another class that has been declared in an assembly produced by someone else, and you
don’t need to worry about how the language you are using relates to the language used to
write the other assembly. You can create a multimodule assembly, each module of which is
written in a different language.

What you can’t do so easily, however, is build a single-module assembly using different
languages. This means once you’ve selected a development language for your single-module
assembly, you must accept all the limitations of the selected language.

ILAsm offers a way to resolve this problem. ILAsm, as a platform-oriented and ideologi-
cally neutral language, provides a natural common base for the high-level, pure-IL languages.
Because of this, ILAsm can be used as an intermediate stage for multilanguage projects. Most
of the high-level language compilers don’t actually use ILAsm as their base language, but this
can be easily rectified by using the IL disassembler.

IL Disassembler
The IL disassembler tool, ILDASM.EXE, is distributed with the .NET Framework SDK and is
one of the most popular tools among developers working on .NET-based programs. Virtually
every book dedicated to .NET themes at least mentions ILDASM and briefly describes its fea-
tures.

At least half of the ILAsm’s power, I think, lies in the fact that the IL assembler and disas-
sembler form a perfectly complementary pair and that the output of the IL disassembler can
be fed to the IL assembler. Together, the IL disassembler and assembler form a toolset for
serializing and deserializing managed PE files. What you can do with the serialized (text) rep-
resentation of a managed PE file between disassembling and reassembling is limited by your
imagination only.

ILDASM is a dual-mode application—that is, it can run either as a console or as a GUI
application. Two ILDASM command-line options—/OUT:<file_name> and /TEXT—set the
disassembler mode. If either /TEXT or /OUT:CON is specified, ILDASM outputs the disassem-
bly text to the console window from which it was started. If /OUT:<file_name> is specified,
ILDASM dumps the disassembly text into the specified file. If neither /TEXT nor /OUT is speci-
fied, ILDASM switches to graphical mode.

389

C H A P T E R 1 9

■ ■ ■

Ch19_6463_CMP3 7/13/06 8:32 PM Page 389

The graphical user interface of ILDASM is rather modest and strictly functional. The disas-
sembled module is represented as a tree. The module itself is shown as the root, namespaces
and classes as tree nodes, and members—methods, fields, events, and properties—as tree
leaves. Double-clicking a tree leaf displays a disassembly window containing the ILAsm source
text of the corresponding item of the module, as shown in Figure 19-1.

Figure 19-1. The IL disassembler in graphical mode

The tree leaf MANIFEST corresponds to all module-level information, including manifest
metadata, module metadata, and v-table fixups.

Each tree node representing a type has special leaves providing information about the type:
a class leaf, an extends leaf (if the type is derived from another type), and one implements leaf
for each interface the type implements. Double-clicking a class leaf displays a disassembly
window containing full class information except for the disassembly of the class members.
Double-clicking an extends leaf or an implements leaf moves the cursor in the tree view to the
respective class or interface if it is defined in the current module.

The disassembler provides numerous viewing options that allow you to control the
disassembly text presentation. In graphical mode, these options appear in the View menu,
as shown in Figure 19-2.

The module opened in ILDASM’s graphical mode can be dumped to a file but not to a
console window. To dump the module to a file, choose File ➤Dump, set the dump options as
shown in Figure 19-3, and click OK. In the Save As dialog box displayed, specify a directory
and the name of an output file. To dump a text representation of the fully expanded tree view
to a specified file, choose File ➤DumpTree.

CHAPTER 19 ■ MULTILANGUAGE PROJECTS390

Ch19_6463_CMP3 7/13/06 8:32 PM Page 390

Figure 19-2. Disassembler viewing options

Figure 19-3. Selecting file dump options

CHAPTER 19 ■ MULTILANGUAGE PROJECTS 391

Ch19_6463_CMP3 7/13/06 8:32 PM Page 391

■Note For reasons I won’t discuss here, the disassembler versions 1.0 and 1.1 do not offer all possible
viewing options by default. To access all the options, you have to use the /ADVANCED (or /ADV, because
ILDASM options are recognized by their first three characters) command-line option. Certain options are
available only in advanced mode. Among them, the group of /METAINFO options, which provide various
summaries of the module metadata, are very useful.

The disassembler version 2.0 offers all possible viewing (or dumping) options by default and does not
require the /ADV command-line option.

All the disassembly options shown in Figure 19-3 are available as command-line options
in ILDASM, but the inverse is not quite true. Appendix D contains a complete list of all the
command-line options. The following list focuses only on the most important of these options:

• The /UTF8 and /UNICODE options set the encoding of the output file. The default
encoding is ANSI.

• The /TOKENS option includes hexadecimal token values as comments in the disassembly
text.

• The /BYTES option includes the hexadecimal representation of IL instructions as com-
ments in the disassembly text.

• The /ITEM=<item_description> option limits the disassembly to the specified item:
a class or a method. For example, /ITEM="Foo" dumps the Foo class and all its mem-
bers, /ITEM="Foo::Bar" dumps all methods named Bar in the Foo class, and
/ITEM="Foo::Bar(int32(int32, string))" dumps the method int32 Foo::Bar(int32,
string). This option has no effect if the disassembler is invoked in graphical mode.
Unfortunately, there is a problem with reading this option in version 2.0 of ILDASM,
and for the option to work you need to omit the last closing parenthesis:
/ITEM="Foo::Bar(int32(int32, string)". This problem did not exist in versions 1.0 and 1.1.
In case you ever decide to use this option, I personally apologize for the inconvenience.

• The /VISIBILITY=<vis>[+<vis>*] option limits the disassembly to the items that have the
specified visibility and accessibility flags. The <vis> suboptions are three-letter abbrevi-
ations of all possible visibility and accessibility flags:

• PUB: Public

• PRI: Private

• FAM: Family

• ASM: Assembly

• FAA: Family and assembly

• FOA: Family or assembly

• PSC: Private scope

CHAPTER 19 ■ MULTILANGUAGE PROJECTS392

Ch19_6463_CMP3 7/13/06 8:32 PM Page 392

For example, /VIS=PUB+FAM+FOA limits the disassembly output to those items that
can be accessed from outside the assembly.

• The /NOIL option suppresses the ILAsm source text output. You can use this option
when you are interested not in a disassembly but in file statistics, a metadata summary,
a headers dump, and so on. This option has no effect if the disassembler is invoked in
graphical mode.

• The /RAWEH option forces all structured exception handling clauses to be dumped in
canonic (label) form at the end of each method scope.

• The /LINENUM option includes the .language and .line directives in the disassembly
text to allow the reassembled code to be bound to the original source files rather than
the ILAsm source file. (The section “Compiling in Debug Mode,” later in this chapter,
discusses the use of these directives in detail.) This option has no effect if the PE file
being disassembled is not accompanied by a PDB file that contains all the debug infor-
mation, including source filenames and sequence points, binding source code lines to
offsets in IL.

• The /NOBAR option suppresses the pop-up window showing the disassembly progress.
This option is useful if the disassembler is invoked from batch files as part of an auto-
matic process running in the background.

• The /METAINFO[=<met_opt>] option dumps the metadata summary. The <met_opt>
suboptions indicate the specifics of this summary:

• HEX: Add hexadecimal representation of the signatures.

• CSV: Provide the sizes of string, blob, and GUID heaps and sizes of the metadata
tables and their record counts.

• MDH: Provide the metadata header details.

• SCH: Provide the metadata header details and schema information.

• RAW: Provide the metadata header details, schema information, and raw contents
of metadata tables.

• HEA: Provide the raw dump of all heaps.

• UNR: Provide a list of unresolved method references and method definitions
without implementation.

• VAL: Run metadata validation.

The metadata suboptions can’t be concatenated using the plus character, unlike the visibility
suboptions. Instead, multiple occurrences of /METAINFO options are permitted in order to set
multiple suboptions, such as ildasm /noil /met=hex /met=mdh MyModule.dll /out:MyModule.txt.

All of these options are recognized by their first three letters (/NOBAR means the same as
/NOB, for instance) and are case-insensitive (/NOB means the same as /nob). The colon char-
acter (:) and the equality character (=) are interchangeable; for example, /vis=pub means the
same as /vis:pub. Finally, the option key may be a slash character (/) or a minus character (–),
so /nob means the same as –nob. (I am a huge fan of the diversity idea, you see.)

CHAPTER 19 ■ MULTILANGUAGE PROJECTS 393

Ch19_6463_CMP3 7/13/06 8:32 PM Page 393

When a PE file is disassembled in full to a file, the managed and unmanaged resources are
automatically saved to the respective files so that they can be picked up by the assembler and
incorporated into a new PE file during the reassembly. “In full” means that neither /NOIL nor
/ITEM nor /VIS options is specified, because these options result in a partial disassembly,
whose text is not suitable for reassembling. The unmanaged resources are saved in a file that
has the same name as the output file (specified in the /OUT option) and has the extension .res.
The managed resources are saved in files named according to the managed resource names
specified in the metadata (or aliases if the resource names are not suitable for filenames; see
Chapter 6 for details). The resource files are not saved when a PE file is disassembled to a con-
sole window using the option /TEXT or /OUT:CON.

Principles of Round-Tripping
The round-tripping of managed PE files includes two steps. The first step is to disassemble the
PE file into an ILAsm source file and the managed and unmanaged resource files:

ildasm MyModule.dll /out:MyModule.il

The second step of round-tripping is to invoke the ILAsm compiler to produce a new PE
file from the results of the disassembler’s activities:

ilasm /dll MyModule.il /out:MyModuleRT.dll /res:MyModule.res

The command-line options of the ILAsm compiler are listed in full in Appendix D. The
most important of these options are the following:

• The /OUT:<file_name> option specifies the name of the resulting PE file. The default
name is the name of the first source file plus the extension .dll or .exe.

• The /DLL option creates a dynamic-link library module. The default is to create an exe-
cutable (EXE) PE file. The file extension of the output file does not matter; if you specify
/OUT:MyModule.dll and neglect to specify /DLL, the result is an executable PE file (EXE)
named MyModule.dll. You can try to sell such a PE file to Barnum, but you won’t be able
to do much more than that.

• The /RES:<unmanaged_resource_file_name> option indicates that the compiler must
incorporate the specified unmanaged resource file into the PE file. The managed
resources are specified in the ILAsm source code and are picked up by the compiler
automatically, whereas an unmanaged resource has no metadata representation and
hence must be explicitly specified in a command-line option.

• The /DEBUG option has two effects: a PDB file is created, and the [mscorlib]System.
Diagnostics.DebuggableAttribute custom attribute is assigned to the Assembly or
Module metadata record. See “Compiling in Debug Mode,” later in this chapter, for
more details.

• The /KEY:<private_key_file_name> or /KEY:@<private_key_source_name> option makes
the IL assembler use the specified private key to strong name sign the output PE file. If
you are round-tripping a strong-name-signed prime module and don’t have the private
key—if, in other words, it’s someone else’s assembly—you can leave the module

CHAPTER 19 ■ MULTILANGUAGE PROJECTS394

Ch19_6463_CMP3 7/13/06 8:32 PM Page 394

unsigned. In this case, you’ll be able to use it as a private assembly only. If you decide
not to sign the module, you must delete or comment out the .publickey directive in the
.assembly scope. Otherwise, you will produce a delayed-signed assembly—that is, an
assembly that must be strong name signed at some moment after the compilation and
before it can be used. (Alternatively, you can sign the prime module with your own pri-
vate key and say that it was your own assembly all along. Do this only if you find true
joy in litigation.)

A few items that might be present in a managed PE file don’t survive round-tripping. For
example, any embedded native code is lost. The exceptions to this rule are the tiny pieces of
native code that are automatically generated during the compilation: the common language
runtime startup stub and the unmanaged export stubs. Strictly speaking, even these tiny
pieces don’t really round-trip: they are generated anew rather than reproduced from the
disassembly.

Another item that does not survive round-tripping is data on data, which is a data con-
stant containing the address of another data constant. Fortunately, this kind of data is rather
rare and not very useful, thanks to the strict limitations the runtime imposes on operations
with unmanaged pointers. Among the compilers producing pure-IL modules, only the ILAsm
compiler is capable of generating such data.

Local variable names survive round-tripping only if the PDB file accompanying the origi-
nal PE file is available. The local variable names are part of the debug information rather than
the metadata.

Creative Round-Tripping
Simple two-step round-tripping, involving only disassembly and reassembly, is not very
interesting, unless you are testing the round-tripping capabilities of the IL assembler and
disassembler. A more creative scheme involves three steps: disassembly, tinkering with the
ILAsm source code, and reassembly.

Generally speaking, you can alter the ILAsm source code during this creative round-
tripping in only three ways:

• You can change the code emitted by a high-level compiler or a tool in a way the com-
piler (the tool) would not allow you to do. From Chapter 18, you might recall mention of
the “manual intervention” necessary to correct the interop assemblies produced by the
Tlbimp.exe tool. Other scenarios can also call for editing original code. For example,
let’s suppose you don’t believe me when I say that the common language runtime does
not permit overriding final virtual methods. You write a test program in Microsoft Visual
Basic .NET only to discover that the compiler will not let you explicitly override a final
method. Without explicit overriding, the compiler automatically sets the newslot flag of
the overriding method, and, alas, there goes your experiment. Then you recall that the
ILAsm compiler doesn’t have such inhibitions. You disassemble your test application,
remove the newslot flag, reassemble the test application, run it, and find out that I was
right. As another example, let’s suppose you have a nice assembly written in C# that can
do a lot of nice things, but your retrograde colleagues insist that in order to be useful
your assembly must expose its functionality to the unmanaged legacy components.
And those components are so far on the legacy side that they don’t even use COM.

CHAPTER 19 ■ MULTILANGUAGE PROJECTS 395

Ch19_6463_CMP3 7/13/06 8:32 PM Page 395

Then you recall that ILAsm allows you to export the managed methods as unmanaged
entry points, and… I don’t think I need to continue.

• You can add the items written in ILAsm to extend your application’s functionality
beyond the capabilities of a high-level compiler. For example, you can add global
fields or methods to applications written in C#.

• Finally, you can disassemble several modules and reassemble them into one module.

Using Class Augmentation
The ILAsm-specific technique of class augmentation can be useful when you want to add new
components written in ILAsm to your application written in a high-level language. If you need
to add new types, an obvious solution is to declare these classes in a separate ILAsm source
file, disassemble your application, and reassemble it with this additional .il file. Class augmen-
tation allows you to apply the same approach if you need to add new members to the types
defined in your application. In other words, you don’t need to edit the disassembly text of your
application, inserting new members in the type definitions, because you can augment the
respective type definitions in a separate source file.

For example, suppose that you would like to have a thread local storage (TLS) mapped
field in class X defined in your module and a vararg method in class Y (also defined in your
module), but the high-level language of your choice does not allow you to specify such items.
You can write the following amendment file, Amend.il:

.class X
{

.field public static int32 tlsField at TLSD001
}
.data tls TLSD001 = int32(1234)
.class Y
{

.method public vararg int64 Sum()
{

...
}

}

Then you can disassemble your original (incomplete) module and reassemble it with an
amendment:

ildasm MyApp.exe /out:MyApp.il
ilasm MyApp Amend

The last line is so laconic because it uses three defaults: the default source file extension
(.il), the default output file type and extension (.exe), and the default output filename (the
same as the name of the first source file).

CHAPTER 19 ■ MULTILANGUAGE PROJECTS396

Ch19_6463_CMP3 7/13/06 8:32 PM Page 396

Module Linking Through Round-Tripping
Now let’s assume that instead of writing the amendment file in ILAsm, you wrote it in another
high-level language, compiled it to a module, and then disassembled it. Can you do that? Yes,
you can, and it means that round-tripping can be used for linking several modules together to
form one. The original language used to write each module does not matter as long as all the
modules are pure IL. The modules must be pure IL simply because any mixed-code module
will fail to round-trip because of an inability of the IL assembler and disassembler to deal with
the embedded native code.

Brad Abrams, a Microsoft colleague I used to work with long ago (I believe in 2001), has
written a small tool called Lame Linker, which performed managed module linking through
round-tripping. You can have a look at this tool at GotDotNet, http://www.gotdotnet.com/
userarea/keywordsrch.aspx?keyword=Lame%20Link. As Brad explained it, he called his linker
“lame” because it didn’t have many of the features of a good linker. Lame or not, this linker
was used rather extensively and has proven to be a useful tool.

Later, I wrote another, less lame module linker called ILLINK and also posted it on
GotDotNet as a sample. You can find the ILLINK source code on Apress Web site.

The basic problem with linking multiple modules through round-tripping is that you
inevitably run into duplicate declarations. When you write amendment files in ILAsm, you
don’t need to make sure these files compile per se; they must compile together with the disas-
sembly of the original module. But each module you link has been compiled per se, and a
significant part of its metadata overlaps with the metadata of other modules being linked.

Let’s review the potential effects of multiple declarations of different metadata items.
Multiple Assembly declarations (.assembly) should be avoided. The IL assembler ignores

repetitive Assembly declarations as long as the assembly name is the same, but if one of any
subsequent declarations specifies a name that differs from that of the first declaration, the
compiler diagnoses an error.

Multiple AssemblyRef declarations (.assembly extern) are harmless. The IL assembler
ignores them. The same is true for Module declarations (.module), ModuleRef declarations
(.module extern), File declarations (.file), and ExportedType declarations (.class extern).

Duplicate ManifestResource declarations (.mresource) should be avoided. The IL assem-
bler will not emit a new ManifestResource record for each declaration encountered, but it will
incorporate a copy of the respective managed resource for each .mresource declaration in the
output PE file. The resulting PE file will perform as expected, but it will be bloated.

Duplicate member declarations (.field, .method, .event, .property) must be avoided
because their presence leads to compilation failure. Duplicate member declarations can hap-
pen in two cases only: if you declare a private type in one module and declare an identically
named private type in another module so the second type declaration is interpreted by the IL
assembler as amendment of the first one and these two types happen to have same-name-
and-type members, or if you declare same-name-and-type global fields or methods. Both
scenarios are very likely indeed: you usually don’t pay much attention to naming private types
or global fields and methods because they are an “internal affair” of the module. But when you
link several modules to form one, all the private types and global fields and methods from
each module wind up together in the resulting module.

Multiple declarations of the module entry point (.entrypoint) must be avoided as well,
because they also cause compilation failure.

If several of your original modules use mapped fields, you should watch for duplicate data
declarations. ILDASM automatically generates the data labels—D_<data_RVA> for regular data

CHAPTER 19 ■ MULTILANGUAGE PROJECTS 397

Ch19_6463_CMP3 7/13/06 8:32 PM Page 397

and T_<data_RVA> for TLS data—when it disassembles each original module, so the data labels
are almost guaranteed to overlap. Duplicate data labels cause compilation failure.

The list of hazards to watch for in the process of linking through round-tripping looks
endless, but in fact all these limitations are reasonable, and their analogs can be found in the
traditional linking of object files. Actually, traditional linking is even less tolerant of duplicate
definitions. And avoiding (or getting rid of) the dangerous duplications is not rocket science.

The Lame Linker I mentioned earlier eliminated multiple Assembly declarations, but
nothing else.

The ILLINK is more sophisticated. It reshuffles the source lines from the disassembled
files into “head” and “tail” temporary files, with the manifest declarations and forward class
declarations (if any) going to the “head” and class member declarations going to “tail,” and in
the process of doing that it eliminates duplicate declarations and cross-references between
the modules being linked, shifts the v-table entry indexes and export ordinals, and modifies
the data labels. You are cordially invited to play with this little tool (524 lines in C including
comments) and maybe extend its functionality.

Module linking is necessary whenever you want to create a single-module assembly from
a multimodule assembly or a set of assemblies. And it does not matter how you came into
possession of the multimodule assembly or a set of assemblies in the first place. Perhaps you
developed different modules using different languages. Or perhaps you split your application
into subsystems to be developed independently. Or perhaps you split your application for
independent development, and the developers of each subsystem chose their own develop-
ment language. But you don’t want to deploy and service your product as a set of assemblies
and modules, which would be a pain, so here you are.

ASMMETA: Resolving Circular Dependencies
What do you do if you need to do a clean rebuild of a multiassembly project (say, assemblies
A, B, and C) in C# or VB .NET (or both), and you have a circular dependency: A references B,
B references C, and C references A? The high-level compilers such as C# and VB .NET require
all referenced assemblies to be present when you compile an assembly. So which assembly are
you going to compile first?

And please don’t tell me that it is better to avoid the circular dependencies. I agree whole-
heartedly. The question is, what do you do if you have one?

Enter the ASMMETA tool. The ASMMETA is based on the IL disassembler and produces
the IL assembly code with some omissions, namely, it does not output the actual IL code of
the methods, and it does not output the private members of classes. The drama unfolds as
follows (see Figure 19-4):

1. Before starting the rebuild, you run ASMMETA on existing assemblies A, B, and C, pro-
ducing the IL assembly code files. Or better yet, you take the IL assembly code files you
stored in some safe place since the last time you generated the assemblies A, B, and C.

2. You run the IL assembler on the IL assembly code files, producing dummy assemblies
A, B, and C. They’re “dummies” because those are incomplete assemblies: they don’t
have the IL code and can’t function. But all the metadata pertinent to the assembly
identity, the class structure, and the members that might be referenced from other
assemblies is present in the dummies. This makes the dummies look, from the point of
view of the high-level compilers, exactly like “real” assemblies. The dummies can be

CHAPTER 19 ■ MULTILANGUAGE PROJECTS398

Ch19_6463_CMP3 7/13/06 8:32 PM Page 398

built only because they are built using the IL assembler, which, unlike the high-level
compilers, does not care whether the referenced assemblies are present at the compi-
lation time. It does not care for one simple reason: all references in ILAsm are
unambiguous and full, so the compiler doesn’t need to open and check the referenced
assembly to resolve an ambiguity or retrieve missing data.

3. Armed with dummies, which on the outside look exactly like real assemblies, you can
rebuild your assemblies A, B, and C in any order. Once you build them, you can run the
ASMMETA tool on new assemblies and store the resulting IL assembly code files some-
where for future use. You can also compare old and new IL assembly code files to spot
any changes in the “external appearance” of your assemblies.

Figure 19-4. Resolving the circular dependencies with the ASMMETA tool

A.DLL C.DLL

B.DLL

Circular dependency – How do we compile?

High-level compilers require
all referenced assemblies to
be present at compile time

A.DLL
ASMMETAA.DLL

A.DLL

A.DLL
A.DLL

A.IL

Step 1: Disassemble existing DLLs

A.DLL
ILAsm

compiler
A.DLL

A’.DLL

A.DLL
A.DLL

A.IL

Step 2: Assemble “dummies”

Step 3: Build new assemblies against “dummies”

A.DLL C.DLL

B’.DLL

B.DLL

C’.DLL A’.DLL

ILAsm compiler does not require
the referenced assemblies to be

present at compile time

CHAPTER 19 ■ MULTILANGUAGE PROJECTS 399

Ch19_6463_CMP3 7/13/06 8:32 PM Page 399

The ASMMETA tool and the whole process described previously are used rather exten-
sively at Microsoft when building such large complex systems as .NET Framework and Visual
Studio.

The ASMMETA is an internal tool and is not distributed with the .NET Framework SDK,
but I am sure you can write a simple tool processing the IL disassembler output that would
throw away the method bodies and private members. You can even use “raw” output of the IL
disassembler, but throwing away the method bodies has one important advantage: it makes
the tool capable of handling the mixed-code assemblies. Another advantage of getting rid of
method bodies and private members is that without them you can easily spot the changes in
the external appearance of your assembly by comparing the IL assembly code files.

One question (of chicken-and-egg nature) remains unanswered: where do the first IL
assembly code files come from? There are two answers: One, as a rule, you don’t have a circu-
lar dependency from the very beginning of your project. Circular dependencies usually come
later (introduced by some enterprising colleague as “great code streamlining”), which means
there is a period when you can successfully build your assemblies. Two, in a pinch, you can
write the IL assembly code by hand. It is tedious, but you don’t need to write the method bod-
ies in ILAsm, so your task is a bit easier.

IL Inlining in High-Level Languages
Mike Stall, my colleague from the common language runtime team, wrote an interesting tool
that allows you to insert ILAsm code into the code written in high-level languages such as C#
or VB .NET. For example:

using System;
class Program
{

static void Main()
{

int x = 3;
int y = 4;
int z = 5;
// Inline IL: "x=x+y+z"

#if IL
ldloc x
ldloc y
add
ldloc z
add
stloc x

#endif
Console.WriteLine(x);

}
}

CHAPTER 19 ■ MULTILANGUAGE PROJECTS400

Ch19_6463_CMP3 7/13/06 8:32 PM Page 400

The tool, called InlineIL, works as follows (see Figure 19-5):

1. The high-level source is compiled using the respective compiler (C#, VB .NET, and
so on) in debug mode (we’ll need the PDB file for step 3!). The ILAsm inserts, placed
under #if–#endif (or equivalent) pairs, are skipped by the compiler. The resulting
module or assembly contains everything except the code defined in the ILAsm inserts.

2. The resulting module or assembly is disassembled, yielding the code in ILAsm.

3. The original source code is analyzed, and the ILAsm inserts are extracted and injected
into the disassembly code. The line number information for the injection comes from
the PDB file produced in step 1.

4. The modified ILAsm code is assembled. The resulting module or assembly contains
everything including the code defined in the ILAsm inserts.

Figure 19-5. Inlining IL in high-level languages with the InlineIL tool

Mike has posted this little elegant tool (about 600 lines in C#, including the comments) on
his blog (http://blogs.msdn.com/jmstall/archive/2005/02/21/377806.aspx) for everyone to
view and play with.

InlineIL is another example of what can be done, and how easily, using the creative
round-tripping.

Sample.cs C# Compiler

ILDASM

ILASM

Sample.il

Sample.dll, .pdb

InlineIL

Sample.dll, .pdb

Step 1: Compile without IL inserts

Step 2: Disassemble

Step 3: Inject the IL inserts
into the disassembly code

Step 4: Reassemble
the combined code

CHAPTER 19 ■ MULTILANGUAGE PROJECTS 401

Ch19_6463_CMP3 7/13/06 8:32 PM Page 401

Compiling in Debug Mode
When a managed compiler compiles source code in debug mode, you can
expect at least two occurrences. First, the resulting module has the custom attribute
[mscorlib]System.Diagnostics.DebuggableAttribute attached to the Module record or,
if it is a prime module, to the Assembly record. Second, the compiler produces a PDB file con-
taining data identifying the source files and the compiler itself, the local variable names, and
the tables that are binding source lines and columns to the code offsets. Of course, the com-
piler can perform other tasks as well in debug mode—for example, emitting different IL code.

I need to say several words about the DebuggableAttribute before we proceed. In versions
1.0 and 1.1 of the common language runtime, the constructor of this attribute had two
Boolean parameters, the first one indicating whether JIT compiler should track the sequence
points defined in the PDB file and the second one indicating whether the JIT compiler opti-
mization is disabled. Tracking the sequence points means keeping track of offsets in generated
native code corresponding to the IL offsets specified in the sequence points. Obviously, a
“false-false” combination was equivalent to not issuing the DebuggableAttribute at all.

Version 2.0 of the CLR offers more sophisticated control over the behavior of the JIT com-
piler with respect to handling the code points. The sequence points to be tracked may be
taken from the PDB file or alternatively may be deduced heuristically “on the fly” by the JIT
compiler. The “synthesized” (implicit) sequence points correspond to states when the evalua-
tion stack is empty and to the occurrences of the nop instruction. These heuristics work well
for the high-level language compilers, because these compilers usually emit the IL code so
that every complete statement in the high-level language begins and ends with the evaluation
stack empty. Using the implicit sequence points reduces the overhead of loading the sequence
points from the PDB and thus improves the JIT compiler performance.

Accordingly, in version 2.0 the DebuggableAttribute was given an additional constructor,
taking as an argument a value of enumeration [mscorlib]System.Diagnostics.
DebuggableAttribute/DebuggingModes (an integer value). This value is an OR combination of
flag 0x100 indicating that JIT optimizations should be disabled, of flag 0x2 indicating that JIT
compiler should ignore the sequence points defined in the PDB and generate the implicit
sequence points instead, and of flag 0x1 indicating that the sequence points (wherever they
come from) should be tracked.

The old-style constructor of the DebuggableAttribute is preserved in version 2.0 for
backward compatibility. Table 19-1 shows correspondence between arguments of the old-
style constructor, the new-style constructor, and the ILAsm compiler command-line option.

Table 19-1. Correspondence of Debuggable Attribute Constructor Arguments and ILAsm Options

Old-Style Constructor New-Style Constructor ILAsm Compiler Option

(true, true) 0x0101 /DEBUG

(true, false) 0x0003 /DEBUG=OPT

(true, true) 0x0103 /DEBUG=IMP

CHAPTER 19 ■ MULTILANGUAGE PROJECTS402

Ch19_6463_CMP3 7/13/06 8:32 PM Page 402

When a module is round-tripped, or when a high-level compiler produces the ILAsm
source code as an intermediate step, it is usually desirable to preserve the debug information
binding the original source code to the final IL code so the original source code could be dis-
played correctly (and stepped through) in a debugger and the error messages would indicate
correct lines in the original source. ILAsm provides two directives facilitating this:

• The .language <Language_GUID>[,<Vendor_GUID>[,<Document_GUID>]] directive defines
the source language and, optionally, the compiler vendor and the source document
type. This information is used by the Visual Studio debugger, which displays source
code of different languages differently.

• The .line <start_line>[,<end_line>][:<start_col> [,<end_col>]] [<file_name>]
directive identifies the line and column in the original source file that are “responsible”
for the IL code that follows the .line directive.

For example, the following C# code

using System;

public class arr
{

private static int[,] MakeArray() {
return (int[,])Array.CreateInstance(typeof(int),

new int[]{2,3}, new int[]{-1, 0});
}

private static void Main() {
int[,] _aTgt = MakeArray();
foreach (int i in _aTgt) {

Console.Write(i + " ");
}

}
}

compiled in debug mode, is disassembled, using the option /LINENUM, into the following
ILAsm code:

...

.class public auto ansi beforefieldinit arr
extends [mscorlib]System.Object

{
.method private hidebysig static int32[0...,0...]

MakeArray() cil managed
{

// Code size 53 (0x35)
.maxstack 5

CHAPTER 19 ■ MULTILANGUAGE PROJECTS 403

Ch19_6463_CMP3 7/13/06 8:32 PM Page 403

.locals init ([0] int32[0...,0...] CS$00000003$00000000,
[1] int32[] CS$00000002$00000001,
[2] int32[] CS$00000002$00000002)

.language '{3F5162F8-07C6-11D3-9053- 00C04FA302A1}',
'{994B45C4-E6E9-11D2-903F- 00C04FA302A1}',
'{5A869D0B-6611-11D3-BD2A- 0000F80849BD}'

.line 6,7:7,44 'C:\\MyDirectory\\arr.cs'
IL_0000: ldtoken [mscorlib]System.Int32
IL_0005: call class [mscorlib]System.Type

[mscorlib]System.Type::GetTypeFromHandle(
valuetype [mscorlib]System.RuntimeType Handle)

IL_000a: ldc.i4.2
IL_000b: newarr [mscorlib]System.Int32
IL_0010: stloc.1
IL_0011: ldloc.1
IL_0012: ldc.i4.0
IL_0013: ldc.i4.2
IL_0014: stelem.i4
IL_0015: ldloc.1
IL_0016: ldc.i4.1
IL_0017: ldc.i4.3
IL_0018: stelem.i4
IL_0019: ldloc.1
IL_001a: ldc.i4.2
IL_001b: newarr [mscorlib]System.Int32
IL_0020: stloc.2
IL_0021: ldloc.2
IL_0022: ldc.i4.0
IL_0023: ldc.i4.m1
IL_0024: stelem.i4
IL_0025: ldloc.2
IL_0026: call class [mscorlib]System.Array

[mscorlib]System.Array::CreateInstance(
class [mscorlib]System.Type,
int32[],
int32[])

IL_002b: castclass int32[0...,0...]
IL_0030: stloc.0
IL_0031: br.s IL_0033

.line 8,8:4,5
IL_0033: ldloc.0
IL_0034: ret

} // End of method arr::MakeArray

.method private hidebysig static void Main() cil managed
{

CHAPTER 19 ■ MULTILANGUAGE PROJECTS404

Ch19_6463_CMP3 7/13/06 8:32 PM Page 404

.entrypoint
// Code size 103 (0x67)
.maxstack 3
.locals init ([0] int32[0...,0...] _aTgt,

[1] int32 i,
[2] int32[0...,0...] CS$00000007$00000000,
[3] int32 CS$00000264$00000001,
[4] int32 CS$00000265$00000002,
[5] int32 CS$00000008$00000003,
[6] int32 CS$00000009$00000004)

.line 11,11:7,34
IL_0000: call int32[0...,0...] arr::MakeArray()
IL_0005: stloc.0
.line 12,12:25,30
IL_0006: ldloc.0
IL_0007: stloc.2
IL_0008: ldloc.2
IL_0009: ldc.i4.0
IL_000a: callvirt instance int32

[mscorlib]System.Array::GetUpperBound(int32)
IL_000f: stloc.3
IL_0010: ldloc.2
IL_0011: ldc.i4.1
IL_0012: callvirt instance int32

[mscorlib]System.Array::GetUpperBound(int32)
IL_0017: stloc.s CS$00000265$00000002
IL_0019: ldloc.2
IL_001a: ldc.i4.0
IL_001b: callvirt instance int32

[mscorlib]System.Array::GetLowerBound(int32)
IL_0020: stloc.s CS$00000008$00000003
IL_0022: br.s IL_0061

IL_0024: ldloc.2
IL_0025: ldc.i4.1
IL_0026: callvirt instance int32

[mscorlib]System.Array::GetLowerBound(int32)
IL_002b: stloc.s CS$00000009$00000004
IL_002d: br.s IL_0055

.line 12,12:16,21
IL_002f: ldloc.2
IL_0030: ldloc.s CS$00000008$00000003
IL_0032: ldloc.s CS$00000009$00000004
IL_0034: call

instance int32 int32[0...,0...]::Get(int32, int32)
IL_0039: stloc.1

CHAPTER 19 ■ MULTILANGUAGE PROJECTS 405

Ch19_6463_CMP3 7/13/06 8:32 PM Page 405

.line 12,12:32,33
IL_003a: ldloc.1
IL_003b: box [mscorlib]System.Int32
IL_0040: ldstr " "
IL_0045: call string

[mscorlib]System.String::Concat(object, object)
IL_004a: call void [mscorlib]System.Console::Write (string)
.line 14,14:7,8
IL_004f: ldloc.s CS$00000009$00000004
IL_0051: ldc.i4.1
IL_0052: add
IL_0053: stloc.s CS$00000009$00000004
.line 12,12:22,24
IL_0055: ldloc.s CS$00000009$00000004
IL_0057: ldloc.s CS$00000265$00000002
IL_0059: ble.s IL_002f

.line 12,12:22,24
IL_005b: ldloc.s CS$00000008$00000003
IL_005d: ldc.i4.1
IL_005e: add
IL_005f: stloc.s CS$00000008$00000003
IL_0061: ldloc.s CS$00000008$00000003
IL_0063: ldloc.3
IL_0064: ble.s IL_0024

.line 15,15:4,5
IL_0066: ret

} // End of method arr::Main

.method public hidebysig specialname rtspecialname
instance void .ctor() cil managed

{
// Code size 7 (0x7)
.maxstack 1
IL_0000: ldarg.0
IL_0001: call

instance void [mscorlib]System.Object::.ctor()
IL_0006: ret

} // End of method arr::.ctor

} // End of class arr

The .language directive sets the GUIDs for all the following code until it is superseded by
another .language directive.

CHAPTER 19 ■ MULTILANGUAGE PROJECTS406

Ch19_6463_CMP3 7/13/06 8:32 PM Page 406

The .line directive has five parameters: starting line, ending line, starting column, ending
column, and file name:

.line <start_line>, <end_line> : <start_col>, <end_col> '<file_name>'

All start/end parameters are 1-based integers. All parameters except the <start_line>
may be omitted; in this case they are replaced with the following default values:

• <end_line> = <start_line>

• <end_col> = <start_col>

• <start_col> = 1

• <file_name> = taken from the previous .line directive

The .line directive had a problem in the first release of the IL assembler and disassem-
bler: the directive specified only the starting line and column of the original source statement
that had been compiled into ILAsm code following the .line directive. This didn’t bode well
for the Microsoft Visual Studio debugger, which wanted to see the line/column interval (start-
ing line and column and ending line and column) for each original source statement. This
problem was corrected in version 2.0.

In short, if you want the resulting code to be bound to the original source code, you need
to do the following:

• If your compiler generates ILAsm source code, it must insert .language and .line
directives at the appropriate points.

• If you are round-tripping a module compiled from a high-level language, use the
disassembler option /LINENUM (or /LIN).

• In any case, don’t forget to use one of the PDB-generating options of the ILAsm com-
piler: /DEB, /DEB=OPT, /DEB=IMP, or /PDB (the last option generates the PDB file but
doesn’t emit the DebuggableAttribute).

In conclusion, let me show you one more trick with round-tripping. It’s not a big secret
that the Visual Studio debugger (and other popular debuggers such as WinDbg) can show
you only two views of your code—the original source code and the JIT-compiled platform
(machine) code. But the managed code has in fact three views—the source code, the IL code,
and the platform code—and sometimes people want to see all three (from sheer curiosity, I
presume). If you are one of those curious individuals, try the following:

1. Compile your application in debug mode so the compiler creates the PDB file.

2. Disassemble your application with option /SOURCE (/SOU); the disassembler will read
your PDB file, identify the source files and lines in them corresponding to the IL code
in your application, and read the source files and insert the original source lines as
comments into the disassembly. The PDB file and the source files, of course, must be
available for option /SOURCE to work; the resulting disassembly text will contain
ILAsm code plus the original source code (as the comments).

CHAPTER 19 ■ MULTILANGUAGE PROJECTS 407

Ch19_6463_CMP3 7/13/06 8:32 PM Page 407

3. Assemble the resulting ILAsm code with option /DEBUG (/DEB); do not use option
/DEB=OPT or /DEB=IMP, because then the sequence points defined in the PDB will be
ignored, or some IL instructions may be optimized out, and as the result the debugger
won’t be able to walk all IL instructions step by step.

4. Run the reassembled application under the debugger; there will still be only two views
(well, we didn’t really do anything about the debugger)—the ILAsm and machine code,
but the ILAsm code will contain your original source code as comments.

Summary
As you can see, the creative round-tripping offers you a world of possibilities. And these possi-
bilities come cheap: your tools work at the text analysis and editing level, without any concern
about emitting correct file headers, metadata structure, and so on.

And if you happen to be a compiler writer implementing a new managed language, ask
yourself what is more important for you—implementing your compiler the easiest way (emitting
the ILAsm source and letting the assembler take care of the rest) and spending your time fine-
tuning it, or showing the world you’re a “real macho” and spending your time fiddling with the
managed file generation. Many respectable (to say the least) compiler writers already decided
they are macho enough and took the first approach, as I mentioned in the introduction.

CHAPTER 19 ■ MULTILANGUAGE PROJECTS408

Ch19_6463_CMP3 7/13/06 8:32 PM Page 408

Appendixes

P A R T 6

■ ■ ■

Ch20_AppA_6463_FINAL 7/27/06 2:52 PM Page 409

Ch20_AppA_6463_FINAL 7/27/06 2:52 PM Page 410

ILAsm Grammar Reference

Lexical Tokens
ID - C style alphanumeric identifier (e.g. Hello_There2)
DOTTEDNAME - Sequence of dot-separated IDs (e.g. System.Object)
QSTRING - C style quoted string (e.g. "hi\n")
SQSTRING – single-quoted string(e.g. 'hi')
INT32 - C style 32 bit integer (e.g. 235, 03423, 0x34FFF)
INT64 - C style 64 bit integer (e.g. -2353453636235234, 0x34FFFFFFFFFF)
FLOAT64 - C style floating point number (e.g. -0.2323, 354.3423, 3435.34E-5)
INSTR_* - IL instructions of a particular class (see opcode.def).
HEXBYTE - 1- or 2-digit hexadecimal number (e.g., A2, F0).
ILAsm keywords are in bold (e.g., .class, valuetype, marshal).
Comments are enclosed in pairs /* */ (e.g., /* This is a comment */).

Auxiliary Lexical Tokens
TYPEDEF_T - Aliased class (TypeDef or TypeRef).
TYPEDEF_M - Aliased method.
TYPEDEF_F - Aliased field.
TYPEDEF_TS - Aliased type specification (TypeSpec).
TYPEDEF_MR - Aliased field/method reference (MemberRef).
TYPEDEF_CA - Aliased Custom Attribute.

Data Type Nonterminals
compQstring ::= QSTRING | compQstring + QSTRING
int32 ::= INT64
int64 ::= INT64
float64 ::= FLOAT64 | float32(int32) | float64(int64)
bytes ::= /* EMPTY */ | hexbytes
hexbytes ::= HEXBYTE | hexbytes HEXBYTE
truefalse ::= true | false
mdtoken ::= mdtoken (int32)

411

A P P E N D I X A

■ ■ ■

Ch20_AppA_6463_FINAL 7/27/06 2:52 PM Page 411

Identifier Nonterminals
id ::= ID | SQSTRING
dottedName ::= id | DOTTEDNAME | dottedName.dottedName
slashedName ::= dottedName | slashedName/dottedName

Class Referencing
className ::= [dottedName] slashedName

| [mdtoken] slashedName
| [*] slashedName
| [.module dottedName] slashedName
| slashedName
| mdtoken
| TYPEDEF_T
| .this
| .base
| .nester

classNameSeq ::= /* EMPTY */ | className classNameSeq

Module-Level Declarations
PROGRAM ::= decls
decls ::= /* EMPTY */ | decls decl

decl ::= moduleParamDecl
| manifestDecl
| classHead { classDecls }
| .namespace dottedName { decls } /* obsolete */
| methodHead methodDecls }
| fieldDecl
| dataDecl
| extSourceSpec
| secDecl
| customAttrDecl
| languageDecl
| typedefDecl
| compControl

APPENDIX A ■ ILASM GRAMMAR REFERENCE412

Ch20_AppA_6463_FINAL 7/27/06 2:52 PM Page 412

Compilation Control Directives
compControl ::= #define dottedName

| #define dottedName QSTRING
| #undef dottedName
| #ifdef dottedName
| #ifndef dottedName
| #else
| #endif
| #include QSTRING
| ;

Module Parameter Declaration
moduleParamDecl ::= .subsystem int32

| .corflags int32
| .file alignment int32
| .imagebase int64
| .stackreserve int64
| .typelist { classNameSeq }
| .mscorlib
| vtableDecl /* deprecated, use .vtfixup instead */
| vtfixupDecl

V-Table Fixup Table Declaration
vtfixupDecl ::= .vtfixup [int32] vtfixupAttr at id

vtfixupAttr ::= /* EMPTY */
| vtfixupAttr int32
| vtfixupAttr int64
| vtfixupAttr fromunmanaged
| vtfixupAttr callmostderived /* unused */
| vtfixupAttr retainappdomain /* unused */

vtableDecl ::= .vtable = (bytes) /* deprecated, use .vtfixup instead */

APPENDIX A ■ ILASM GRAMMAR REFERENCE 413

Ch20_AppA_6463_FINAL 7/27/06 2:52 PM Page 413

Manifest Declarations
manifestDecl ::= .module

| .module dottedName
| .module extern dottedName
| assemblyHead { assemblyDecls }
| assemblyRefHead { assemblyRefDecls }
| fileDecl
| exptypeHead { exptypeDecls }
| manifestResHead { manifestResDecls }
| moduleHead

assemblyHead ::= .assembly asmAttr dottedName

asmAttr ::= /* EMPTY */
| asmAttr retargetable
| asmAttr legacy library /* for backward compatibility only */
| asmAttr cil
| asmAttr x86
| asmAttr ia64
| asmAttr amd64

assemblyDecls ::= /* EMPTY */
| assemblyDecls assemblyDecl

assemblyDecl ::= .hash algorithm int32
| secDecl
| asmOrRefDecl

intOrWildcard ::= int32 | *

asmOrRefDecl ::= .publickey = (bytes)
| .ver intOrWildcard : intOrWildcard : intOrWildcard : intOrWildcard
| .locale compQstring
| .locale = (bytes)
| customAttrDecl
| compControl

assemblyRefHead ::= .assembly extern asmAttr dottedName
| .assembly extern asmAttr dottedName as dottedName

assemblyRefDecls ::= /* EMPTY */
| assemblyRefDecls assemblyRefDecl

assemblyRefDecl ::= .hash = (bytes)
| asmOrRefDecl
| .publickeytoken = (bytes)
| auto

APPENDIX A ■ ILASM GRAMMAR REFERENCE414

Ch20_AppA_6463_FINAL 7/27/06 2:52 PM Page 414

fileDecl ::= .file fileAttr dottedName fileEntry .hash = (bytes) fileEntry
| .file fileAttr dottedName fileEntry

fileAttr ::= /* EMPTY */
| fileAttr nometadata

fileEntry ::= /* EMPTY */
| .entrypoint

exptypeHead ::= .class extern exptAttr dottedName

exptAttr ::= /* EMPTY */
| exptAttr private
| exptAttr public
| exptAttr forwarder
| exptAttr nested public
| exptAttr nested private
| exptAttr nested family
| exptAttr nested assembly
| exptAttr nested famandassem
| exptAttr nested famorassem

exptypeDecls ::= /* EMPTY */
| exptypeDecls exptypeDecl

exptypeDecl ::= .file dottedName
| .class extern slashedName
| .assembly extern dottedName
| mdtoken (int32)
| .class int32
| customAttrDecl
| compControl

manifestResHead ::= .mresource manresAttr dottedName
| .mresource manresAttr dottedName as dottedName

manresAttr ::= /* EMPTY */
| manresAttr public
| manresAttr private

manifestResDecls ::= /* EMPTY */
| manifestResDecls manifestResDecl

manifestResDecl ::= .file dottedName at int32
| .assembly extern dottedName
| customAttrDecl
| compControl

APPENDIX A ■ ILASM GRAMMAR REFERENCE 415

Ch20_AppA_6463_FINAL 7/27/06 2:52 PM Page 415

Managed Types in Signatures
type ::= class className

| value class className
| valuetype className
| type []
| type [bounds]
| type &
| type *
| type pinned
| type modreq (typeSpec)
| type modopt (typeSpec)
| method callConv type * (sigArgs0)
| type < tyArgs >
| ! ! int32
| ! int32
| ! ! dottedName
| ! dottedName
| object
| typedref
| void
| native int
| native unsigned int
| native uint
| native float
| simpleType
| ... type

simpleType ::= char
| string
| bool
| intType
| float32
| float64
| TYPEDEF_TS

intType ::= int8
| int16
| int32
| int64
| unsigned int8
| unsigned int16
| unsigned int32
| unsigned int64
| uint8
| uint16
| uint32
| uint64

APPENDIX A ■ ILASM GRAMMAR REFERENCE416

Ch20_AppA_6463_FINAL 7/27/06 2:52 PM Page 416

bounds ::= bound | bounds , bound

bound ::= /* EMPTY */
| ...
| int32
| int32 ... int32
| int32 ...

typeSpec ::= className
| [dottedName]
| [.module dottedName]
| type

Native Types in Marshaling Signatures
nativeType ::= /* EMPTY */

| custom (compQstring , compQstring , compQstring , compQstring)
| custom (compQstring , compQstring)
| fixed sysstring [int32]
| fixed array [int32] nativeType
| variant
| currency
| syschar
| void
| bool
| intType
| float32
| float64
| error
| nativeType *
| nativeType []
| nativeType [int32]
| nativeType [int32 + int32]
| nativeType [+ int32]
| decimal
| date
| bstr
| lpstr
| lpwstr
| lptstr
| objectref
| iunknown iidParamIndex
| idispatch iidParamIndex
| struct
| interface iidParamIndex
| safearray variantType
| safearray variantType , compQstring

APPENDIX A ■ ILASM GRAMMAR REFERENCE 417

Ch20_AppA_6463_FINAL 7/27/06 2:52 PM Page 417

| int
| unsigned int
| uint
| nested struct
| byvalstr
| ansi bstr
| tbstr
| variant bool
| method
| as any
| lpstruct
| TYPEDEF_TS

iidParamIndex ::= /* EMPTY */ | (iidparam = int32)

variantType ::= /* EMPTY */
| null
| variant
| currency
| void
| bool
| intType
| float32
| float64
| *
| variantType []
| variantType vector
| variantType &
| decimal
| date
| bstr
| lpstr
| lpwstr
| iunknown
| idispatch
| safearray
| int
| unsigned int
| uint
| error
| hresult
| carray
| userdefined
| record
| filetime
| blob
| stream

APPENDIX A ■ ILASM GRAMMAR REFERENCE418

Ch20_AppA_6463_FINAL 7/27/06 2:52 PM Page 418

| storage
| streamed_object
| stored_object
| blob_object
| cf
| clsid

Method and Field Referencing
methodRef ::= callConv type typeSpec :: methodName tyArgs0 (sigArgs0)

| callConv type methodName tyArgs0 (sigArgs0)
| mdtoken
| TYPEDEF_M
| TYPEDEF_MR

genMethodRef ::= method callConv type typeSpec :: methodName genArity (sigArgs0)

callConv ::= instance callConv
| explicit callConv
| callKind
| callconv (int32)

callKind ::= /* EMPTY */
| default
| vararg
| unmanaged cdecl
| unmanaged stdcall
| unmanaged thiscall
| unmanaged fastcall

methodName ::= .ctor
| .cctor
| dottedName

genArity ::= /* EMPTY */
| < [int32] >

tyArgs0 ::= /* EMPTY */ | < tyArgs >

tyArgs ::= /* EMPTY */ | tyArgsNotEmpty

tyArgsNotEmpty := type | tyArgsNotEmpty , type

sigArgs0 ::= /* EMPTY */ | sigArgsNotEmpty

sigArgsNotEmpty ::= sigArg | sigArgsNotEmpty , sigArg

APPENDIX A ■ ILASM GRAMMAR REFERENCE 419

Ch20_AppA_6463_FINAL 7/27/06 2:52 PM Page 419

sigArg ::= ... /* ellipsis */
| paramAttr type marshalClause
| paramAttr type marshalClause id

fieldRef ::= type typeSpec :: dottedName
| type dottedName
| TYPEDEF_F
| TYPEDEF_MR
| mdtoken

memberRef ::= method methodRef
| field fieldRef

Class Declaration
classHead ::= classHeadBegin extendsClause implClause

classHeadBegin ::= .class classAttr dottedName typarsClause

classAttr ::= /* EMPTY */
| classAttr public
| classAttr private
| classAttr value
| classAttr enum
| classAttr interface
| classAttr sealed
| classAttr abstract
| classAttr auto
| classAttr sequential
| classAttr explicit
| classAttr ansi
| classAttr unicode
| classAttr autochar
| classAttr import
| classAttr serializable
| classAttr nested public
| classAttr nested private
| classAttr nested family
| classAttr nested assembly
| classAttr nested famandassem
| classAttr nested famorassem
| classAttr beforefieldinit
| classAttr specialname
| classAttr rtspecialname
| classAttr flags (int32)

APPENDIX A ■ ILASM GRAMMAR REFERENCE420

Ch20_AppA_6463_FINAL 7/27/06 2:52 PM Page 420

extendsClause ::= /* EMPTY */
| extends typeSpec

implClause ::= /* EMPTY */
| implements implList

implList ::= implList , typeSpec
| typeSpec

Generic Type Parameters Declaration

typeList ::= /* EMPTY */
| typeListNotEmpty

typeListNotEmpty ::= typeSpec
| typeListNotEmpty , typeSpec

typarsClause ::= /* EMPTY */
| < typars >

typarAttrib ::= + | - | class | valuetype | .ctor

typarAttribs ::= /* EMPTY */
| typarAttrib typarAttribs

typars ::= typarAttribs tyBound dottedName typarsRest
| typarAttribs dottedName typarsRest

typarsRest ::= /* EMPTY */
| , typars

tyBound ::= (typeList)

Class Body Declarations

classDecls ::= /* EMPTY */
| classDecls classDecl

classDecl ::= methodHead methodDecls }
| classHead { classDecls }
| eventHead { eventDecls }
| propHead { propDecls }
| fieldDecl
| dataDecl

APPENDIX A ■ ILASM GRAMMAR REFERENCE 421

Ch20_AppA_6463_FINAL 7/27/06 2:52 PM Page 421

| secDecl
| extSourceSpec
| customAttrDecl
| .size int32
| .pack int32
| .override typeSpec :: methodName with

callConv type typeSpec :: methodName (sigArgs0)
| .override genMethodRef with genMethodRef
| languageDecl
| compControl
| .param type [int32]
| .param type dottedName

Field Declaration
fieldDecl ::= .field repeatOpt fieldAttr marshalClause type dottedName atOpt initOpt

fieldAttr ::= /* EMPTY */
| fieldAttr static
| fieldAttr public
| fieldAttr private
| fieldAttr family
| fieldAttr assembly
| fieldAttr famandassem
| fieldAttr famorassem
| fieldAttr privatescope
| fieldAttr initonly
| fieldAttr rtspecialname
| fieldAttr specialname
| fieldAttr literal
| fieldAttr notserialized
| fieldAttr flags (int32)

marshalClause ::= /* EMPTY */
| marshal (nativeType)

atOpt ::= /* EMPTY */
| at id

initOpt ::= /* EMPTY */
| = fieldInit

repeatOpt ::= /* EMPTY */
| [int32]

APPENDIX A ■ ILASM GRAMMAR REFERENCE422

Ch20_AppA_6463_FINAL 7/27/06 2:52 PM Page 422

Method Declaration
methodHead ::= .method methAttr callConv paramAttr type marshalClause

methodName typarsClause (sigArgs0) implAttr {

methAttr ::= /* EMPTY */
| methAttr static
| methAttr public
| methAttr private
| methAttr family
| methAttr assembly
| methAttr famandassem
| methAttr famorassem
| methAttr privatescope /* default */
| methAttr final
| methAttr virtual
| methAttr strict
| methAttr abstract
| methAttr hidebysig
| methAttr newslot
| methAttr specialname
| methAttr rtspecialname
| methAttr unmanagedexp /* unused */
| methAttr reqsecobj
| methAttr flags (int32)
| methAttr pinvokeimpl (compQstring as compQstring pinvAttr)
| methAttr pinvokeimpl (compQstring pinvAttr)
| methAttr pinvokeimpl (pinvAttr)

pinvAttr ::= /* EMPTY */
| pinvAttr nomangle
| pinvAttr ansi
| pinvAttr unicode
| pinvAttr autochar
| pinvAttr lasterr
| pinvAttr winapi
| pinvAttr cdecl
| pinvAttr stdcall
| pinvAttr thiscall
| pinvAttr fastcall
| pinvAttr bestfit : on
| pinvAttr bestfit : off
| pinvAttr charmaperror : on
| pinvAttr charmaperror : off
| pinvAttr flags (int32)

APPENDIX A ■ ILASM GRAMMAR REFERENCE 423

Ch20_AppA_6463_FINAL 7/27/06 2:52 PM Page 423

paramAttr ::= /* EMPTY */
| paramAttr [in]
| paramAttr [out]
| paramAttr [opt]
| paramAttr [int32]

implAttr ::= /* EMPTY */
| implAttr native
| implAttr cil /* default */
| implAttr optil /* unused */
| implAttr managed /* default */
| implAttr unmanaged
| implAttr forwardref
| implAttr preservesig
| implAttr runtime
| implAttr internalcall
| implAttr synchronized
| implAttr noinlining
| implAttr flags (int32)

Method Body Declarations
methodDecls ::= /* EMPTY */

| methodDecls methodDecl

methodDecl ::= .emitbyte int32
| mehBlock
| .maxstack int32
| .locals (sigArgs0)
| .locals init (sigArgs0)
| .entrypoint
| .zeroinit /* deprecated, use .locals init */
| dataDecl
| instr
| id : /* label */
| secDecl
| extSourceSpec
| languageDecl
| customAttrDecl
| compControl
| .export [int32]
| .export [int32] as id
| .vtentry int32 : int32
| .override typeSpec :: methodName
| .override genMethodRef
| scopeBlock
| .param type [int32]

APPENDIX A ■ ILASM GRAMMAR REFERENCE424

Ch20_AppA_6463_FINAL 7/27/06 2:52 PM Page 424

| .param type dottedName
| .param [int32] initOpt

scopeBlock ::= { methodDecls }

External Source Directives
languageDecl ::= .language SQSTRING

| .language SQSTRING , SQSTRING
| .language SQSTRING , SQSTRING , SQSTRING

extSourceSpec ::= esHead int32 SQSTRING
| esHead int32
| esHead int32 : int32 SQSTRING
| esHead int32 : int32
| esHead int32 : int32 , int32 SQSTRING
| esHead int32 : int32 , int32
| esHead int32 , int32 : int32 SQSTRING
| esHead int32 , int32 : int32
| esHead int32 , int32 : int32 , int32 SQSTRING
| esHead int32 , int32 : int32 , int32
| esHead int32 QSTRING

esHead ::= .line | #line

Managed Exception Handling Directives
mehBlock ::= tryBlock mehClauses

mehClauses ::= mehClause mehClauses
| mehClause

tryBlock ::= .try scopeBlock
| .try id to id
| .try int32 to int32

mehClause ::= catch typeSpec handlerBlock
| filterClause handlerBlock
| finally handlerBlock
| fault handlerBlock

filterClause ::= filter scopeBlock
| filter id
| filter int32

handlerBlock ::= scopeBlock
| handler id to id
| handler int32 to int32

APPENDIX A ■ ILASM GRAMMAR REFERENCE 425

Ch20_AppA_6463_FINAL 7/27/06 2:52 PM Page 425

IL Instructions
instr ::= INSTR_NONE /* nop, add, ldc.i4.1, ldnull, ldarg.0, and so on */

| INSTR_VAR int32 /* ldarg, ldarga, starg, ldloc, ldloca, stloc */
| INSTR_VAR id
| INSTR_I int32 /* ldc.i4 */
| INSTR_I8 int64 /* ldc.i8 */
| INSTR_R float64 /* ldc.r4, ldc.r8 */
| INSTR_R int64
| INSTR_R (bytes)
| INSTR_BRTARGET int32 /* br, beq, ble, brtrue, etc. */
| INSTR_BRTARGET id
| INSTR_METHOD methodRef /* call, callvirt, jmp, ldftn, ldvirtftn, newobj */
| INSTR_FIELD fieldRef /* ldfld, stfld, ldflda, ldsflda, stfld, stsfld */
| INSTR_TYPE typeSpec /* ldobj, stobj, box, unbox, newarr, etc. */
| INSTR_STRING compQstring /* ldstr */
| INSTR_STRING ansi (compQstring)
| INSTR_STRING bytearray = (bytes)
| INSTR_SIG callConv type (sigArgs0) /* calli */
| INSTR_TOK ownerType /* ldtoken; ownerType ::= memberRef | typeSpec */
| INSTR_SWITCH (labels)

labels ::= /* EMPTY */
| id , labels
| int32 , labels
| id
| int32

Event Declaration
eventHead ::= .event eventAttr typeSpec dottedName

| .event eventAttr dottedName

eventAttr ::= /* EMPTY */
| eventAttr rtspecialname
| eventAttr specialname

eventDecls ::= /* EMPTY */
| eventDecls eventDecl

eventDecl ::= .addon methodRef
| .removeon methodRef
| .fire methodRef
| .other methodRef
| extSourceSpec
| customAttrDecl
| languageDecl
| compControl

APPENDIX A ■ ILASM GRAMMAR REFERENCE426

Ch20_AppA_6463_FINAL 7/27/06 2:52 PM Page 426

Property Declaration
propHead ::= .property propAttr callConv type dottedName (sigArgs0) initOpt

propAttr ::= /* EMPTY */
| propAttr rtspecialname
| propAttr specialname

propDecls ::= /* EMPTY */
| propDecls propDecl

propDecl ::= .set methodRef
| .get methodRef
| .other methodRef
| extSourceSpec
| customAttrDecl
| languageDecl
| compControl

Constant Declarations
/* Default values declaration for fields, properties, parameters

and verbal form of Custom Attribute blob description */

/* Field/property/parameter initialization */
fieldInit ::= fieldSerInit

| compQstring
| nullref

fieldSerInit ::= float32 (float64)
| float64 (float64)
| float32 (int32)
| float64 (int64)
| int64 (int64)
| int32 (int32)
| int16 (int32)
| int8 (int32)
| unsigned int64 (int64)
| unsigned int32 (int32)
| unsigned int16 (int32)
| unsigned int8 (int32)
| uint64 (int64)
| uint32 (int32)
| uint16 (int32)
| uint8 (int32)
| char (int32)
| bool (truefalse)
| bytearray (bytes)

APPENDIX A ■ ILASM GRAMMAR REFERENCE 427

Ch20_AppA_6463_FINAL 7/27/06 2:52 PM Page 427

/* Values for verbal form of CA blob description */
serInit ::= fieldSerInit

| string (nullref)
| string (SQSTRING)
| type (class SQSTRING) /* class name specified in Reflection notation */
| type (className) /* class name specified in ILAsm notation */
| type (nullref)
| object (serInit)
| float32 [int32] (f32seq)
| float64 [int32] (f64seq)
| int64 [int32] (i64seq)
| int32 [int32] (i32seq)
| int16 [int32] (i16seq)
| int8 [int32] (i8seq)
| uint64 [int32] (i64seq)
| uint32 [int32] (i32seq)
| uint16 [int32] (i16seq)
| uint8 [int32] (i8seq)
| unsigned int64 [int32] (i64seq)
| unsigned int32 [int32] (i32seq)
| unsigned int16 [int32] (i16seq)
| unsigned int8 [int32] (i8seq)
| char [int32] (i16seq)
| bool [int32] (boolSeq)
| string [int32] (sqstringSeq)
| type [int32] (classSeq)
| object [int32] (objSeq)

f32seq ::= /* EMPTY */
| f32seq float64
| f32seq int32

f64seq ::= /* EMPTY */
| f64seq float64
| f64seq int64

i64seq ::= /* EMPTY */ | i64seq int64

i32seq ::= /* EMPTY */ | i32seq int32

i16seq ::= /* EMPTY */ | i16seq int32

i8seq ::= /* EMPTY */ | i8seq int32

boolSeq ::= /* EMPTY */ | boolSeq truefalse

sqstringSeq ::= /* EMPTY */
| sqstringSeq nullref
| sqstringSeq SQSTRING

APPENDIX A ■ ILASM GRAMMAR REFERENCE428

Ch20_AppA_6463_FINAL 7/27/06 2:52 PM Page 428

classSeq ::= /* EMPTY */
| classSeq nullref
| classSeq class SQSTRING /* class name specified in Reflection notation */
| classSeq className /* class name specified in ILAsm notation */

objSeq ::= /* EMPTY */ | objSeq serInit

Custom Attribute Declarations
customAttrDecl ::= customDescr

| customDescrWithOwner
| TYPEDEF_CA

customDescr ::= .custom customType
| .custom customType = compQstring
| .custom customType = { customBlobDescr }
| .custom customType = (bytes)

customDescrWithOwner ::= .custom (ownerType) customType
| .custom (ownerType) customType = compQstring
| .custom (ownerType) customType = { customBlobDescr }
| .custom (ownerType) customType = (bytes)

customType ::= methodRef /* method must be .ctor */

ownerType ::= typeSpec | memberRef

Verbal Description of Custom Attribute Initialization Blob
customBlobDescr ::= customBlobArgs customBlobNVPairs

customBlobArgs ::= /* EMPTY */
| customBlobArgs serInit
| customBlobArgs compControl

customBlobNVPairs ::= /* EMPTY */
| customBlobNVPairs fieldOrProp serializType dottedName = serInit
| customBlobNVPairs compControl

fieldOrProp ::= field | property

serializType ::= simpleType
| type
| object
| enum class SQSTRING /* class specified in Reflection notation */
| enum className /* class name specified in ILAsm notation */
| serializType []

APPENDIX A ■ ILASM GRAMMAR REFERENCE 429

Ch20_AppA_6463_FINAL 7/27/06 2:52 PM Page 429

Security Declarations
secDecl ::= .permission secAction typeSpec (nameValPairs)

| .permission secAction typeSpec = { customBlobDescr }
| .permission secAction typeSpec
| .permissionset secAction = (bytes)
| .permissionset secAction bytearray (bytes)
| .permissionset secAction compQstring
| .permissionset secAction = { secAttrSetBlob }

secAttrSetBlob ::= /* EMPTY */
| secAttrBlob
| secAttrBlob , secAttrSetBlob

secAttrBlob ::= typeSpec = { customBlobNVPairs }
| class SQSTRING = { customBlobNVPairs }

nameValPairs ::= nameValPair
| nameValPair , nameValPairs

nameValPair ::= compQstring = caValue

caValue ::= truefalse
| int32
| int32 (int32)
| compQstring
| className (int8 : int32)
| className (int16 : int32)
| className (int32 : int32)
| className (int32)

secAction ::= request
| demand
| assert
| deny
| permitonly
| linkcheck
| inheritcheck
| reqmin
| reqopt
| reqrefuse
| prejitgrant
| prejitdeny
| noncasdemand
| noncaslinkdemand
| noncasinheritance

APPENDIX A ■ ILASM GRAMMAR REFERENCE430

Ch20_AppA_6463_FINAL 7/27/06 2:52 PM Page 430

Aliasing of Types, Methods, Fields,
and Custom Attributes
typedefDecl ::= .typedef type as dottedName /* TYPEDEF_TS */

| .typedef className as dottedName /* TYPEDEF_T */
| .typedef memberRef as dottedName /* TYPEDEF_M, _F, _MR */
| .typedef customDescr as dottedName /* TYPEDEF_CA */
| .typedef customDescrWithOwner as dottedName /* TYPEDEF_CA */

Data Declaration
dataDecl ::= ddHead ddBody

ddHead ::= .data section id =
| .data section

section ::= /* EMPTY */ /* defaults to .sdata section */
| tls /* .tls section */
| cil /* .text section */

ddBody ::= { ddItemList }
| ddItem

ddItemList ::= ddItem , ddItemList
| ddItem

ddItemCount ::= /* EMPTY */ /* defaults to 1 */
| [int32]

ddItem ::= char * (compQstring)
| & (id) /* data is pointer to another data */
| bytearray (bytes)
| float32 (float64) ddItemCount
| float64 (float64) ddItemCount
| int64 (int64) ddItemCount
| int32 (int32) ddItemCount
| int16 (int32) ddItemCount
| int8 (int32) ddItemCount
| float32 ddItemCount
| float64 ddItemCount
| int64 ddItemCount
| int32 ddItemCount
| int16 ddItemCount
| int8 ddItemCount

APPENDIX A ■ ILASM GRAMMAR REFERENCE 431

Ch20_AppA_6463_FINAL 7/27/06 2:52 PM Page 431

Ch20_AppA_6463_FINAL 7/27/06 2:52 PM Page 432

Metadata Tables Reference

Table Entry Types

Type Description

BYTE Unsigned 1-byte integer

SHORT Signed 2-byte integer

USHORT Unsigned 2-byte integer

ULONG Unsigned 4-byte integer

RID: <table> Record index to <table>

STRING Offset in the #Strings stream

GUID Offset in the #GUID stream

BLOB Offset in the #Blob stream

<coded_token_type> Coded token (see the “Coded Token Types” table at the end of the appendix)

Module; RID Type: 00; Token Type: 0x00000000; Metadata (MD) Streams: #~, #-

Entry Name Entry Type Comments

Generation USHORT For edit-and-continue

Name STRING No longer than 512 bytes

Mvid GUID Generated automatically

EncId GUID For edit-and-continue

EncBaseId GUID For edit-and-continue

TypeRef; RID Type: 01; Token Type: 0x01000000; MD Streams: #~, #-

Entry Name Entry Type Comments

ResolutionScope ResolutionScope

Name STRING

Namespace STRING

433

A P P E N D I X B

■ ■ ■

Ch21_AppB_6463_FINAL 7/23/06 1:05 PM Page 433

TypeDef; RID Type: 02; Token Type: 0x02000000; MD Streams: #~, #-

Entry Name Entry Type Comments

Flags ULONG Validity mask: 0x001173DBF

Name STRING

Namespace STRING

Extends TypeDefOrRef Base type

FieldList RID: Field

MethodList RID: Method

FieldPtr; RID Type: 03; Token Type: None; MD Stream: #-

Entry Name Entry Type Comments

Field RID: Field

Field; RID Type: 04; Token Type: 0x04000000; MD Streams: #~, #-

Entry Name Entry Type Comments

Flags USHORT Validity mask: 0xB7F7

Name STRING No longer than 1023 bytes

Signature BLOB Cannot be 0

MethodPtr; RID Type: 05; Token Type: None; MD Stream: #-

Entry Name Entry Type Comments

Method RID: Method

Method; RID Type: 06; Token Type: 0x06000000; MD Streams: #~, #-

Entry Name Entry Type Comments

RVA ULONG Must be 0 or point at read-only section

ImplFlags USHORT Validity mask: 0x10BF

Flags USHORT Validity mask: 0xFDF7

Name STRING No longer than 1,023 bytes

Signature BLOB Cannot be 0

ParamList RID: Param

APPENDIX B ■ METADATA TABLES REFERENCE434

Ch21_AppB_6463_FINAL 7/23/06 1:05 PM Page 434

ParamPtr; RID Type: 07; Token Type: None; MD Stream: #-

Entry Name Entry Type Comments

Param RID: Param

Param; RID Type: 08; Token Type: 0x08000000; MD Streams: #~, #-

Entry Name Entry Type Comments

Flags USHORT Validity mask: 0x3013

Sequence USHORT 0 means return value

Name STRING

InterfaceImpl; RID Type: 09; Token Type: 0x09000000; MD Streams: #~, #-

Entry Name Entry Type Comments

Class RID: TypeDef Class implementing the interface

Interface TypeDefOrRef Implemented interface

MemberRef; RID Type: 10; Token Type: 0x0A000000; MD Streams: #~, #-

Entry Name Entry Type Comments

Class MemberRefParent Cannot be TypeDef

Name STRING No longer than 1,023 bytes

Signature BLOB Cannot be 0

Constant; RID Type: 11; Token Type: None; MD Streams: #~, #-

Entry Name Entry Type Comments

Type BYTE

Parent HasConstant

Value BLOB

CustomAttribute; RID Type: 12; Token Type: 0x0C000000; MD Streams: #~, #-

Entry Name Entry Type Comments

Parent HasCustomAttribute

Type CustomAttributeType

Value BLOB Can be 0

APPENDIX B ■ METADATA TABLES REFERENCE 435

Ch21_AppB_6463_FINAL 7/23/06 1:05 PM Page 435

FieldMarshal; RID Type: 13; Token Type: None; MD Streams: #~, #-

Entry Name Entry Type Comments

Parent FieldMarshal

NativeType BLOB Cannot be 0

DeclSecurity; RID Type: 14; Token Type: 0x0E000000; MD Streams: #~, #-

Entry Name Entry Type Comments

Action SHORT

Parent HasDeclSecurity

PermissionSet BLOB Cannot be 0

ClassLayout; RID Type: 15; Token Type: None; MD Streams: #~, #-

Entry Name Entry Type Comments

PackingSize USHORT Power of 2, from 1 through 128

ClassSize ULONG

Parent RID: TypeDef

FieldLayout; RID Type: 16; Token Type: None; MD Streams: #~, #-

Entry Name Entry Type Comments

OffSet ULONG Offset in bytes or ordinal

Field RID: Field

StandAloneSig; RID Type: 17; Token Type: 0x11000000; MD Streams: #~, #-

Entry Name Entry Type Comments

Signature BLOB Cannot be 0

EventMap; RID Type: 18; Token Type: None; MD Streams: #~, #-

Entry Name Entry Type Comments

Parent RID: TypeDef

EventList RID: Event

EventPtr; RID Type: 19; Token Type: None; MD Stream: #-

Entry Name Entry Type Comments

Event RID: Event

APPENDIX B ■ METADATA TABLES REFERENCE436

Ch21_AppB_6463_FINAL 7/23/06 1:05 PM Page 436

Event; RID Type: 20; Token Type: 0x14000000; MD Streams: #~, #-

Entry Name Entry Type Comments

EventFlags USHORT 0x0000, 0x0200 or 0x0600

Name STRING

EventType TypeDefOrRef

PropertyMap; RID Type: 21; Token Type: None; MD Streams: #~, #-

Entry Name Entry Type Comments

Parent RID: TypeDef

PropertyList RID: Property

PropertyPtr; RID Type: 22; Token Type: None; MD Stream: #-

Entry Name Entry Type Comments

Property RID: Property

Property; RID Type: 23; Token Type: 0x17000000; MD Streams: #~, #-

Entry Name Entry Type Comments

PropFlags USHORT Validity mask: 0x1600

Name STRING

Type BLOB Property signature

MethodSemantics; RID Type: 24; Token Type: None; MD Streams: #~, #-

Entry Name Entry Type Comments

Semantic USHORT

Method RID: Method

Association HasSemantic

MethodImpl; RID Type: 25; Token Type: None; MD Streams: #~, #-

Entry Name Entry Type Comments

Class RID: TypeDef

MethodBody MethodDefOrRef Overriding method

MethodDeclaration MethodDefOrRef Overridden method

APPENDIX B ■ METADATA TABLES REFERENCE 437

Ch21_AppB_6463_FINAL 7/23/06 1:05 PM Page 437

ModuleRef; RID Type: 26; Token Type: 0x1A000000; MD Streams: #~, #-

Entry Name Entry Type Comments

Name STRING No longer than 512 bytes

TypeSpec; RID Type: 27; Token Type: 0x1B000000; MD Streams: #~, #-

Entry Name Entry Type Comments

Signature BLOB Cannot be 0

ENCLog; RID Type: 28; Token Type: None; MD Stream: #-

Entry Name Entry Type Comments

Token ULONG

FuncCode ULONG

ImplMap; RID Type: 29; Token Type: None; MD Streams: #~, #-

Entry Name Entry Type Comments

MappingFlags USHORT Validity mask: 0x0747

MemberForwarded MemberForwarded Method only

ImportName STRING Entry point name

ImportScope RID: ModuleRef ModuleRef to unmanaged DLL

ENCMap; RID Type: 30; Token Type: None; MD Stream: #-

Entry Name Entry Type Comments

Token ULONG

FieldRVA; RID Type: 31; Token Type: None; MD Streams: #~, #-

Entry Name Entry Type Comments

RVA ULONG

Field RID: Field

APPENDIX B ■ METADATA TABLES REFERENCE438

Ch21_AppB_6463_FINAL 7/23/06 1:05 PM Page 438

Assembly; RID Type: 32; Token Type: 0x20000000; MD Streams: #~, #-

Entry Name Entry Type Comments

HashAlgId ULONG

MajorVersion USHORT

MinorVersion USHORT

BuildNumber USHORT

RevisionNumber USHORT

Flags ULONG Validity mask: 0x0000C031

PublicKey BLOB

Name STRING No path, no extension

Locale STRING

AssemblyProcessor; RID Type: 33; Token Type: None; Unused

Entry Name Entry Type Comments

Processor ULONG

AssemblyOS; RID Type: 34; Token Type: None; Unused

Entry Name Entry Type Comments

OSPlatformID ULONG

OSMajorVersion ULONG

OSMinorVersion ULONG

AssemblyRef; RID Type: 35; Token Type: 0x23000000; MD Streams: #~, #-

Entry Name Entry Type Comments

MajorVersion USHORT

MinorVersion USHORT

BuildNumber USHORT

RevisionNumber USHORT

Flags ULONG 0x00000000 or 0x00000001

PublicKeyOrToken BLOB

Name STRING No path, no extension

Locale STRING

HashValue BLOB

APPENDIX B ■ METADATA TABLES REFERENCE 439

Ch21_AppB_6463_FINAL 7/23/06 1:05 PM Page 439

AssemblyRefProcessor; RID Type: 36; Token Type: None; Unused

Entry Name Entry Type Comments

Processor ULONG

AssemblyRef RID: AssemblyRef

AssemblyRefOS; RID Type: 37; Token Type: None; Unused

Entry Name Entry Type Comments

OSPlatformId ULONG

OSMajorVersion ULONG

OSMinorVersion ULONG

AssemblyRef RID: AssemblyRef

File; RID Type: 38; Token Type: 0x26000000; MD Streams: #~, #-

Entry Name Entry Type Comments

Flags ULONG 0x00000000 or 0x00000001

Name STRING No path; only filename

HashValue BLOB

ExportedType; RID Type: 39; Token Type: 0x27000000; MD Streams: #~, #-

Entry Name Entry Type Comments

Flags ULONG Validity mask: 0x00200007

TypeDefId ULONG TypeDef token in another module

TypeName STRING

TypeNamespace STRING

Implementation Implementation File, ExportedType, AssemblyRef

ManifestResource; RID Type: 40; Token Type: 0x28000000; MD Streams: #~, #-

Entry Name Entry Type Comments

Offset ULONG

Flags ULONG 0x000001 or 0x000002

Name STRING

Implementation Implementation 0, File, AssemblyRef

APPENDIX B ■ METADATA TABLES REFERENCE440

Ch21_AppB_6463_FINAL 7/23/06 1:05 PM Page 440

NestedClass; RID Type: 41; Token Type: None; MD Streams: #~, #-

Entry Name Entry Type Comments

NestedClass RID: TypeDef

EnclosingClass RID: TypeDef

GenericParam; RID Type: 42; Token Type: 0x2A000000; MD Streams: #~, #-

Entry Name Entry Type Comments

Number USHORT Ordinal

Flags USHORT Constraint flags

Owner TypeOrMethodDef Generic type or method

Name STRING Can be 0

MethodSpec; RID Type: 43; Token Type: 0x2B000000; MD Streams: #~, #-

Entry Name Entry Type Comments

Method MethodDefOrRef Instantiated method

Instantiation BLOB Instantiation signature

GenericParamConstraint; RID Type: 44; Token Type: 0x2C000000; MD Streams: #~, #-

Entry Name Entry Type Comments

Owner RID: GenericParam Constrained parameter

Constraint TypeDefOrRef Type the parameter must extend or implement

Coded Token Types

Type Tag

TypeDefOrRef (64): 3 referenced tables, tag size 2

TypeDef 0

TypeRef 1

TypeSpec 2

HasConstant (65): 3 referenced tables, tag size 2

Field 0

Param 1

Property 2
(continued)

APPENDIX B ■ METADATA TABLES REFERENCE 441

Ch21_AppB_6463_FINAL 7/23/06 1:05 PM Page 441

Coded Token Types (continued)

Type Tag

HasCustomAttribute (66): 22 referenced tables, tag size 5

Method 0

Field 1

TypeRef 2

TypeDef 3

Param 4

InterfaceImpl 5

MemberRef 6

Module 7

Permission 8

Property 9

Event 10

Signature 11

ModuleRef 12

TypeSpec 13

Assembly 14

AssemblyRef 15

File 16

ExportedType 17

ManifestResource 18

GenericParam 19

GenericParamConstraint 20

MethodSpec 21

HasFieldMarshal (67): 2 referenced tables, tag size 1

Field 0

Param 1

HasDeclSecurity (68): 3 referenced tables, tag size 2

TypeDef 0

Method 1

Assembly 2

MemberRefParent (69): 5 referenced tables, tag size 3

TypeDef 0

TypeRef 1

ModuleRef 2

Method 3

TypeSpec 4

APPENDIX B ■ METADATA TABLES REFERENCE442

Ch21_AppB_6463_FINAL 7/23/06 1:05 PM Page 442

Type Tag

HasSemantics (70): 2 referenced tables, tag size 1

Event 0

Property 1

MethodDefOrRef (71): 2 referenced tables, tag size 1

Method 0

MemberRef 1

MemberForwarded (72): 2 referenced tables, tag size 1

Field 0

Method 1

Implementation (73): 3 referenced tables, tag size 2

File 0

AssemblyRef 1

ExportedType 2

CustomAttributeType (74): 2 referenced tables, tag size 3

none 0

none 1

Method 2

MemberRef 3

none 4

ResolutionScope (75): 4 referenced tables, tag size 2

Module 0

ModuleRef 1

AssemblyRef 2

TypeRef 3

TypeOrMethodDef (76): 2 referenced tables, tag size 1

TypeDef 0

Method 1

APPENDIX B ■ METADATA TABLES REFERENCE 443

Ch21_AppB_6463_FINAL 7/23/06 1:05 PM Page 443

Ch21_AppB_6463_FINAL 7/23/06 1:05 PM Page 444

IL Instruction Set Reference

Instruction Parameter Types

Type Description

int8 Signed 1-byte integer

uint8 Unsigned 1-byte integer

int32 Signed 4-byte integer

uint32 Unsigned 4-byte integer

int64 Signed 8-byte integer

float32 4-byte floating-point number (IEEE-754)

float64 8-byte floating-point number (IEEE-754)

<Method> MethodDef or MemberRef token

<Field> FieldDef or MemberRef token

<Type> TypeDef, TypeRef, or TypeSpec token

<Signature> StandAloneSig token

<String> User-defined string token

Evaluation Stack Types

Type Description

int32 Signed 4-byte integer

int64 Signed 8-byte integer

Float 80-bit floating-point number

& Managed or unmanaged pointer

o Object reference

* Unspecified type

445

A P P E N D I X C

■ ■ ■

Ch22_AppC_6463_CMP2 7/23/06 1:04 PM Page 445

IL Instructions, Their Parameters, and Stack Operations

Opcode Name Parameter(s) Pop Push

00 nop

01 break

02 ldarg.0 *

03 ldarg.1 *

04 ldarg.2 *

05 ldarg.3 *

06 ldloc.0 *

07 ldloc.1 *

08 ldloc.2 *

09 ldloc.3 *

0A stloc.0 *

0B stloc.1 *

0C stloc.2 *

0D stloc.3 *

0E ldarg.s uint8 *

0F ldarga.s uint8 &

10 starg.s uint8 *

11 ldloc.s uint8 *

12 ldloca.s uint8 &

13 stloc.s uint8 *

14 ldnull &=0

15 ldc.i4.m1, ldc.i4.M1 int32=–1

16 ldc.i4.0 int32=0

17 ldc.i4.1 int32=1

18 ldc.i4.2 int32=2

19 ldc.i4.3 int32=3

1A ldc.i4.4 int32=4

1B ldc.i4.5 int32=5

1C ldc.i4.6 int32=6

1D ldc.i4.7 int32=7

1E ldc.i4.8 int32=8

1F ldc.i4.s int8 int32

20 ldc.i4 int32 int32

21 ldc.i8 int64 int64

22 ldc.r4 float32 Float

23 ldc.r8 float64 Float

25 dup * *,*

APPENDIX C ■ IL INSTRUCTION SET REFERENCE446

Ch22_AppC_6463_CMP2 7/23/06 1:04 PM Page 446

Opcode Name Parameter(s) Pop Push

26 pop *

27 jmp <Method>

28 call <Method> N arguments Ret.value

29 calli <Signature> N arguments Ret.value

2A ret *

2B br.s int8

2C brfalse.s, brnull.s, brzero.s int8 int32

2D brtrue.s, brinst.s int8 int32

2E beq.s int8 *,*

2F bge.s int8 *,*

30 bgt.s int8 *,*

31 ble.s int8 *,*

32 blt.s int8 *,*

33 bne.un.s int8 *,*

34 bge.un.s int8 *,*

35 bgt.un.s int8 *,*

36 ble.un.s int8 *,*

37 blt.un.s int8 *,*

38 br int32

39 brfalse, brnull, brzero int32 int32

3A brtrue, brinst int32 int32

3B beq int32 *,*

3C bge int32 *,*

3D bgt int32 *,*

3E ble int32 *,*

3F blt int32 *,*

40 bne.un int32 *,*

41 bge.un int32 *,*

42 bgt.un int32 *,*

43 ble.un int32 *,*

44 blt.un int32 *,*

45 switch (uint32=N) + N(int32) int32

46 ldind.i1 & int32

47 ldind.u1 & int32

48 ldind.i2 & int32

49 ldind.u2 & int32

4A ldind.i4 & int32

Continued

APPENDIX C ■ IL INSTRUCTION SET REFERENCE 447

Ch22_AppC_6463_CMP2 7/23/06 1:04 PM Page 447

IL Instructions, Their Parameters, and Stack Operations (Continued)

Opcode Name Parameter(s) Pop Push

4B ldind.u4 & int32

4C ldind.i8, ldind.u8 & int64

4D ldind.i & int32

4E ldind.r4 & Float

4F ldind.r8 & Float

50 ldind.ref & &

51 stind.ref &,&

52 stind.i1 int32,&

53 stind.i2 int32,&

54 stind.i4 int32,&

55 stind.i8 int32,&

56 stind.r4 Float,&

57 stind.r8 Float,&

58 add *,* *

59 sub *,* *

5A mul *,* *

5B div *,* *

5C div.un *,* *

5D rem *,* *

5E rem.un *,* *

5F and *,* *

60 or *,* *

61 xor *,* *

62 shl *,* *

63 shr *,* *

64 shr.un *,* *

65 neg * *

66 not * *

67 conv.i1 * int32

68 conv.i2 * int32

69 conv.i4 * int32

6A conv.i8 * int64

6B conv.r4 * Float

6C conv.r8 * Float

6D conv.u4 * int32

6E conv.u8 * int64

6F callvirt <Method> N arguments Ret.value

APPENDIX C ■ IL INSTRUCTION SET REFERENCE448

Ch22_AppC_6463_CMP2 7/23/06 1:04 PM Page 448

Opcode Name Parameter(s) Pop Push

70 cpobj <Type> &,&

71 ldobj <Type> & *

72 ldstr <String> o

73 newobj <Method> N arguments o

74 castclass <Type> o o

75 isinst <Type> o int32

76 conv.r.un * Float

79 unbox <Type> o &

7A throw o

7B ldfld <Field> o/&/* *

7C ldflda <Field> o/& &

7D stfld <Field> o/&,*

7E ldsfld <Field> *

7F ldsflda <Field> &

80 stsfld <Field> *

81 stobj <Type> &,*

82 conv.ovf.i1.u n * int32

83 conv.ovf.i2.u n * int32

84 conv.ovf.i4.u n * int32

85 conv.ovf.i8.u n * int64

86 conv.ovf.u1. un * int32

87 conv.ovf.u2. un * int32

88 conv.ovf.u4. un * int32

89 conv.ovf.u8. un * int64

8A conv.ovf.i.un * int32

8B conv.ovf.u.u n * int64

8C box <Type> * o

8D newarr <Type> int32 o

8E ldlen o int32

8F ldelema <Type> int32,o &

90 ldelem.i1 int32,o int32

91 ldelem.u1 int32,o int32

92 ldelem.i2 int32,o int32

93 ldelem.u2 int32,o int32

94 ldelem.i4 int32,o int32

95 ldelem.u4 int32,o int32

96 ldelem.i8, ldelem.u8 int32,o int64

Continued

APPENDIX C ■ IL INSTRUCTION SET REFERENCE 449

Ch22_AppC_6463_CMP2 7/23/06 1:04 PM Page 449

IL Instructions, Their Parameters, and Stack Operations (Continued)

Opcode Name Parameter(s) Pop Push

97 ldelem.i int32,o int32

98 ldelem.r4 int32,o Float

99 ldelem.r8 int32,o Float

9A ldelem.ref int32,o o/&

9B stelem.i int32,int32,o

9C stelem.i1 int32,int32,o

9D stelem.i2 int32,int32,o

9E stelem.i4 int32,int32,o

9F stelem.i8 int64,int32,o

A0 stelem.r4 Float,int32,o

A1 stelem.r8 Float,int32,o

A2 stelem.ref o/&,int32,o

A3 ldelem, ldelem.any <Type> int32,o *

A4 stelem, stelem.any <Type> o/&,int32,o

A5 unbox.any <Type> o *

B3 conv.ovf.i1 * int32

B4 conv.ovf.u1 * int32

B5 conv.ovf.i2 * int32

B6 conv.ovf.u2 * int32

B7 conv.ovf.i4 * int32

B8 conv.ovf.u4 * int32

B9 conv.ovf.i8 * int64

BA conv.ovf.u8 * int64

C2 refanyval <Type> * &

C3 ckfinite * Float

C6 mkrefany <Type> & &

D0 ldtoken <Type>/<Field>/<Method> &

D1 conv.u2 * int32

D2 conv.u1 * int32

D3 conv.i * int32

D4 conv.ovf.i * int32

D5 conv.ovf.u * int32

D6 add.ovf *,* *

D7 add.ovf.un *,* *

D8 mul.ovf *,* *

D9 mul.ovf.un *,* *

DA sub.ovf *,* *

APPENDIX C ■ IL INSTRUCTION SET REFERENCE450

Ch22_AppC_6463_CMP2 7/23/06 1:04 PM Page 450

Opcode Name Parameter(s) Pop Push

DB sub.ovf.un *,* *

DC endfinally, endfault

DD leave int32

DE leave.s int8

DF stind.i int32,&

E0 conv.u * int32

FE 00 arglist * &

FE 01 ceq *,* int32

FE 02 cgt *,* int32

FE 03 cgt.un *,* int32

FE 04 clt *,* int32

FE 05 clt.un *,* int32

FE 06 ldftn <Method> &

FE 07 ldvirtftn <Method> o &

FE 09 ldarg uint32 *

FE 0A ldarga uint32 &

FE 0B starg uint32 *

FE 0C ldloc uint32 *

FE 0D ldloca uint32 &

FE 0E stloc uint32 *

FE 0F localloc int32 &

FE 11 endfilter int32

FE 12 unaligned. uint8

FE 13 volatile.

FE 14 tail.

FE 15 initobj <Type> &

FE 16 constrained. <Type>

FE 17 cpblk int32,&,&

FE 18 initblk int32,int32,&

FE 1A rethrow

FE 1C sizeof <Type> int32

FE 1D refanytype * &

FE 1E readonly.

APPENDIX C ■ IL INSTRUCTION SET REFERENCE 451

Ch22_AppC_6463_CMP2 7/23/06 1:04 PM Page 451

Ch22_AppC_6463_CMP2 7/23/06 1:04 PM Page 452

IL Assembler and Disassembler
Command-Line Options

This appendix describes the command-line options of the IL assembler (ilasm.exe) and the IL
disassembler (ildasm.exe).

IL Assembler
The command-line structure of the IL assembler is as follows:

ilasm [<options>] <sourcefile> [<options>][<sourcefile>*]

The default source file extension is .il. Multiple source files are parsed in the order of their
appearance on the command line. Options do not need to appear in a prescribed order, so
options and names of source files can be intermixed. All options specified on the command
line are pertinent to the entire set of source files.

All options are recognized by the first three characters following the option key, and all
are case insensitive. The option key can be a forward slash (/) or a hyphen (-). In options that
specify parameters, the equality character (=) is interchangeable with the colon character (:).
So, for example, the following option notations are equivalent:

• /OUTPUT=MyModule.dll

• -OUTPUT:MyModule.dll

• /out:MyModule.dll

• -Outp:MyModule.dll

The following command-line options are defined for the IL assembler:

• /NOLOGO. Suppress typing the logo and copyright statement.

• /QUIET. Suppress reporting the compilation progress.

• /NOAUTOINHERIT. Suppress the default inheritance of classes (from System.Object,
System.ValueType, or System.Enum). This option is used for testing purposes.

• /DLL. Compile to a dynamic-link library.

• /EXE. Compile to a runnable executable (the default). 453

A P P E N D I X D

■ ■ ■

Ch23_AppD_6463_CMP2 7/23/06 1:09 PM Page 453

• /PDB. Create a PDB file, but don’t enable the debug information tracking.

• /DEBUG. Disable JIT optimization, and create a PDB file; when running under the
debugger, use sequence points from PDB.

• /DEBUG=IMPL. Disable JIT optimization, and create a PDB file; when running under
the debugger, use implicit (heuristically calculated) sequence points.

• /DEBUG=OPT. Enable JIT optimization, and create a PDB file; when running under the
debugger, use implicit sequence points.

• /OPTIMIZE. Optimize long instructions to short when possible.

• /FOLD. Fold identical method bodies into one. If two or more methods have identical
bodies (method headers, IL code, and exception handling clauses), emit only one body
and set the RVA of the respective method records to point at this body. This option
reduces the size of managed executable but slows the assembler down.

• /CLOCK. Measure and report the compilation times.

• /RESOURCE=<res_file>. Link the specified unmanaged resource file (*.res) into the
resulting PE file. <res_file> must be a full filename, including the extension. Only one
.res file can be linked into a managed executable.

• /OUTPUT=<targetfile>. Compile to the file whose name is specified. The file extension
must be specified explicitly; there is no default. If this option is omitted, the IL assem-
bler sets the name of the output file to that of the first source file and sets the extension
of the output file to DLL if the /DLL option is specified and to EXE otherwise.

• /KEY=<keyfile>. Compile with a strong name signature. <keyfile> specifies the file con-
taining the private encryption key.

• /KEY=@<keysource>. Compile with a strong name signature. <keysource> specifies the
name of the source of the private encryption key.

• /INCLUDE=<path>. Set the search path for files specified in #include directives. If a file
specification in the #include directive contains the path, the include search path is
ignored. The include search path can be set alternatively via the environment variable
ILASM_INCLUDE. The command-line option /INCLUDE has precedence over the environ-
ment variable.

• /SUBSYSTEM=<int>. Set the Subsystem value in the PE header. The most frequently
used <int> values are 3 (Microsoft Windows console application) and 2 (Microsoft
Windows GUI application).

• /FLAGS=<int>. Set the Flags value in the common language runtime header. The most
frequently used <int> values are 1 (pure-IL code) and 2 (mixed code). The third bit of
the <int> value, indicating that the PE file is strong name signed, is ignored.

• /ALIGNMENT=<int>. Set the FileAlignment value in the NT Optional header. The <int>
value must be a power of 2, in the range 512 to 65536.

APPENDIX D ■ IL ASSEMBLER AND DISASSEMBLER COMMAND-LINE OPTIONS454

Ch23_AppD_6463_CMP2 7/23/06 1:09 PM Page 454

• /BASE=<int>. Set the ImageBase value in the NT Optional header (maximum 2GB for
32-bit executables).

• /STACK=<int>. Set the SizeOfStackReserve value in the NT Optional header.

• /MDV=<version_string>. Set the metadata version string. Use /MDV=1.0.3705 to gener-
ate metadata in version 1.0 format and /MDV=1.1.4322 to generate metadata in version
1.1 format.

• /MSV=<int>.<int>. Set the metadata stream version number. Use /MSV=1.0 to generate
metadata in version 1.0 or 1.1 format.

• /PE64. Create a 64-bit image (PE32+ file). Default target processor: Intel Itanium.

• /ITANIUM. Target processor: Intel Itanium. Target file format: PE32+.

• /X64. Target processor: AMD/Intel X64 architecture. Target file format: PE32+.

• /NOCORSTUB. Suppress emission of CORExeMain stub (CLR start-up stub).

• /STRIPRELOC. Indicate that no base relocations are needed. Set the flag
IMAGE_FILE_RELOC_STRIPPED in the COFF header.

• /ENC=<file>. Create Edit-and-Continue delta files from the specified source file. This
option is intended for internal CLR testing purposes. Do not use this option; you won’t
be able to make anything useful out of it.

• /ERROR. Attempt to create the PE file even if compilation errors have been reported.
Using the /ERROR option does not guarantee that the PE file will be created: some
errors are abortive, and others lead specifically to a failure to create the PE file. This
option also disables the following IL assembler automatic correction features:

• An unsealed value type is automatically marked sealed.

• A method declared as both static and instance is automatically marked static.

• A nonabstract, nonvirtual instance method of an interface is automatically marked
abstract and virtual.

• A global abstract method is automatically marked nonabstract.

• Nonstatic global fields and methods are automatically marked static.

■Caution Don’t use the /ERROR command-line option unless you’re positive you know what you’re doing.
It is dangerous! You can create a monster that will crash your application.

APPENDIX D ■ IL ASSEMBLER AND DISASSEMBLER COMMAND-LINE OPTIONS 455

Ch23_AppD_6463_CMP2 7/23/06 1:09 PM Page 455

IL Disassembler
The command-line structure of the IL disassembler is as follows:

ildasm [<options>] [<in_filename>] [<options>]

If no filename is specified, the disassembler starts in graphical mode. You can then open a
specific file by using the File ➤ Open menu command or by dragging the file to the disassem-
bler’s tree view window.

All options are recognized by the first three characters following the option key, and all are
case insensitive. The option key can be a forward slash (/) or a hyphen (-). In options that
specify parameters, the equality character (=) is interchangeable with the colon character (:).

Output Redirection Options
These are the options:

• /OUT=<out_filename>. Direct the output to a file rather than to a GUI.

• /OUT=CON. Direct the output to the console window from which ildasm.exe was
started rather than to a GUI.

• /TEXT. A shortcut for /OUT=CON.

• /HTML. Output in HTML format. This option is valid for file-directed output only.

• /RTF. Output in RTF. This option is invalid for console-directed output (option
/OUT=CON or /TEXT).

If the /OUT option or the /TEXT option is specified, <in_filename> must be specified as well.

ILAsm Code-Formatting Options (PE Files Only)
The code-formatting options specify what information, and in what form, will be included in
the disassembly text:

• /BYTES. Show the actual IL stream bytes (in hexadecimal notation) as instruction
comments.

• /RAWEH. Show structured exception handling clauses in canonical (label) form.

• /TOKENS. Show metadata token values as comments.

• /SOURCE. Show original source lines as comments. This requires the presence of the
PDB file accompanying the PE file being disassembled and the original source files.
If the original source files cannot be found at the location specified in the PDB file,
the disassembler tries to find them in the current directory.

• /LINENUM. Include references to original source lines (.line directives). This requires
the presence of the PDB file accompanying the PE file being disassembled.

• /VISIBILITY=<vis>[+<vis>...]. Disassemble only the items with specified visibility.
Visibility suboptions (<vis>) include the following:

APPENDIX D ■ IL ASSEMBLER AND DISASSEMBLER COMMAND-LINE OPTIONS456

Ch23_AppD_6463_CMP2 7/23/06 1:09 PM Page 456

•PUB: Public

•PRI: Private

•FAM: Family

•ASM: Assembly

•FAA: Family and assembly

•FOA: Family or assembly

•PSC: Private scope

• /PUBONLY. A shortcut for /VIS=PUB.

• /QUOTEALLNAMES. Enclose all names in single quotation marks. By default, only
names that don’t match the ILAsm definition of a simple name are quoted.

• /NOCA. Suppress output of the custom attributes.

• /CAVERBAL. Output the custom attribute initialization blobs in verbal form. The default
is hexadecimal form.

• /NOBAR. Suppress the pop-up window showing the disassembly progress bar.

File Output Options (PE Files Only)
These options specify the encoding of the disassembly text file. The options are ignored if the
output is directed to GUI or to the console.

• /UTF8. Use UTF-8 encoding for output. The default is ANSI.

• /UNICODE. Use Unicode (UTF-16) encoding for output.

File or Console Output Options (PE Files Only)
These options are used for output directed to a file or to the console and are ignored if the
output is directed to GUI:

• /NOIL. Suppress ILAsm code output.

• /FORWARD. Use forward class declaration, similar to ILDASM versions 1.0 and 1.1.

• /TYPELIST. Output full list of types defined in the module to preserve the type declara-
tion order in round tripping.

• /HEADERS. Include PE header information, runtime header information, and metadata
headers information in the output (as comments).

• /ITEM=<class>[::<method>[(<sig>)]. Disassemble the specified item only. If <sig> is not
specified, all methods named <method> of <class> are disassembled. If <method> is not
specified, all members of <class> are disassembled. For example, /ITEM="Foo" produces
the full disassembly of the Foo class and all its members; /ITEM="Foo::Bar" produces the
disassembly of all methods named Bar in the Foo class.

APPENDIX D ■ IL ASSEMBLER AND DISASSEMBLER COMMAND-LINE OPTIONS 457

Ch23_AppD_6463_CMP2 7/23/06 1:09 PM Page 457

If the method name and signature are specified, the last closing parenthesis of the
signature should be omitted (a known bug in the IL disassembler 2.0). For example,
/ITEM="Foo::Bar(void(int32,string)" produces the disassembly of a single method,
void Foo::Bar(int32,string).

• /STATS. Include statistics of the image file (as comments).

• /CLASSLIST. Include the list of classes defined in the module (as comments).

• /ALL. Combine the /HEADER, /BYTES, /TOKENS, /CLASSLIST, and /STATS options.

Metadata Summary Option
The metadata summary option is suitable for file or console output, and it is the only option
that works for both PE and COFF managed files. If an object file or an object library file is
specified as an input file, the IL disassembler automatically invokes the metadata summary,
ignoring all other options. The metadata summary is output as comments.

• /METAINFO[=<specifier>]. Show the metadata summary. The optional <specifier> is one
of the following:

•MDH: Show the metadata header information and sizes.

•HEX: Show the hexadecimal representation of the signatures.

•CSV: Show the sizes of the #Strings, #Blob, #US, and #GUID streams and the sizes of
the metadata tables and their records.

•UNR: Show the list of unresolved method references and unimplemented method
definitions.

•SCH: Show the metadata header and schema information.

•RAW: Show the metadata tables in raw form.

•HEA: Show the metadata heaps in raw form.

•VAL: Invoke the metadata validator and show its output.

• /OBJECTFILE=<obj_file_name>. Show the metadata summary of a single object file in
the object library. This option is valid for managed LIB files only.

APPENDIX D ■ IL ASSEMBLER AND DISASSEMBLER COMMAND-LINE OPTIONS458

Ch23_AppD_6463_CMP2 7/23/06 1:09 PM Page 458

Offline Verification
Tool Reference

An offline verification tool for managed PE files, PEVerify.exe, is distributed with the
Microsoft .NET Framework SDK. The tool includes two components: the metadata validator
(MDValidator) and the IL verifier (ILVerifier).

MDValidator works on the module level, running validity checks of the metadata of
a specified managed module (PE file). It does not matter whether the specified module is a
prime module or an auxiliary. If the specified module is a prime module of an assembly,
MDValidator does not automatically check other modules of the same assembly.

ILVerifier works on the assembly level, loading the assembly in full in memory, resolving
internal references, and verifying the IL code of the methods contained in the assembly.
Consequently, ILVerifier fails if the specified PE file is not the prime module of the assembly.

The result of this discrepancy in the approaches taken by MDValidator and ILVerifier is
that only single-module assemblies can be fully validated and verified in one pass of the veri-
fication tool.

The PEVerify tool sets the exit code to 1 if errors are found during the PE file verification
and sets the code to 0 otherwise.

The command-line format is as follows:

peverify <PE_file> <option>*

Unlike the IL assembler and the IL disassembler, the PEVerify tool does not allow arbitrary
positioning of the filename and options on the command line; rather, the name of the PE file
being verified must be the first command-line parameter. Also, unlike the assembler and disas-
sembler options, which are recognized by their first three characters only, PEVerify options must
be fully spelled out.

PEVerify options are case insensitive, and the option key can be a forward slash (/) or a
hyphen (-). The equality character (=) cannot be replaced with the colon character (:).

The command-line options include the following:

• /IL: Check the PE structure and verify the IL code.

• /MD: Check the PE structure and validate the metadata. If neither /MD nor /IL is speci-
fied, the metadata validation is performed first; then, if no metadata errors were found,
the IL verification is performed. If either the /MD or /IL option is specified, only the
metadata validation or the IL verification, respectively, is performed. If both the /MD

459

A P P E N D I X E

■ ■ ■

Ch24_AppE_6463_CMP2 7/25/06 7:38 PM Page 459

and /IL options are specified, the metadata validation is performed, followed by
the IL verification, regardless of whether errors were found during the metadata
validation phase.

• /UNIQUE: Disregard repeating error codes; report only the first occurrence of each
error type.

• /HRESULT: Display error codes in hexadecimal format.

• /CLOCK: Measure and report validation and verification times.

• /IGNORE=<err_code>[,<err_code>...]: Ignore the specified error codes. Error codes must
be specified in hexadecimal format.

• /IGNORE=@<err_code_file>: Ignore the error codes specified in <err_code_file>, which is
a text file containing comma-separated and/or line-separated hexadecimal error codes.

• /BREAK=<maxErrorCount>: Abort verification after <maxErrorCount> errors.
The value of <maxErrorCount> is a decimal number; if it is negative or unspecified,
<maxErrorCount> is set to 1.

• /VERBOSE. Display additional information in IL verification error messages.

• /NOLOGO: Don’t display the product version and copyright information.

• /QUIET: Suppress reporting the errors; report only the file being verified and the end
result of the verification.

The following example shows verification of an exceptionally buggy PE file, created using
the IL assembler with the /ERROR option:

D:\MTRY>peverify mtry.exe /md /il /hresult /unique

Microsoft (R) .NET Framework PE Verifier Version 2.0.50727.42
Copyright (C) Microsoft Corporation. All rights reserved.

[MD](0x8013121D): Error: TypeDef is marked ValueType but not marked
Sealed. [token:0x02000002]

[MD](0x80131256): Error: TypeDef is not marked Nested but has an encloser
type. [token:0x02000006]

[MD](0x8013126D): Error: Global item (field,method) must be Public, Private, or
PrivateScope. [token:0x04000002]

[MD](0x8013126E): Error: Global item (field,method) must be Static.
[token:0x04000002]

[MD](0x8013126A): Error: Field name value__ is reserved for Enums only.
[token:0x04000008]

[MD](0x80131B24): Error: Illegal use of type 'void' in signature.
[token:0x06000001]

[MD](0x801312DB): Error: Constructor, initializer must return void.
[token:0x06000005]

[MD](0x801312DF): Error: ELEMENT_TYPE_SENTINEL is only allowed in MemberRef
signatures. [token:0x06000009]

APPENDIX E ■ OFFLINE VERIF ICATION TOOL REFERENCE460

Ch24_AppE_6463_CMP2 7/25/06 7:38 PM Page 460

[MD](0x801312E2): Error: Trailing ELEMENT_TYPE_SENTINEL in signature.
[token:0x06000009]

[MD](0x80131239): Error: Signature has invalid calling convention=0x00000023.
[token:0x0600000D]

[MD](0x801312E0): Error: Signature containing ELEMENT_TYPE_SENTINEL must be VARARG.
[token:0x0A000006]

[MD](0x801312E1): Error: Multiple ELEMENT_TYPE_SENTINEL in signature.
[token:0x0A000006]

[MD](0x80131230): Error: FieldLayout2 record has Field token=0x04000003 marked
Static. [token:0x00000001]

13 Errors Verifying mtry.exe

Error Codes and Messages
In Tables E-1 and E-2, 0xff, 0xffff, and 0xffffffff denote hexadecimal numbers, and 99
denotes a decimal number.

Table E-1. Metadata Validation Error Codes and Messages

HRESULT Error Message

0x80131203 Error (Structural): Table=0xffffffff, Col=0xffffffff, Row=0xffffffff, has rid
out of range.

0x80131204 Error (Structural): Table=0xffffffff, Col=0xffffffff, Row=0xffffffff, has
coded token type out of range.

0x80131205 Error (Structural): Table=0xffffffff, Col=0xffffffff, Row=0xffffffff, has
coded rid out of range.

0x80131206 Error (Structural): Table=0xffffffff, Col=0xffffffff, Row=0xffffffff, has an
invalid String offset.

0x80131207 Error (Structural): Table=0xffffffff, Col=0xffffffff, Row=0xffffffff, has an
invalid GUID offset.

0x80131208 Error (Structural): Table=0xffffffff, Col=0xffffffff, Row=0xffffffff, has an
invalid BLOB offset.

0x80131209 Error: Multiple module records found.

0x8013120A Error: Module has no MVID.

0x8013120B Error: TypeRef has no name.

0x8013120C Error: TypeRef has a duplicate, token=0xffffffff.

0x8013120D Error: TypeDef has no name.

0x8013120E Error: TypeDef has a duplicate based on name+namespace, token=0xffffffff.

0x8013120F Warning: TypeDef has a duplicate based on GUID, token=0xffffffff.

0x80131210 Error: TypeDef that is not an Interface and not the Object class extends Nil token.

0x80131211 Error: TypeDef for Object class extends token=0xffffffff which is not nil.

0x80131212 Error: TypeDef extends token=0xffffffff which is marked Sealed.

0x80131213 Error: TypeDef is a Deleted record but not marked RTSpecialName.

0x80131214 Error: TypeDef is marked RTSpecialName but is not a Deleted record.

APPENDIX E ■ OFFLINE VERIF ICATION TOOL REFERENCE 461

Ch24_AppE_6463_CMP2 7/25/06 7:38 PM Page 461

Table E-1. Continued

HRESULT Error Message

0x80131215 Error: MethodImpl overrides private method (token=0xffffffff).

0x80131216 Error: Assembly name contains path and/or extension.

0x80131217 Error: File has a reserved system name.

0x80131218 Error: MethodImpl has static overriding method (token=0xffffffff).

0x80131219 Error: TypeDef is marked Interface but not Abstract.

0x8013121A Error: TypeDef is marked Interface but extends non-Nil token=0xffffffff.

0x8013121B Warning: TypeDef is marked Interface but has no GUID.

0x8013121C Error: MethodImpl overrides final method (token=0xffffffff).

0x8013121D Error: TypeDef is marked ValueType but not marked Sealed.

0x8013121E Error: Parameter has invalid flags set 0xffffffff.

0x8013121F Error: InterfaceImpl has a duplicate, token=0xffffffff.

0x80131220 Error: MemberRef has no name.

0x80131221 Error: MemberRef name starts with _VtblGap.

0x80131222 Error: MemberRef name starts with _Deleted.

0x80131223 Error: MemberRef parent is Nil but the module is a PE file.

0x80131224 Error: MemberRef signature has invalid calling convention=0xffffffff.

0x80131225 Error: MemberRef has MethodDef parent, but calling convention is not VARARG
(parent:0xffffffff; callconv: 0xffffffff).

0x80131226 Error: MemberRef has different name than parent MethodDef, token=0xffffffff.

0x80131227 Error: MemberRef has fixed part of signature different from parent MethodDef,
token=0xffffffff.

0x80131228 Warning: MemberRef has a duplicate, token=0xffffffff.

0x80131229 Error: ClassLayout has parent TypeDef token=0xffffffff marked AutoLayout.

0x8013122A Error: ClassLayout has invalid PackingSize; valid set of values is {1,2,4,...,128}
(parent: 0xffffffff; PackingSize: 99).

0x8013122B Error: ClassLayout has a duplicate (parent: 0xffffffff; duplicate rid: 0xffffffff).

0x8013122C Error: FieldLayout2 record has invalid offset (field: 0xffffffff; offset: 0xffffffff).

0x8013122D Error: FieldLayout2 record for Field token=0xffffffff has TypeDefNil for parent.

0x8013122E Error: FieldLayout2 record for field of type that has no ClassLayout record
(field: 0xffffffff; type: 0xffffffff).

0x8013122F Error: Explicit offset specified for field of type marked AutoLayout
(field: 0xffffffff; type: 0xffffffff).

0x80131230 Error: FieldLayout2 record has Field token=0xffffffff marked Static.

0x80131231 Error: FieldLayout2 record has a duplicate, rid=0xffffffff.

0x80131232 Error: ModuleRef has no name.

0x80131233 Warning: ModuleRef has a duplicate, token=0xffffffff.

0x80131234 Error: TypeRef has invalid resolution scope.

0x80131235 Error: TypeDef is marked Nested but has no encloser type.

APPENDIX E ■ OFFLINE VERIF ICATION TOOL REFERENCE462

Ch24_AppE_6463_CMP2 7/25/06 7:38 PM Page 462

HRESULT Error Message

0x80131236 Warning: Type extends TypeRef which resolves to TypeDef in the same module
(TypeRef: 0xffffffff; TypeDef: 0xffffffff).

0x80131237 Error: Signature has zero size.

0x80131238 Error: Signature does not have enough bytes left at byte=0xffffffff as indicated
by the compression scheme.

0x80131239 Error: Signature has invalid calling convention=0xffffffff.

0x8013123A Error: Method is marked Static but calling convention=0xffffffff is marked
HASTHIS.

0x8013123B Error: Method is not marked Static, but calling convention=0xffffffff is not
marked HASTHIS.

0x8013123C Error: Signature has no argument count at byte=0xffffffff.

0x8013123D Error: Signature missing element type after modifier (modifier: 0xff;
offset: 0xffffffff).

0x8013123E Error: Signature missing token after element 0xffff.

0x8013123F Error: Signature has an invalid token (token: 0xffffffff; offset: 0xffffffff).

0x80131240 Error: Signature missing function pointer at byte=0xffffffff.

0x80131241 Error: Signature has function pointer missing argument count at byte=0xffffffff.

0x80131242 Error: Signature missing rank at byte=0xffffffff.

0x80131243 Error: Signature missing count of sized dimensions of array at byte=0xffffffff.

0x80131244 Error: Signature missing size of dimension of array at byte=0xffffffff.

0x80131245 Error: Signature missing count of lower bounds of array at byte=0xffffffff.

0x80131246 Error: Signature missing lower bound of array at byte=0xffffffff.

0x80131247 Error: Signature has invalid ELEMENT_TYPE_* (element type: 0xffffffff;
offset: 0xffffffff).

0x80131248 Error: Signature missing size for VALUEARRAY at byte=0xffffffff.

0x80131249 Error: Field signature has invalid calling convention=0xffffffff.

0x8013124A Error: Method has no name.

0x8013124B Error: Method parent is Nil.

0x8013124C Error: Method has a duplicate, token=0xffffffff.

0x8013124D Error: Field has no name.

0x8013124E Error: Field parent is Nil.

0x8013124F Error: Field has a duplicate, token=0xffffffff.

0x80131250 Error: Multiple assembly records found.

0x80131251 Error: Assembly has no name.

0x80131252 Error: Token 0xffffffff following ELEMENT_TYPE_CLASS (_VALUETYPE) in
signature is a ValueType (Class, respectively).

0x80131253 Error: ClassLayout has parent TypeDef token=0xffffffff marked Interface.

0x80131255 Error: AssemblyRef has no name.

0x80131256 Error: TypeDef is not marked Nested but has an encloser type.

0x80131258 Error: File has no name.
Continued

APPENDIX E ■ OFFLINE VERIF ICATION TOOL REFERENCE 463

Ch24_AppE_6463_CMP2 7/25/06 7:38 PM Page 463

Table E-1. Continued

HRESULT Error Message

0x80131259 Error: ExportedType has no name.

0x8013125A Error: TypeDef extends its own child.

0x8013125B Error: ManifestResource has no name.

0x8013125C Error: File has a duplicate, token=0xffffffff.

0x8013125D Error: File name is fully-qualified, but should not be.

0x8013125E Error: ExportedType has a duplicate, token=0xffffffff.

0x8013125F Error: ManifestResource has a duplicate by name, token=0xffffffff.

0x80131260 Error: ManifestResource is not marked Public or Private.

0x80131262 Error: Field value__ (token=0xffffffff) in Enum is marked static.

0x80131263 Error: Field value__ (token=0xffffffff) in Enum is not marked RTSpecialName.

0x80131264 Error: Field (token=0xffffffff) in Enum is not marked static.

0x80131265 Error: Field (token=0xffffffff) in Enum is not marked literal.

0x80131267 Error: Signature of field (token=0xffffffff) in Enum does not match enum type.

0x80131268 Error: Field value__ (token=0xffffffff) in Enum is not the first one.

0x80131269 Error: Field (token=0xffffffff) is marked RTSpecialName but not named value__.

0x8013126A Error: Field name value__ is reserved for Enums only.

0x8013126B Error: Instance field in Interface.

0x8013126C Error: Non-public field in Interface.

0x8013126D Error: Global item (field,method) must be Public, Private, or PrivateScope.

0x8013126E Error: Global item (field,method) must be Static.

0x80131270 Error: Type/instance constructor has zero RVA.

0x80131271 Error: Field is marked marshaled but has no marshaling information.

0x80131272 Error: Field has marshaling information but is not marked marshaled.

0x80131273 Error: Field is marked HasDefault but has no const value.

0x80131274 Error: Field has const value but is not marked HasDefault.

0x80131275 Error: Item (field,method) is marked HasSecurity but has no security information.

0x80131276 Error: Item (field,method) has security information but is not marked HasSecurity.

0x80131277 Error: PInvoke item (field,method) must be Static.

0x80131278 Error: PInvoke item (field,method) has no Implementation Map.

0x80131279 Error: Item (field,method) has Implementation Map but is not marked PInvoke.

0x8013127A Warning: Item (field,method) has invalid Implementation Map.

0x8013127B Error: Implementation Map has invalid Module Ref, token 0xffffffff.

0x8013127C Error: Implementation Map has invalid Member Forwarded, token 0xffffffff.

0x8013127D Error: Implementation Map has no import name.

0x8013127E Error: Implementation Map has invalid calling convention 0xff.

0x8013127F Error: Item (field,method) has invalid access flag.

0x80131280 Error: Field marked both InitOnly and Literal.

APPENDIX E ■ OFFLINE VERIF ICATION TOOL REFERENCE464

Ch24_AppE_6463_CMP2 7/25/06 7:38 PM Page 464

HRESULT Error Message

0x80131281 Error: Literal field must be Static.

0x80131282 Error: Item (field,method) is marked RTSpecialName but not SpecialName.

0x80131283 Error: Abstract method in non-abstract type (token=0xffffffff).

0x80131284 Error: Neither static nor abstract method in interface (token=0xffffffff).

0x80131285 Error: Non-public method in interface (token=0xffffffff).

0x80131286 Error: Instance constructor in interface (token=0xffffffff).

0x80131287 Error: Global constructor.

0x80131288 Error: Static instance constructor in type (token=0xffffffff).

0x80131289 Error: Constructor/initializer in type (token=0xffffffff) is not marked
SpecialName,RTSpecialName.

0x8013128A Error: Virtual constructor/initializer in type (token=0xffffffff).

0x8013128B Error: Abstract constructor/initializer in type (token=0xffffffff).

0x8013128C Error: Non-static type initializer in type (token=0xffffffff).

0x8013128D Error: Method marked Abstract/Runtime/InternalCall/Imported must have zero
RVA, and vice versa.

0x8013128E Error: Method marked Final/NewSlot but not Virtual.

0x8013128F Error: Static method can not be Final or Virtual.

0x80131290 Error: Method can not be both Abstract and Final.

0x80131291 Error: Abstract method marked ForwardRef.

0x80131292 Error: Abstract method marked PInvokeImpl.

0x80131293 Error: Abstract method not marked Virtual.

0x80131294 Error: Nonabstract method not marked ForwardRef.

0x80131295 Error: Nonabstract method must have RVA or be PInvokeImpl or Runtime.

0x80131296 Error: PrivateScope method has zero RVA.

0x80131297 Error: Global method marked Abstract,Virtual.

0x80131298 Error: Signature contains long form (such as ELEMENT_TYPE_CLASS<token of
System.String>).

0x80131299 Warning: Method has multiple semantics.

0x8013129A Error: Method has invalid semantic association (token=0xffffffff).

0x8013129B Error: Method has semantic association (token=0xffffffff) that does not exist.

0x8013129C Error: MethodImpl overrides non-virtual method (token=0xffffffff).

0x8013129E Error: Method has multiple semantic flags set for association (token=0xffffffff).

0x8013129F Error: Method has no semantic flags set for association (token=0xffffffff).

0x801312A1 Warning: Unrecognized Hash Algorithm ID (0xffffffff).

0x801312A4 Error: Constant parent token (0xffffffff) is out of range.

0x801312A5 Error: Invalid Assembly flags (0xffff).

0x801312A6 Warning: TypeDef (token=0xffffffff) has same name as TypeRef.

0x801312A7 Error: InterfaceImpl has invalid implementing type (0xffffffff).

0x801312A8 Error: InterfaceImpl has invalid implemented type (0xffffffff).
Continued

APPENDIX E ■ OFFLINE VERIF ICATION TOOL REFERENCE 465

Ch24_AppE_6463_CMP2 7/25/06 7:38 PM Page 465

Table E-1. Continued

HRESULT Error Message

0x801312A9 Error: TypeDef has security information but is not marked HasSecurity.

0x801312AA Error: TypeDef is marked HasSecurity but has no security information.

0x801312AB Error: Type constructor must have no arguments.

0x801312AC Error: ExportedType has invalid Implementation (token=0xffffffff).

0x801312AD Error: MethodImpl has body from another TypeDef (token=0xffffffff).

0x801312AE Error: Type constructor has invalid calling convention.

0x801312AF Error: MethodImpl has invalid Type token=0xffffffff.

0x801312B0 Error: MethodImpl declared in Interface (token=0xffffffff).

0x801312B1 Error: MethodImpl has invalid MethodDeclaration token=0xffffffff.

0x801312B2 Error: MethodImpl has invalid MethodBody token=0xffffffff.

0x801312B3 Error: MethodImpl has a duplicate (rid=0xffffffff).

0x801312B4 Error: Field has invalid parent (token=0xffffffff).

0x801312B5 Warning: Parameter out of sequence (parameter: 99; seq.num: 99).

0x801312B6 Error: Parameter has sequence number exceeding number of arguments
(parameter: 99; seq.num: 99; num.args: 99).

0x801312B7 Error: Parameter #99 is marked HasFieldMarshal but has no marshaling
information.

0x801312B8 Error: Parameter #99 has marshaling information but is not marked
HasFieldMarshal.

0x801312BA Error: Parameter #99 is marked HasDefault but has no const value.

0x801312BB Error: Parameter #99 has const value but is not marked HasDefault.

0x801312BC Error: Property has invalid scope (token=0xffffffff).

0x801312BD Error: Property has no name.

0x801312BE Error: Property has no signature.

0x801312BF Error: Property has a duplicate (token=0xffffffff).

0x801312C0 Error: Property has invalid calling convention (0xff).

0x801312C1 Error: Property is marked HasDefault but has no const value.

0x801312C2 Error: Property has const value but is not marked HasDefault.

0x801312C3 Error: Property has related method with invalid semantics (method: 0xffffffff;
semantics: 0xffffffff).

0x801312C4 Error: Property has related method with invalid token (0xffffffff).

0x801312C5 Error: Property has related method belonging to another type
(method: 0xffffffff; type: 0xffffffff).

0x801312C6 Error: Constant of type (0xff) must have null value.

0x801312C7 Error: Constant of type (0xff) must have non-null value.

0x801312C8 Error: Event has invalid scope (token=0xffffffff).

0x801312CA Error: Event has no name.

0x801312CB Error: Event has a duplicate (token=0xffffffff).

0x801312CC Error: Event has invalid EventType (token=0xffffffff).

APPENDIX E ■ OFFLINE VERIF ICATION TOOL REFERENCE466

Ch24_AppE_6463_CMP2 7/25/06 7:38 PM Page 466

HRESULT Error Message

0x801312CD Error: Event’s EventType (token=0xffffffff) is not a class (flags=0xffffffff).

0x801312CE Error: Event has related method with invalid semantics (method: 0xffffffff;
semantics: 0xffffffff).

0x801312CF Error: Event has related method with invalid token (0xffffffff).

0x801312D0 Error: Event has related method belonging to another type
(method: 0xffffffff; type: 0xffffffff).

0x801312D1 Error: Event has no AddOn related method.

0x801312D2 Error: Event has no RemoveOn related method.

0x801312D3 Error: ExportedType has same namespace+name as TypeDef, token 0xffffffff.

0x801312D4 Error: ManifestResource refers to non-PE file but offset is not 0.

0x801312D5 Error: Decl.Security is assigned to invalid item (token=0xffffffff).

0x801312D6 Error: Decl.Security has invalid action flag (0xffffffff).

0x801312D7 Error: Decl.Security has no associated permission BLOB.

0x801312D8 Error: ManifestResource has invalid Implementation (token=0xffffffff).

0x801312DB Error: Constructor, initializer must return void.

0x801312DC Error: Event’s Fire method (0xffffffff) must return void.

0x801312DD Warning: Invalid locale string.

0x801312DE Error: Constant has parent of invalid type (token=0xffffffff).

0x801312DF Error: ELEMENT_TYPE_SENTINEL is only allowed in MemberRef signatures.

0x801312E0 Error: Signature containing ELEMENT_TYPE_SENTINEL must be VARARG.

0x801312E1 Error: Multiple ELEMENT_TYPE_SENTINEL in signature.

0x801312E2 Error: Trailing ELEMENT_TYPE_SENTINEL in signature.

0x801312E3 Error: Signature is missing argument # 99.

0x801312E4 Error: Field of byref type.

0x801312E5 Error: Synchronized method in ValueType (token=0xffffffff).

0x801312E6 Error: Full name length exceeds maximum allowed (length: 99; max: 99).

0x801312E9 Error: ManifestResource has invalid flags (0xffffffff).

0x801312EA Warning: ExportedType has no TypeDefId.

0x801312EB Error: File has invalid flags (0xffffffff).

0x801312EC Error: File has no hash BLOB.

0x801312ED Error: Module has no name.

0x801312EE Error: Module name is fully-qualified.

0x801312EF Error: TypeDef marked as RTSpecialName but not SpecialName.

0x801312F0 Error: TypeDef extends an Interface (token=0xffffffff).

0x801312F1 Error: Type/instance constructor marked PInvokeImpl.

0x801312F2 Error: System.Enum is not marked Class.

0x801312F3 Error: System.Enum must extend System.ValueType.

0x801312F4 Error: MethodImpl’s Decl and Body method signatures do not match.

0x801312F5 Error: Enum has method(s).
Continued

APPENDIX E ■ OFFLINE VERIF ICATION TOOL REFERENCE 467

Ch24_AppE_6463_CMP2 7/25/06 7:38 PM Page 467

Table E-1. Continued

HRESULT Error Message

0x801312F6 Error: Enum implements interface(s).

0x801312F7 Error: Enum has properties.

0x801312F8 Error: Enum has one or more events.

0x801312F9 Error: TypeDef has invalid Method List (> Nmethods+1).

0x801312FA Error: TypeDef has invalid Field List (> Nfields+1).

0x801312FB Error: Constant has illegal type (0xff).

0x801312FC Error: Enum has no instance field.

0x801312FD Error: Enum has multiple instance fields.

0x80131B00 Error: InterfaceImpl’s implemented type (0xffffffff) not marked tdInterface.

0x80131B01 Error: Field is marked HasRVA but has no RVA record.

0x80131B02 Error: Field is assigned zero RVA.

0x80131B03 Error: Method has both RVA!=0 and Implementation Map.

0x80131B04 Error: Extraneous bits in Flags (0xffffffff).

0x80131B05 Error: TypeDef extends itself.

0x80131B06 Error: System.ValueType must extend System.Object.

0x80131B07 Warning: TypeDef extends TypeSpec (0xffffffff), not supported in Version 1.

0x80131B09 Error: Value class has neither fields nor size parameter.

0x80131B0A Error: Interface is marked Sealed.

0x80131B0B Error: NestedClass token (0xffffffff) in NestedClass record is not a valid
TypeDef.

0x80131B0C Error: EnclosingClass token (0xffffffff) in NestedClass record is not a valid
TypeDef.

0x80131B0D Error: Duplicate NestedClass record (0xffffffff).

0x80131B0E Error: Nested type token has multiple EnclosingClass tokens (nested: 0xffffffff;
enclosers: 0xffffffff, 0xffffffff).

0x80131B0F Error: Zero RVA of field 0xffffffff in FieldRVA record.

0x80131B10 Error: Invalid field token in FieldRVA record (field: 0xffffffff; RVA: 0xffffffff).

0x80131B11 Error: Same RVA in another FieldRVA record (RVA: 0xffffffff; field: 0xffffffff).

0x80131B12 Error: Same field in another FieldRVA record(field: 0xffffffff; record: 0xffffffff).

0x80131B13 Error: Invalid token specified as EntryPoint in CLR header.

0x80131B14 Error: Instance method token specified as EntryPoint in CLR header.

0x80131B15 Error: Invalid type of instance field (0xffffffff) of an Enum.

0x80131B16 Error: Method has invalid RVA (0xffffffff).

0x80131B17 Error: Literal field has no const value.

0x80131B18 Error: Class implements interface but not method
(class:0xffffffff; interface:0xffffffff; method:0xffffffff).

0x80131B19 Error: CustomAttribute has invalid Parent token (0xffffffff).

0x80131B1A Error: CustomAttribute has invalid Type token (0xffffffff).

APPENDIX E ■ OFFLINE VERIF ICATION TOOL REFERENCE468

Ch24_AppE_6463_CMP2 7/25/06 7:38 PM Page 468

HRESULT Error Message

0x80131B1B Error: CustomAttribute has non-constructor Type (0xffffffff).

0x80131B1C Error: CustomAttribute’s Type (0xffffffff) has invalid signature.

0x80131B1D Error: CustomAttribute’s Type (0xffffffff) has no signature.

0x80131B1E Error: CustomAttribute’s blob has invalid prolog (0xffff).

0x80131B1F Error: Method has invalid local signature token (0xffffffff).

0x80131B20 Error: Method has invalid header.

0x80131B21 Error: EntryPoint method has more than one argument.

0x80131B22 Error: EntryPoint method must return void, int or unsigned int.

0x80131B23 Error: EntryPoint method must have vector of strings as argument, or no
arguments.

0x80131B24 Error: Illegal use of type ‘void’ in signature.

0x80131B25 Error: Multiple implementation of interface method (class: 0xffffffff;
interface: 0xffffffff; method: 0xffffffff).

0x80131B26 Error: GenericParam has no name.

0x80131B27 Warning: GenericParam has nil owner.

0x80131B28 Error: GenericParam has a duplicate based on owner and name,
token=0xffffffff.

0x80131B29 Error: GenericParam has a duplicate based on owner and number,
token=0xffffffff.

0x80131B2A Error: GenericParam is out of sequence by owner.

0x80131B2B Error: GenericParam is out of sequence by number.

0x80131B2C Error: GenericParam is co-or-contra variant but its owner, token (0xffffffff), is
not an interface or delegate.

0x80131B2D Error: GenericParam is a method type parameter and must be non-variant, not
co-or-contra variant.

0x80131B2E Error: GenericParam has invalid variance value in flags (0xffffffff).

0x80131B2F Error: GenericParam has inconsistent special constraints ReferenceTypeConstraint
and ValueTypeConstraint in flags (0xffffffff).

0x80131B30 Error: GenericParamConstraint has nil owner.

0x80131B31 Error: GenericParamConstraint has a duplicate based on owner and constraint,
token=0xffffffff.

0x80131B32 Error: GenericParamConstraint is non-contiguous with preceding constraints for
same owner, token=0xffffffff.

0x80131B33 Error: MethodSpec has nil method.

0x80131B34 Error: MethodSpec has a duplicate based on method and instantiation,
token=0xffffffff.

0x80131B35 Error: MethodSpec signature has invalid calling convention=0xffffffff.

0x80131B36 Error: MethodSpec signature is missing arity at byte=0xffffffff.

0x80131B37 Error: MethodSpec signature is missing type argument # 99.

0x80131B38 Error: MethodSpec has generic method of arity 99 but instantiation of different
arity 99.

Continued

APPENDIX E ■ OFFLINE VERIF ICATION TOOL REFERENCE 469

Ch24_AppE_6463_CMP2 7/25/06 7:38 PM Page 469

Table E-1. Continued

HRESULT Error Message

0x80131B39 Error: MethodSpec method is not generic.

0x80131B3A Error: Signature missing arity of instantiated generic type at byte=0xffffffff.

0x80131B3B Error: Signature has generic type of arity 99 instantiated at different arity 99 at
byte=0xffffffff.

0x80131B3C Error: Method cannot be both generic and a class constructor.

0x80131B3E Error: Method cannot be both generic and defined on an imported type.

0x80131B3F Error: Method cannot be both generic and have non-default calling convention.

0x80131B40 Error: Entry point in CLR header is the token for a generic method.

0x80131B41 Error: Method signature is generic but is missing its arity at byte=0xffffffff.

0x80131B42 Error: Method signature is generic but its arity is zero at byte=0xffffffff.

0x80131B43 Error: MethodSpec signature has arity 0 at byte=0xffffffff.

0x80131B44 Error: Signature has generic type instantiated at arity 0 at byte=0xffffffff.

0x80131B45 Error: MethodDef signature has arity 99 but the token owns 99 GenericParams.

0x80131B46 Error: Entry point in CLR header is the token for a method in a generic type.

0x80131B47 Error: MethodImpl overrides non-generic method (token=0xffffffff) with
generic method.

0x80131B48 Error: MethodImpl overrides generic method (token=0xffffffff) with non-
generic method.

0x80131B49 Error: MethodImpl overrides generic method (token=0xffffffff) of arity 99 with
generic method of arity 99.

0x80131B4A Error: TypeDef extends a TypeSpec (0xffffffff) that is not an instantiated type.

0x80131B4B Error: Signature has type instantiated at ByRef at offset 0xffffffff.

0x80131B4C Error: MethodSpec has type instantiated at ByRef at offset 0xffffffff.

0x80131B4D Error: TypeSpec has empty signature.

0x80131B4E Error: TypeSpec has signature containing one or more sentinels.

0x80131B4F Error: TypeDef is generic but has explicit layout.

0x80131B50 Error: Signature has token following ELEMENT_TYPE_CLASS (_VALUETYPE)
that is not a TypeDef or TypeRef (token: 0xffffffff; offset: 0xffffffff).

0x80131B51 Warning: Class does not implement interface method in this module (class:
0xffffffff; interface: 0xffffffff; method: 0xffffffff).

Table E-2. IL Verification Error Codes and Messages

HRESULT Error Message

0x80131810 Unknown opcode [0xffffffff].

0x80131811 Unknown calling convention [0xffffffff].

0x80131812 Unknown ELEMENT_TYPE [0xffffffff].

0x80131818 Internal error.

0x80131819 Stack is too large.

APPENDIX E ■ OFFLINE VERIF ICATION TOOL REFERENCE470

Ch24_AppE_6463_CMP2 7/25/06 7:38 PM Page 470

HRESULT Error Message

0x8013181A Array name is too long.

0x80131820 fall thru end of the method

0x80131821 try start >= try end

0x80131822 try end > code size

0x80131823 handler >= handler end

0x80131824 handler end > code size

0x80131825 filter >= code size

0x80131826 Try starts in the middle of an instruction.

0x80131827 Handler starts in the middle of an instruction.

0x80131828 Filter starts in the middle of an instruction.

0x80131829 Try block overlaps with another block.

0x8013182A Try and filter/handler blocks are equivalent.

0x8013182B Try shared between finally and fault.

0x8013182C Handler block overlaps with another block.

0x8013182D Handler block is the same as another block.

0x8013182E Filter block overlaps with another block.

0x8013182F Filter block is the same as another block.

0x80131830 Filter contains try.

0x80131831 Filter contains handler.

0x80131832 Nested filters.

0x80131833 filter >= code size

0x80131834 Filter starts in the middle of an instruction.

0x80131835 fallthru the end of an exception block

0x80131836 fallthru into an exception handler

0x80131837 fallthru into an exception filter

0x80131838 Leave from outside a try or catch block.

0x80131839 Rethrow from outside a catch handler.

0x8013183A Endfinally from outside a finally handler

0x8013183B Endfilter from outside an exception filter block

0x8013183C Missing Endfilter.

0x8013183D Branch into try block.

0x8013183E Branch into exception handler block.

0x8013183F Branch into exception filter block.

0x80131840 Branch out of try block.

0x80131841 Branch out of exception handler block.

0x80131842 Branch out of exception filter block.

0x80131843 Branch out of finally block.

0x80131844 Return out of try block.
Continued

APPENDIX E ■ OFFLINE VERIF ICATION TOOL REFERENCE 471

Ch24_AppE_6463_CMP2 7/25/06 7:38 PM Page 471

Table E-2. IL Continued

HRESULT Error Message

0x80131845 Return out of exception handler block.

0x80131846 Return out of exception filter block.

0x80131847 jmp / exception into the middle of an instruction

0x80131848 Non-compatible types depending on path.

0x80131849 Init state for this differs depending on path.

0x8013184A Non-compatible types on stack depending on path.

0x8013184B Stack depth differs depending on path.

0x8013184C Instance variable (this) missing.

0x8013184D Uninitialized this on entering a try block.

0x8013184E Store into this when it is uninitialized.

0x8013184F Return from ctor when this is uninitialized.

0x80131850 Return from ctor before all fields are initialized.

0x80131851 Branch back when this is uninitialized.

0x80131852 Expected byref of value type for this parameter.

0x80131853 Non-compatible types on the stack.

0x80131854 Unexpected type on the stack.

0x80131855 Missing stack slot for exception.

0x80131856 Stack overflow.

0x80131857 Stack underflow.

0x80131858 Stack empty.

0x80131859 Uninitialized item on stack.

0x8013185A Expected I, I4, or I8 on the stack.

0x8013185B Expected R, R4, or R8 on the stack.

0x8013185C Unexpected R, R4, R8, or I8 on the stack.

0x8013185D Expected numeric type on the stack.

0x8013185E Expected an Objref on the stack.

0x8013185F Expected address of an Objref on the stack.

0x80131860 Expected Byref on the stack.

0x80131861 Expected pointer to function on the stack.

0x80131862 Expected single dimension array on the stack.

0x80131863 Expected value type instance on the stack.

0x80131864 Expected address of value type on the stack.

0x80131865 Unexpected value type instance on the stack.

0x80131866 Local variable is unusable at this point.

0x80131867 Unrecognized local variable number.

0x80131868 Unrecognized argument number.

0x80131869 Unable to resolve token.

APPENDIX E ■ OFFLINE VERIF ICATION TOOL REFERENCE472

Ch24_AppE_6463_CMP2 7/25/06 7:38 PM Page 472

HRESULT Error Message

0x8013186A Unable to resolve type of the token.

0x8013186B Expected memberRef/memberDef token.

0x8013186C Expected memberRef/fieldDef token.

0x8013186D Expected signature token.

0x8013186E Instruction can not be verified.

0x8013186F Operand does not point to a valid string ref.

0x80131870 Return type is BYREF, TypedReference, ArgHandle, or ArgIterator.

0x80131871 Stack must be empty on return from a void function.

0x80131872 Return value missing on the stack.

0x80131873 Stack must contain only the return value.

0x80131874 Return uninitialized data.

0x80131875 Illegal array access.

0x80131876 Store non Object type into Object array.

0x80131877 Expected single dimension array.

0x80131878 Expected single dimension array of pointer types.

0x80131879 Array field access is denied.

0x8013187A Allowed only in vararg methods.

0x8013187B Value type expected.

0x8013187C Method is not visible.

0x8013187D Field is not visible.

0x8013187E Item is unusable at this point.

0x8013187F Expected static field.

0x80131880 Expected non-static field.

0x80131881 Address-of not allowed for this item.

0x80131882 Address-of not allowed for byref.

0x80131883 Address-of not allowed for literal field.

0x80131884 Cannot change initonly field outside its ctor.

0x80131885 Cannot throw this object.

0x80131886 Callvirt on a value type method.

0x80131887 Call signature mismatch.

0x80131888 Static function expected.

0x80131889 Ctor expected.

0x8013188A Can not use callvirt on ctor.

0x8013188B Only super::ctor or typeof(this)::ctor allowed here.

0x8013188C Possible call to ctor more than once.

0x8013188D Unrecognized signature.

0x8013188E Can not resolve Array type.

0x8013188F Array of ELEMENT_TYPE_PTR.
Continued

APPENDIX E ■ OFFLINE VERIF ICATION TOOL REFERENCE 473

Ch24_AppE_6463_CMP2 7/25/06 7:38 PM Page 473

Table E-2. IL Continued

HRESULT Error Message

0x80131890 Array of ELEMENT_TYPE_BYREF or ELEMENT_TYPE_TYPEDBYREF.

0x80131891 ELEMENT_TYPE_PTR can not be verified.

0x80131892 Unexpected vararg.

0x80131893 Unexpected Void.

0x80131894 BYREF of BYREF

0x80131896 Code size is zero.

0x80131897 Unrecognized use of vararg.

0x80131898 Missing call/callvirt/calli.

0x80131899 Cannot pass byref to a tail call.

0x8013189A Missing ret.

0x8013189B Void ret type expected for tail call.

0x8013189C Tail call return type not compatible.

0x8013189D Stack not empty after tail call.

0x8013189E Method ends in the middle of an instruction.

0x8013189F Branch out of the method.

0x801318A0 Finally handler blocks overlap.

0x801318A1 Lexical nesting.

0x801318A2 Missing ldsfld/stsfld/ldind/stind/ldfld/stfld/ldobj/stobj/initblk/cpblk.

0x801318A3 Missing ldind/stind/ldfld/stfld/ldobj/stobj/initblk/cpblk.

0x801318A4 Innermost exception blocks should be declared first.

0x801318A5 Calli not allowed on virtual methods.

0x801318A6 Call not allowed on abstract methods.

0x801318A7 Unexpected array type on the stack.

0x801318A9 Attempt to enter a try block with nonempty stack.

0x801318AA Unrecognized arguments for delegate ctor.

0x801318AB Delegate ctor not allowed at the start of a basic block when the function pointer
argument is a virtual method.

0x801318AC Dup, ldvirtftn, newobj delegate::.ctor() pattern expected (in the same basic block).

0x801318AD Ldftn/ldvirtftn instruction required before call to a delegate ctor.

0x801318AE Attempt to load address of an abstract method.

0x801318AF ELEMENT_TYPE_CLASS ValueClass in signature.

0x801318B0 ELEMENT_TYPE_VALUETYPE non-ValueClass in signature.

0x801318B1 Box operation on TypedReference, ArgHandle, or ArgIterator.

0x801318B2 Byref of TypedReference, ArgHandle, or ArgIterator.

0x801318B3 Array of TypedReference, ArgHandle, or ArgIterator.

0x801318B4 Stack not empty when leaving an exception filter.

0x801318B5 Unrecognized delegate ctor signature; expected I.

APPENDIX E ■ OFFLINE VERIF ICATION TOOL REFERENCE474

Ch24_AppE_6463_CMP2 7/25/06 7:38 PM Page 474

HRESULT Error Message

0x801318B6 Unrecognized delegate ctor signature; expected Object.

0x801318B7 Mkrefany on TypedReference, ArgHandle, or ArgIterator.

0x801318B8 Value type not allowed as catch type.

0x801318B9 ByRef not allowed as catch type.

0x801318BA Filter block should immediately precede handler block

0x801318BB ldvirtftn on static

0x801318BC callvirt on static

0x801318BD initlocals must be set for verifiable methods with one or more local variables.

0x801318BE branch/leave to the beginning of a catch/filter handler

0x801318BF call to .ctor only allowed to initialize this pointer from within a .ctor. Try newobj.

0x801318C0 Value type, ObjRef type or variable type expected.

0x801318C1 Expected address of value type, ObjRef type or variable type on the stack.

0x801318C2 Unrecognized type parameter of enclosing class.

0x801318C3 Unrecognized type parameter of enclosing method.

0x801318C4 Unrecognized type argument of referenced class instantiation.

0x801318C5 Unrecognized type argument of referenced method instantiation.

0x801318C6 Cannot resolve generic type.

0x801318C7 Method instantiation contains non boxable type arguments.

0x801318C8 Method parent instantiation contains non boxable type arguments.

0x801318C9 Field parent instantiation contains non boxable type arguments.

0x801318CA Unrecognized calling convention for an instantiated generic method.

0x801318CB Unrecognized generic method in method instantiation.

0x801318CC Missing ldelema or call following readonly prefix.

0x801318CD Missing callvirt following constrained prefix.

0x801318CE Method parent has circular class type parameter constraints.

0x801318CF Method has circular method type parameter constraints.

0x801318D0 Method instantiation has unsatisfied method type parameter constraints.

0x801318D1 Method parent instantiation has unsatisfied class type parameter constraints.

0x801318D2 Field parent instantiation has unsatisfied class type parameter constraints.

0x801318D3 Type operand of box instruction has unsatisfied class type parameter constraints.

0x801318D4 The ‘this’ argument to a constrained call must have ByRef type.

0x801318D5 The operand to a constrained prefix instruction must be a type parameter.

0x801318D6 The readonly prefix may only be applied to calls to array methods returning
ByRefs.

0x801318D7 Illegal write to readonly ByRef.

0x801318D8 A readonly ByRef cannot be used with mkrefany.

0x801318D9 Alignment specified for ‘unaligned’ prefix must be 1, 2, or 4.

0x801318DA The tail.call (or calli or callvirt) instruction cannot be used to transfer control out
of a try, filter, catch, or finally block.

Continued

APPENDIX E ■ OFFLINE VERIF ICATION TOOL REFERENCE 475

Ch24_AppE_6463_CMP2 7/25/06 7:38 PM Page 475

APPENDIX E ■ OFFLINE VERIF ICATION TOOL REFERENCE476

Table E-2. IL Continued

HRESULT Error Message

0x801318DB Stack height at all points must be determinable in a single forward scan of IL.

0x801318DC Call to base type of valuetype.

0x801318DD Cannot construct an instance of abstract class.

0x801318DE Unmanaged pointers are not a verifiable type.

0x801318DF Cannot LDFTN a non-final virtual method.

0x801318E0 Accessing type with overlapping fields.

0x801318E1 The ‘this’ parameter to the call must be the calling method’s ‘this’ parameter.

0x801318E2 Expected I4 on the stack.

0x801318F0 Unverifiable PE Header/native stub.

0x801318F1 Unrecognized metadata, unable to verify IL.

0x801318F2 Unrecognized appdomain pointer.

0x801318F3 Type load failed.

0x801318F4 Module load failed.

Ch24_AppE_6463_CMP2 7/25/06 7:38 PM Page 476

Index

477

■Special Characters
character, 365
#Blob stream, 77, 170, 229
#define BLOW_UP directive, 36
#define directive, 38
#define SYM1 directive, 36
#define SYM2 :SomeText: directive, 36
#define USE_MAPPED_FIELD directive, 36
#else directive, 36
#endif directive, 36
#GUID stream, 77
#ifdef SYM directive, 36
#ifndef SYM directive, 36
#include :MyHeaderFile.il: directive, 36
#Strings stream, 77
#undef SYM1 directive, 36
#US stream, 77, 170
& data type, 174
& evaluation stack type, 445
& modifier, 159
& type, 264
* (wildcard character), 354
* evaluation stack type, 445
= (equality character), 393, 453, 456
: (colon character), 393, 453, 456
/ (forward slash), 453, 456
- (hyphen), 453, 456
/ (slash character), 393

■Numbers
0x0000 value, 297
0x0001 value, 297
0x0002 value, 297
0x0004 value, 298
0x01 constraint flag, 230
0x02 constraint flag, 230
0x04 constraint flag, 230
0x08 constraint flag, 230
0x10 constraint flag, 230
4-byte integer type, 134
32-bit specific assemblies, 104
_32BIT_MACHINE flag, 46
32BITREQUIRED flag, 384

■A
A::Bar method, 198
A::Baz method, 198
abstract classes, 117

abstract keyword, 132
abstract method, Implementation flags, 188
abstract type semantics flag, 127
abstract virtual methods, 132, 253
access permissions, 350–353
Accessibility flags, 187
Action entry, 358
add arithmetical operation instruction, 270
add_<event_name> method, 318
add.ovf operation, 272
add.ovf.un operation, 272
Address method, 289
AddressOfCallBacks field, 66
AddressOfFunctions field, IMAGE_EXPORT_

DIRECTORY, 65
AddressOfIndex field, 66
AddressOfNameOrdinals field, IMAGE_

EXPORT_DIRECTORY, 65
AddressOfNames field, IMAGE_EXPORT_

DIRECTORY, 65
A::Foo method, 198
_AGGRESIVE_WS_TRIM flag, 46
aliasing, 31–33, 431
/ALIGNMENT=<int> command, 454
/ALL option, 458
All property, RegistryPermission permission,

352
AllowMultiple Boolean property, 337
alphanumeric characters, 122
and operation, 272
ansi bstr native type, 372
ansi flag, 20
ansi keyword, 10, 365
ansi string formatting flags, 128
AppBase (application base), 101, 103
AppDomain-bound objects, 96
application base (AppBase), 101, 103
application configuration file, 102
application domain, 94
application execution, 304
ApplicationException, interoperability

exceptions, 308
Architecture data address, 52
<arg_list> argument list, 332
<arg_type> value, 160
arglist instruction, 216
ArgumentException, loader, 306
ArgumentOutOfRangeException, execution

engine, 306

Ch25_Index_6463_FINAL 7/27/06 3:16 PM Page 477

arithmetical instructions
arithmetical operations, 270–271
bitwise operations, 272
block operations, 276
constant loading, 268–269
conversion operations, 273–274
indirect loading, 269
indirect storing, 269–270
logical condition check instructions,

275–276
overflow arithmetical operations, 271–272
overflow conversion operations, 274–275
overview, 267
shift operations, 273
stack manipulation, 267–268

ArithmeticException, execution engine, 306
arrays, 149–150
ArrayTypeMismatchException, execution

engine, 307
AskForNumber: label, 13
ASMMETA tool, 398–400
assembler, 25
assemblies, 4
assembly accessibility flag, 166
Assembly declaration, 98, 112, 397–398
Assembly descriptors, 82
.assembly extern directive, 109, 111
assembly flag, 11
Assembly Linker tool, 113
Assembly metadata item, 9
Assembly metadata table and declaration,

97–99
assembly method, Accessibility flag, 188
Assembly Reference metadata item, 9
AssemblyCultureAttribute attribute,

System.Reflection, 343
AssemblyDelaySignAttribute attribute,

System.Reflection, 343
AssemblyKeyFileAttribute attribute,

System.Reflection, 343
AssemblyKeyNameAttribute attribute,

System.Reflection, 343
AssemblyOS descriptors, 82
AssemblyProcessor descriptors, 82
AssemblyRef declarations, 9, 112, 397
AssemblyRef descriptors, 82
AssemblyRef metadata table and declaration,

99–101
AssemblyRef token, 129
AssemblyRefOS descriptors, 82
AssemblyRefProcessor descriptors, 82
AssemblyVersionAttribute attribute,

System.Reflection, 343
Assert action, 349
Assert security action code, 358
Assertion property, SecurityPermission

permission, 352

Association entry, MethodSemantics
metadata table, 317

AsyncCallback delegate, 137
asynchronous calls, 136
at FormatData clause, 18
attribute classes, 350
attribute declaration, 334
<attribute_type> instance constructor, 332
attributes, class. See also custom attributes

class layout information, 131
class references, 129
class visibility and friend assemblies,

128–129
flags, 126–128
interface implementations, 130–131
overview, 126
parent of type, 129–130

AttributeUsageAttribute custom attribute,
336

augmentation, class, 140–141
augmenting segments, 141
auto keyword, 10, 101
auto layout flag, 127
autochar keyword, ILAsm, 365
autochar string formatting flags, 128
auxiliary lexical tokens, 411

■B
Bar method, 100
base address conflict, 42
Base entry, Export Directory table, 386
Base field, IMAGE_EXPORT_DIRECTORY, 65
.base keyword, 37
Base Relocation table address, 52
/BASE=<int> command, 455
B::Bar method, 198
B::BarBaz method, 201
B::Baz method, 198
beforefieldinit flag, 210
beforefieldinit type implementation flags,

128
BeginInvoke method, 137
BeginInvoke thread starter, 136
beq <int32> instruction, 264
beq.s <int8> instruction, 264
bestfit:off keyword, ILAsm, 365
bestfit:on keyword, ILAsm, 365
B::Foo method, 198
bge <int32> instruction, 264
bge.s <int8> instruction, 265
bge.un <int32> instruction, 265
bge.un.s <int8> instruction, 265
bgt <int32> instruction, 265
bgt.s <int8> instruction, 265
bgt.un <int32> instruction, 265
bgt.un.s <int8> instruction, 265
binary flags, 120, 189

■INDEX478

Ch25_Index_6463_FINAL 7/27/06 3:16 PM Page 478

binding, 102
binpath, 103
bitwise operations, 272
ble <int32> instruction, 265
ble.s <int8> instruction, 265
ble.un <int32> instruction, 265
ble.un.s <int8> instruction, 265
blittable, 371
Blob heap, 75
block operations, 276
blt <int32> instruction, 265
blt.s <int8> instruction, 265
blt.un <int32> instruction, 265
blt.un.s <int8> instruction, 265
bne.un <int32> instruction, 264
bne.un.s <int8> instruction, 264
bool get_IsCompleted() method, 137
bool type, 371
Boolean constants, 170
Boolean parameters, 331
Boolean value, 275
Boolean variable, 135
Bound Import table address, 52
box <token> instruction, 287
boxed values, 133–134
boxing, 133, 135
br <int32> instruction, 263
br PrintAndReturn instruction, 16
branching instructions, 25
break instruction, 266
/BREAK=<maxErrorCount> command-line

option, 460
brfalse (brnull, brzero) <int32> instruction,

264
brfalse Error instruction, 16
brfalse ItsEven instruction, 16
brfalse.s (brnull.s, brzero.s) <int8>

instruction, 264
br.s <int8> instruction, 263
brtrue (brinst) <int32> instruction, 264
brtrue.s (brinst.s) <int8> instruction, 264
bstr native type, 372
BuildNumber, 98–99
byte sequence, 331
bytearray, Unicode characters, 170
bytearray segment, 18
bytearray var data type, 174
/BYTES option, 392, 456
_BYTES_REVERSED_HI flag, 46
_BYTES_REVERSED_LO flag, 46

■C
C# compiler, 244
C# support method, 220
C++ aliasing, 33
C++ compiler, 152
C++ support method, 220

C++ templates, 225
call <token> instruction, 281
call instruction, 134
call string [mscorlib]System.Console, 14
call vararg int32 sscanf(string,int8*,.,int32*)

instruction, 15
calli <token> instruction, 283
callmostderived flag, 380
callvirt <token> instruction, 282
callvirt instruction, 134
Caspol.exe utility, 357
castclass <token> instruction, 287
catch [mscorlib]System.Exception

instruction, 28
catch clause, 28
catch handler, 300
/CAVERBAL option, 457
.cctor (class constructors), 179, 214, 250
.cctor invocation schedule, 210
.cctor keyword, 190
.cctor method, 214
cdecl convention, 20
cdecl keyword, ILAsm, 365
ceq condition, 275
CertFile property,

PublisherIdentityPermission, 355
Certificate table address, 52
cgt operation, 275
cgt.un operation, 276
CHANGE! comment, 23
char type, 371
char* var data type, 174
Characteristics field, 54, 65, 67
CharArray8 value type, 21
charmaperror:off keyword, ILAsm, 365
charmaperror:on keyword, ILAsm, 365
check method, 19, 25
CIL (common intermediate language), 4
cil keyword, 12
cil managed implementation flags, 20
cil method, Code type, 190
circular dependencies, 398–400
ckfinite operation, 276
class amendment, 10
class attributes, 73
class augmentation, 140, 396
class constructors (.cctor), 179, 214, 250
class declarations, 141

class body declarations, 421–422
generic type parameters declaration, 421
overview, 420–421
sample code, 9–11, 28–30

class descriptor, 74
Class entry, MemberRef metadata table, 168
.class extern directive, 111
class flags, 140
class identifier (CLSID), 375

■INDEX 479

Find it faster at http://superindex.apress.com
/

Ch25_Index_6463_FINAL 7/27/06 3:16 PM Page 479

Class index, TypeDef table, 121
class interface, 375
class keyword, 232
class layout, 131
class leaf, 390
Class method, MethodImpl table, 194
class names, 124
class referencing, 129, 412
class type, 371
<class_ref> class reference, 332
<class_str> parameter, 155
classes

class attributes
class layout information, 131
class references, 129
class visibility and friend assemblies,

128–129
flags, 126–128
interface implementations, 130–131
overview, 126
parent of type, 129–130

class augmentation, 140–141
class metadata

ClassLayout metadata table, 121–122
InterfaceImpl metadata table, 121
NestedClass metadata table, 121
overview, 118–120
TypeDef metadata table, 120
TypeRef metadata table, 120–121

delegates, 136–138
enumerations, 135–136
forward declaration of, 21–22
full class names, 125–126
interfaces, 131–133
nested types, 138–140
referencing current class and its relatives,

37–38
representing in signatures, 157–158
value types

boxed and unboxed values, 133–134
derivation of value types, 135
derivation of value types

“ \r “jalambcomWE18t180, 135
instance members of value types,

134–135
overview, 133

ClassInterfaceAttribute attribute, 338
ClassLayout descriptors, 81
ClassLayout metadata table, 121–122
/CLASSLIST option, 458
ClassSize entry, 122
ClassToken/FilterOffset entry, EH Clause, 296
/CLOCK command, 454, 460
CLR. See common language runtime (CLR)
CLS (Common Language Specification), 4
CLSComplianceAttribute attribute, System,

344

CLSID (class identifier), 375
clt operation, 276
clt.un operation, 276
_CNT_CODE flag, 54
_CNT_INITIALIZED_DATA flag, 54
_CNT_UNINITIALIZED_DATA flag, 54
coclass, 375
code. See also sample code

compacting, 23–26
making easier

aliasing, 31–33
compilation control directives, 34–36
overview, 31
referencing current class and its

relatives, 37–38
protecting, 26–30

code base (CodeBase), 102
Code management, 190
code snippet, 334
Code type, 190
code verifiability, 292–293
CodeAccessSecurityAttribute attribute, 340
CodeBase, 102
coded tokens, 85–88
COFF header, 43–47, 121
colon character (:), 393, 453, 456
column descriptor, 80
ComAliasNameAttribute attribute, 338
CombineImpl instance method, 315
CombineImpl virtual method, 313
ComConversionLossAttribute attribute, 338
COMIMAGE_FLAGS_32BITREQUIRED flag,

57, 384
COMIMAGE_FLAGS_IL_LIBRARY bit flags, 57
COMIMAGE_FLAGS_ILONLY bit flags, 57
COMIMAGE_FLAGS_ILONLY common

language runtime header flag, 384
COMIMAGE_FLAGS_NATIVE_ENTRYPOINT

bit flags, 57
COMIMAGE_FLAGS_STRONGNAMESIGNE

D bit flags, 57
COMIMAGE_FLAGS_TRACKDEBUGDATA

bit flags, 57
command-line options, 459

IL assembler, 453–455
IL disassembler

file or console output options
(PE files only), 457–458

file output options (PE files only), 457
ILAsm code-formatting options

(PE files only), 456–457
metadata summary option, 458
output redirection options, 456
overview, 456

ILAsm compiler, 394
overview, 453

■INDEX480

Ch25_Index_6463_FINAL 7/27/06 3:16 PM Page 480

command-line parameter, 459
common intermediate language (CIL), 4
common language runtime (CLR), 47, 88,

102, 123, 126, 205
overview, 3–5, 7, 25
primitive types in

data pointer types, 146–148
function pointer types, 148
modifiers, 151–153
native types, 153–155
overview, 145
primitive data types, 145–146, 153–155,

157
variant types, 155–157
vectors and arrays, 149–150

common language runtime header
data constants, 63
data sections, 63
EntryPointToken field, 58
Flags field, 57
header structure, 55–56
managed resources, 69
overview, 55
relocation section, 59–61
resources, 67
StrongNameSignature field, 59
text section, 61–62
thread local storage, 66–67
unmanaged export table, 64–66
unmanaged resources, 67–69
v-table, 63
VTableFixups field, 58–59

common language runtime string constants,
13

Common Language Specification (CLS), 4
compacting code, 23–26
comparative branching instructions, 264–265
compilation control directives, 34–36
compilers, 88
compiling in debug mode, 402–408
composite (dotted) name, 168
compressed metadata, 74
compression, 85
ComRegisterFunctionAttribute attribute, 338
ComSourceInterfacesAttribute attribute, 338
ComUnregisterFunctionAttribute attribute,

338
ComVisibleAttribute attribute, 339
concrete types, 226
conditional branching instructions, 264
configuration files, 102
console output method, 14
<const_decl> method, 323
constant declarations, 427–429
Constant descriptors, 81
constant loading, 268–269
Constant metadata, 169, 171

Constant table, 171
constants, 63
constrained. <token> instruction, 285
constrained virtual calls, 284–285
Constraint entries, 229
constraint flags, 229–230
constraints, 118, 233–234
constructors

class constructors
and beforefieldinit flag, 210–212
module constructors, 212–213
overview, 209–210

vs. data constants, 179–181
instance constructors, 213–214

contents, 96
Context-bound objects, 96
Contract flags, 188
ControlAppDomain property,

SecurityPermission permission, 353
ControlDomainPolicy property,

SecurityPermission permission, 353
ControlEvidence property,

SecurityPermission permission, 353
controlled mutability managed pointer, 290
ControlPolicy property, SecurityPermission

permission, 353
ControlPrincipal property,

SecurityPermission permission, 353
ControlThread property, SecurityPermission

permission, 353
conversion operations, 273–275
conv.i operation, 274
conv.i1 operation, 274
conv.i2 operation, 274
conv.i4 operation, 274
conv.i8 operation, 274
conv.ovf.i operation, 275
conv.ovf.i1 operation, 274
conv.ovf.i1.un operation, 274
conv.ovf.i2 operation, 275
conv.ovf.i2.un operation, 275
conv.ovf.i4 operation, 275
conv.ovf.i4.un operation, 275
conv.ovf.i8 operation, 275
conv.ovf.i8.un operation, 275
conv.ovf.i.un operation, 275
conv.ovf.u operation, 275
conv.ovf.u1 operation, 274
conv.ovf.u1.un operation, 274
conv.ovf.u2 operation, 275
conv.ovf.u2.un operation, 275
conv.ovf.u4 operation, 275
conv.ovf.u4.un operation, 275
conv.ovf.u8 operation, 275
conv.ovf.u8.un operation, 275
conv.ovf.u.un operation, 275
conv.r4 operation, 274

■INDEX 481

Find it faster at http://superindex.apress.com
/

Ch25_Index_6463_FINAL 7/27/06 3:16 PM Page 481

conv.r8 operation, 274
conv.r.un operation, 274
conv.u operation, 274
conv.u1 operation, 274
conv.u2 operation, 274
conv.u4 operation, 274
conv.u8 operation, 274
<cookie_str> parameter, 155
COR_VTABLE_32BIT flag, 59
COR_VTABLE_64BIT flag, 59
COR_VTABLE_CALL_MOST_DERIVED flag, 59
COR_VTABLE_FROM_UNMANAGED flag, 59
CorCallingConvention enumeration, 158
CorElementType enumeration, 145
CorFieldAttr enumeration, 166
CorHdr.h header file, 55
CorMethodAttr enumeration, 187
CorMethodImpl enumeration, 190
CorNativeType enumeration, 153
CorParamAttr enumeration, 191
CorUnmanagedCallingConvention

enumeration, 161
cpblk operation, 276
cpobj <token> instruction, 286
Create property, RegistryPermission

permission, 352
cross-domain communications, 96
CSV suboption, <met_opt>, 393
.ctor keyword, 190
.ctor method, 214
custom attribute declarations

overview, 429
verbal description of custom attribute

initialization blob, 429
custom attributes, 96, 327

aliasing of, 431
custom attribute declaration

assembly linker, 343
common language specification (CLS)

compliance, 344
execution engine and JIT compiler,

337–338
interoperation subsystem, 338–340
overview, 332–337
pseudocustom attributes, 344–345
remoting subsystem, 341–342
security, 340–341
Visual Studio debugger, 342–343

custom attribute value
encoding, 329–331
verbal description of, 331–332

CustomAttribute metadata table, 328–329
overview, 327–328

custom permissions, 356–357
CustomAttribute descriptors, 81
CustomAttribute metadata table, 328–329
cyclic dependencies, 234–236

■D
data constants. See fields and data constants
data declaration, 18–19, 431
data directory table, 51–52
data pointer types, 146–148
data sections, common language runtime

header, 63
data type nonterminals, 411
<data_label> nonterminal symbol, 172
<data_type> nonterminal symbol, 173
/DEBUG command, 337, 454
Debug data address, 52
debug mode, compiling in, 402–408
/DEBUG option, ILAsm compiler, 394
_DEBUG_STRIPPED flag, 46
/DEBUG=IMPL command, 454
/DEBUG=OPT command, 454
DebuggableAttribute attribute, 402
debugger, 266
DebuggerHiddenAttribute attribute,

System.Diagnostics, 342
DebuggerStepThroughAttribute, 343
declaration time, 234
declarations, 118, 159
declarative actions, 348–349
declarative security, 347–348
declarative security metadata, 358–359
DeclSecurity descriptors, 81
DeclSecurity entry, 359
DeclSecurity metadata records, 340
default flag value, 109
default values, 169–171
defined type, 121
Defining integer, 170
DEFLT_CTOR symbol, 37
Delay import descriptor address, 52
Delegate interface, 376
delegates, 136–138, 313–315
Demand action, 349
Demand security action code, 358
Deny action, 349
Deny security action code, 358
dependencies, 96
derivation of value types, 135
descriptor, 79
direct calls, 281–282
disassembler, 25
disassembly text, 124
DispIdAttribute attribute, 339
div arithmetical operation instruction, 270
DivideByZeroException, execution engine,

307
div.un arithmetical operation instruction, 271
/DLL command, 13, 385, 453
DLL files (nonrunnable executables), 58
_DLL flag, 46
/DLL option, ILAsm compiler, 394

■INDEX482

Ch25_Index_6463_FINAL 7/27/06 3:16 PM Page 482

DllMain function, 58
DllNotFoundException, interoperability

exceptions, 308
dotted names, 123
<dotted_name> value, 126
double pointers, 371
dup instruction, 268
DuplicateWaitObjectException, execution

engine, 307
DWORD entry, 206
DynamicInvoke method, 376

■E
E_T_FNPTR type, 148
EAT (Export Address table), 65, 381
Ecma International/ISO standard

specification, 117
.edata section, 64
EH block ending instructions, 266–267
EHTable binary flag, 296
element loading, 290–291
element storing, 291
ELEMENT_TYPE_* codes, 329
ELEMENT_TYPE_ARRAY type, 289
ELEMENT_TYPE_SZARRAY type, 289
embedded security requirements, 347
/ENC=<file> command, 455
EncBaseId column, 105
EncId column, 105
ENCLog descriptors, 82
encloser, 17
enclosing class, 17
EnclosingClass index, 121
ENCMap descriptors, 82
encoded types, 158
EndAddressOfRawData field, 66
endfilter instruction, 266, 304
endfinally instruction, 267, 304
EndInvoke method, 137
enhancing code

compacting code, 23–26
overview, 23
protecting code, 26–30

ENT (Export Name table), 65, 381
.entrypoint directive, 13, 106
EntryPointNotFoundException,

interoperability exceptions, 308
EntryPointToken entry, 58, 106
enum flag, 130
enum semantics pseudoflags, 128
enumerations, 135–136, 179
enums, 135
EnvironmentPermission permission, 350
EnvironmentPermissionAttribute attribute,

340
environments, 225
equality character (=), 393, 453, 456

error codes and messages, 461–476
/ERROR command, 455, 460
evaluation stack, 267
event declaration, 426
Event descriptors, 81
event listeners, 313
event sinks, 313
Event table, 316–317
EventFlags entry, Event table, 316
EventList entry, EventMap, 317
EventMap descriptors, 81
EventMap table, 317
EventPtr descriptors, 81
events

and delegates, 313–315
event declaration, 318–320
event metadata

Event table, 316–317
EventMap table, 317
MethodSemantics table, 317–318
overview, 316

overview, 313
EventType entry, Event table, 316
exception handling

EH clause internal representation,
295–296

exception types
execution engine exceptions, 306–307
interoperability exceptions, 308
JIT compiler exceptions, 306
loader exceptions, 306
overview, 305
subclassing exceptions, 308
unmanaged exception mapping, 309

label form of EH clause declaration,
299–300

overview, 295
processing exceptions, 304–305
scope form of EH clause declaration,

301–303
types of EH clauses, 297–298

exception handling table, 205
Exception table address, 52
/EXE command, 453
_EXECUTABLE_IMAGE flag, 45
executables (EXE files), 58
execution engine, 304
execution engine exceptions, 306–307
Execution property, SecurityPermission

permission, 353
ExecutionEngineException, execution

engine, 307
expanding edge, 235
explicit keyword, 10
explicit layout flag, 127
explicit layouts, 175–177
explicit method overriding, 199–205

■INDEX 483

Find it faster at http://superindex.apress.com
/

Ch25_Index_6463_FINAL 7/27/06 3:16 PM Page 483

explicit modifier, 161
explicit type layout, 130
Export Address table (EAT), 65, 381
.export directive, 384
Export Directory table, 51, 64, 381, 386
Export Name table (ENT), 65, 381
ExportedType declarations, 112, 397
ExportedType descriptors, 82
ExportedType metadata table and

declaration, 110–111
ExportedType table, 110
exposed items, 132
extends clauses, 10, 22, 129, 235
extends leaf, 390
Extends token, 120
external source directives, 425
external tokens, 85

■F
famandassem accessibility flag, 166
famandassem flag, 11
famandassem method, Accessibility flag, 188
family accessibility flag, 166
family flag, 11
family method, Accessibility flag, 188
famorassem accessibility flag, 166
famorassem flag, 11
famorassem method, Accessibility flag, 188
fastcall keyword, ILAsm, 365
fat header, 296
Fat Header structure, 206
FatFormat binary flag, 296
fault handler, 300
field declaration, 11–12, 167, 422
Field Definition (FieldDef) metadata item, 11
Field descriptors, 81
Field entry, FieldLayout metadata table, 175
Field entry, FieldRVA table, 172
field initialization, 179
field int32 Odd.or.Even, 14
field keyword, 33, 175, 178, 332
field mapping, 63
field referencing, 419–420
field signatures, 159
Field table, 158
field token, 169
FieldAccessException, execution engine, 307
FieldDef (Field Definition) metadata item, 11
FieldLayout descriptors, 81
FieldLayout metadata table, 175
FieldLayout table, 165
FieldList entry, 166
FieldList index, 120
FieldMarshal descriptors, 81
FieldPtr descriptors, 80
FieldRVA descriptors, 82
FieldRVA records, 172

FieldRVA table, 172
fields, aliasing of, 431
fields and data constants

constructors vs. data constants, 179–181
data constants declaration, 173–174
default values, 169–171
explicit layouts and union declaration,

175–177
field metadata

defining Field, 166–168
overview, 165
referencing Field, 168

global fields, 177–179
instance and static fields, 168–169
mapped fields, 171–173
overview, 165

File declarations, 106, 112, 397
File descriptors, 82
file directive, 109, 111
File metadata table and declaration, 106–107
file or console output options (PE files only),

457–458
file output options (PE files only), 457
file pointer, 42
file reference (File), 58
FileDialogPermission permission, 351
FileDialogPermissionAttribute attribute, 340
FileIOPermission permission, 351
FileIOPermissionAttribute attribute, 340
filter block, 304
filter clause, 303
filter handler, 300
final method, Contract flag, 188
Finalize method, 215
finally handler, 300
Fixup table, 59
Flags, 99, 126–128
Flags binary flag entry, 189
Flags column, 98, 106, 109–110
Flags entries, 166, 186, 191, 228, 296
Flags field, common language runtime

header, 57
Flags property, ReflectionPermission

permission, 352
Flags property, SecurityPermission

permission, 353
/FLAGS=<int> command, 454
<flags> clause, 250
Float evaluation stack type, 445
Float type, 264
float32 data type, 174, 445
float64 data type, 174
float64 instruction parameter types, 445
floating-point format, 170
/FOLD command, 454
Foo class, 100, 157
Format global field, 24

■INDEX484

Ch25_Index_6463_FINAL 7/27/06 3:16 PM Page 484

Format static field, 16, 21
FormatData clause, 18
FormatException, execution engine, 307
forward class declaration, 21–22, 141
/FORWARD option, 457
forward slash (/), 453, 456
forwarder RVA, 65
forwardref method, 190
Framework class library, 7
friend assemblies, 128–129
fromunmanaged flag, 380, 382
full class names, 125–126
function pointer, 136, 148, 251, 283

■G
GAC (global assembly cache), 94, 102
garbage collection, 4, 215, 368
<gen_params> clause, 231, 250
general metadata header, 76–78
Generation column, 105
generic arity, 228
generic instantiation, 229
generic methods. See also generic methods

calling, 251–253
defining in ILAsm, 250
metadata

MethodSpec metadata table, 249
overview, 247–248

overriding virtual generic methods,
253–257

overview, 247
signatures of, 249–250

generic signature, 228
generic types, 226

addressing type parameters, 231–232
constraint flags, 229–230
defining

cyclic dependencies, 234–236
inheritance, implementation,

constraints, 233–234
defining in ILAsm, 230–231
generic type instantiations, 232–233
instantiations, 232–233
members of

overview, 237–239
virtual methods in generic types,

239–242
metadata

GenericParam metadata table, 228–229
GenericParamConstraint metadata

table, 229
overview, 226–228
TypeSpec metadata table, 229

nested, 243–245
overview, 225–226
parameters declaration, 421

GenericParam descriptors, 82
GenericParam metadata table, 228–229
GenericParam table, 227, 248
GenericParamConstraint descriptors, 82
GenericParamConstraint metadata table, 229
GenericParamConstraint table, 231, 248
Get method, 289
get_<property_name> method, 321
get_AsyncWaitHandle interface, 137
GetNextArg method, 216–217
GetRemainingCount method, 216
GetRemainingCount return value, 217
getters, 321
global assembly cache (GAC), 94, 102
global fields, 177–179
global items, sample code, 16–17
Global pointer, 52
globally unique identifier (GUID), 328
GotDotNet, 397
govern class augmentation, 140
grammar reference

aliasing of types, methods, fields and
custom attributes, 431

class declaration
class body declarations, 421–422
generic type parameters declaration, 421
overview, 420–421

class referencing, 412
compilation control directives, 413
constant declarations, 427–429
custom attribute declarations

overview, 429
verbal description of custom attribute

initialization blob, 429
data declaration, 431
data type nonterminals, 411
event declaration, 426
field declaration, 422
identifier nonterminals, 412
lexical tokens, 411

grammar reference
managed types in signatures, 416–417
manifest declarations, 414–415
method and field referencing, 419–420
method declaration

external source directives, 425
IL instructions, 426
managed exception handling directives,

425
method body declarations, 424–425
overview, 423–424

module parameter declaration, 413
module-level declarations, 412
native types in marshaling signatures,

417–419
property declaration, 427
security declarations, 430

■INDEX 485

Find it faster at http://superindex.apress.com
/

Ch25_Index_6463_FINAL 7/27/06 3:16 PM Page 485

GUID (globally unique identifier), 328
GUID heap, 75
GuidAttribute attribute, 339

■H
handler <label> to <label> code, 299
HandlerLength entry, EH Clause, 296
HandlerOffset entry, EH Clause, 296
hash blob, 59
hash value, 106
HashAlgId column, 97
HashValue, 99, 106
HEA suboption, <met_opt>, 393
header structure, common language runtime

header, 55–56
/HEADERS option, 457
heaps, 75–76
heuristics, 267
HEX suboption, <met_opt>, 393
<hexbytes> hexadecimal numbers, 332
hidebysig method, Contract flag, 188
high-level language compilers, 29, 88
/HRESULT command-line option, 460
HRESULT returns, 368
/HTML option, 456
hyphen (-), 453, 456

■I
IAT (Import Address table), 52, 383
identifier, 122
identifier nonterminals, 412
identity, 96
identity permissions, 354–355
IDispatch flag, 369
IDispatchImplAttribute attribute, 339
IDL (interface description language), 327
IEnumerable interface, 334
/IGNORE=@<err_code_file> command-line

option, 460
/IGNORE=<err_code>[,<err_code>.]

command-line option, 460
IIS (Internet Information Services), 95
IL (intermediate language), 4
IL assembler, 61, 65, 69, 453–455
/IL command-line option, 459
.il default source file extension, 453
IL disassembler (ILDASM), 3, 69, 302, 335,

389–390, 392–394
command-line options

file or console output options
(PE files only), 457–458

file output options (PE files only), 457
ILAsm code-formatting options

(PE files only), 456–457
metadata summary option, 458
output redirection options, 456
overview, 456

IL inlining in high-level languages, 400–401
IL instruction set reference, 445–451
IL instructions, 426
IL verifier (ILVerifier)., 459
ILAsm code-formatting options

(PE files only), 456–457
ILAsm compiler, 25, 394
ILAsm naming conventions, 122–123
ILAsm notation, 146, 249, 263
ilasm simple console command, 20
ilasm simple1 console command, 25
ilasm simple2 console command, 30
ILAsm source code, 395
ILAsm syntax, 98, 166, 170, 232, 268
ILASM_INCLUDE environment variable, 36
ILDASM. See IL disassembler (ILDASM)
ILLINK, 398
ILONLY flag, 384
image files, 42
IMAGE_CEE_CS_CALLCONV_DEFAULT

method, 158
IMAGE_CEE_CS_CALLCONV_EXPLICITTHIS

method, 159
IMAGE_CEE_CS_CALLCONV_FIELD field,

158–159
IMAGE_CEE_CS_CALLCONV_HASTHIS

instance method, 159
IMAGE_CEE_CS_CALLCONV_LOCAL_SIG

local variable, 158
IMAGE_CEE_CS_CALLCONV_PROPERTY

calling convention, 322
IMAGE_CEE_CS_CALLCONV_PROPERTY

property, 159–160
IMAGE_CEE_CS_CALLCONV_VARARG

method, 158
IMAGE_CEE_UNMANAGED_CALLCONV_

C calling convention, 161
IMAGE_CEE_UNMANAGED_CALLCONV_

FASTCALL calling convention, 161
IMAGE_CEE_UNMANAGED_CALLCONV_

STDCALL calling convention, 161
IMAGE_CEE_UNMANAGED_CALLCONV_

THISCALL calling convention, 161
IMAGE_REL_BASED_ABSOLUTE relocation

type, 60
IMAGE_REL_BASED_DIR64 relocation type,

60
IMAGE_REL_BASED_HIGH relocation type,

60
IMAGE_REL_BASED_HIGH3ADJ relocation

type, 60
IMAGE_REL_BASED_HIGHADJ relocation

type, 60
IMAGE_REL_BASED_HIGHLOW relocation

type, 60
IMAGE_REL_BASED_IA64_IMM64

relocation type, 60

■INDEX486

Ch25_Index_6463_FINAL 7/27/06 3:16 PM Page 486

IMAGE_REL_BASED_LOW relocation type,
60

IMAGE_REL_BASED_MIPS_JMPADDR
relocation type, 60

IMAGE_REL_BASED_MIPS_JMPADDR16
relocation type, 60

IMAGE_REL_BASED_REL32 relocation type,
60

IMAGE_REL_BASED_SECTION relocation
type, 60

IMAGE_SECTION_HEADER structure, 53
imperative security, 347
<impl> nonterminal symbol, 190
implementation, 132, 190, 226
Implementation column, 109
Implementation entry, 109
Implementation flags, 188
implementation map, 364
Implementation token, 111
implements clauses, 11, 22, 130, 235
implements leaf, 390
ImplFlags binary flag entry, 189
ImplMap descriptors, 82
Import Address table (IAT), 52, 383
import flag, 369
Import table address, 51
import type implementation flags, 127
ImportedFromTypeLibAttribute attribute,

339
ImportName entry, 367
ImportScope entry, 367
/INC=<include_path> command-line

option, 36
/INCLUDE=<path> command, 454
IndexOutOfRange exception, 290
indirect call signatures, 161
indirect calls, 283
indirect loading, 269
indirect storing, 269–270
Infrastructure property, SecurityPermission

permission, 353
inheritance, 226, 233–234
inheritance constraint, 229
Inheritance Demand action, 349
Inheritance Demand security action code,

358
Inherited Boolean property, 337
init keyword, 13, 208
initblk operation, 276
initialization data, 173
initobj <token> instruction, 287
initonly contract flag, 167
initonly flag, 181
initonly method, 214
InlineIL tool, 401
input/output flags, 191
install-time code generation, 7

instance constructors (.ctor), 136, 179,
213–215, 250

instance destructors, 215
instance fields, 168–169
instance finalizers, 215
instance initialization, 214
instance keyword, 195
instance members of value types, 134–135
instance methods, 194–199, 247
instance vararg calling convention, 160
instantiation, of generic methods, 251
Instantiation entry, 249
instantiation time, 234
instructions, IL

addressing fields, 280
arithmetical instructions

arithmetical operations, 270–271
bitwise operations, 272–273
block operations, 276
constant loading, 268–269
conversion operations, 273–274
indirect loading, 269
indirect storing, 269–270
logical condition check instructions,

275–276
overflow arithmetical operations,

271–272
overflow conversion operations, 274–275
overview, 267
shift operations, 273
stack manipulation, 267–268

calling methods
constrained virtual calls, 284–285
direct calls, 281–282

instructions
indirect calls, 283
overview, 281
tail calls, 283–284

classes and value types, 285–289
code verifiability, 292–293
labels and flow control instructions

break instruction, 266
comparative branching instructions,

264–265
conditional branching instructions, 264
EH block ending instructions, 266–267
managed EH block exiting instructions,

266
overview, 263
ret instruction, 267
switch instruction, 265–266
unconditional branching instructions,

263
local block allocation, 279
local variable loading, 278
local variable reference loading, 278
local variable storing, 278–279

■INDEX 487

Find it faster at http://superindex.apress.com
/

Ch25_Index_6463_FINAL 7/27/06 3:16 PM Page 487

instructions (continued)
long-parameter and short-parameter

instructions, 262
method argument address loading, 277
method argument list, 278
method argument loading, 277
method argument storing, 277
overview, 261–262
prefix instructions, 279–280
vector instructions

element address loading, 290
element loading, 290–291
element storing, 291
overview, 289
vector creation, 289–290

int value type, 162
int8 data type, 174
int8 instruction parameter types, 445
int16 data type, 174
int16 foo field, 219
int32 data type, 174
int32 evaluation stack type, 445
int32 flag, 380
int32 foo field, 219
int32 Foo(int32) virtual method, 199
int32 instruction parameter types, 445
int32 keyword, 12–13
int32 parameter, 331
int32 type, 264
int32[,] specification, 150
int32[][] specification, 150
int64 data type, 174
int64 evaluation stack type, 445
int64 flag, 380
int64 instruction parameter types, 445
int64 type, 264
integer offsets, 263
integer reference number (ID), 67
interface description language (IDL), 327
interface flag, 130
interface implementations, 130–131
interface keyword, 132
Interface token, 121
interface type semantics flag, 127
InterfaceImpl descriptors, 81
InterfaceImpl metadata table, 121
InterfaceImpl records, 131
InterfaceImpls custom attribute, 335
interfaces, 131–133
InterfaceTypeAttribute attribute, 339
intermediate language (IL), 4
internalcall method, 191
International Organization for

Standardization (ISO), 4
Internet Information Services (IIS), 95
Internet value, 354
interop assembly, 369

interoperability, 190, 308
Intranet value, 354
InvalidCast exception, 375
InvalidComObjectException, interoperability

exceptions, 308
InvalidProgramException, JIT compiler, 306
Invoke method, 313
IProvideClassInfo2::GetGUID() method, 375
IProvideClassInfo::GetClassInfo() method,

375
ISecurityEncodable interface, 357
isinst <token> instruction, 287
ISO (International Organization for

Standardization), 4
IsolatedStorageFilePermission permission,

351
IsolatedStorageFilePermissionAttribute

attribute, 340
/ITANIUM command, 455
Itanium-specific assemblies, 104
item declaration, 333
/ITEM option, 394
/ITEM=<class>[::<method>[(<sig>)] option,

457
/ITEM=<item_description> option, 392
IX interface, 199
IY interface, 199

■J
JIT (just-in-time) compiler, 5
JIT compiler exceptions, 306
jmp <token> instruction, 281
just-in-time (JIT) compiler, 5

■K
:KABOOM!: string constant, 29
Kennedy, Andrew, 225
/KEY:@<private_key_source_name> option,

ILAsm compiler, 394
/KEY:<private_key_file_name> option,

ILAsm compiler, 394
/KEY=@<keysource> command, 454
/KEY=<keyfile> command, 454
KeyContainerPermissionAttribute attribute,

341

■L
label form, 301
labels and flow control instructions

break instruction, 266
comparative branching instructions,

264–265
conditional branching instructions, 264
EH block ending instructions, 266–267
managed EH block exiting instructions, 266
overview, 263
ret instruction, 267

■INDEX488

Ch25_Index_6463_FINAL 7/27/06 3:16 PM Page 488

switch instruction, 265–266
unconditional branching instructions, 263

Lame Linker, 398
.language <Language_GUID>[,<Vendor_

GUID>[,<Document_GUID>]]
directive, 403

.language directive, 406
_LARGE_ADDRESS_AWARE flag, 46
lasterr keyword, ILAsm, 365
ldarg <unsigned int16> instruction, 277
ldarg.0 instruction, 277
ldarg.1 instruction, 277
ldarg.2 instruction, 277
ldarg.3 instruction, 277
ldarga <unsigned int16> instruction, 277
ldarga.s <unsigned int8> instruction, 277
ldarg.s <unsigned int8> instruction, 277
ldc.i4 <int32> instruction, 268
ldc.i4 1 instruction, 16, 25
ldc.i4 instruction, 25
ldc.i4.0 instruction, 268
ldc.i4.1 instruction, 268
ldc.i4.2 instruction, 268
ldc.i4.3 instruction, 268
ldc.i4.4 instruction, 268
ldc.i4.5 instruction, 268
ldc.i4.6 instruction, 268
ldc.i4.7 instruction, 268
ldc.i4.8 instruction, 268
ldc.i4.m1 instruction, 268
ldc.i4.s <int8> instruction, 268
ldc.i8 <int64> instruction, 268
ldc.r4 <float32> instruction, 269
ldc.r8 <float64> instruction, 269
ldelem (ldelem.any) <token> instruction, 291
ldelem.* instruction, 291
ldelema <token>, 290
ldelem.i instruction, 291
ldelem.i1 instruction, 290
ldelem.i2 instruction, 290
ldelem.i4 instruction, 291
ldelem.i8 instruction, 291
ldelem.r4 instruction, 291
ldelem.r8 instruction, 291
ldelem.ref instruction, 291
ldelem.u1 instruction, 290
ldelem.u2 instruction, 290
ldelem.u4 instruction, 291
ldfld <token> instruction, 280
ldfld instruction, 168
ldflda <token> instruction, 280
ldftn <token> instruction, 283
ldind.i instruction, 269
ldind.i1 instruction, 269
ldind.i2 instruction, 269
ldind.i4 instruction, 269
ldind.i8 instruction, 269

ldind.r4 instruction, 269
ldind.r8 instruction, 269
ldind.ref instruction, 269
ldind.u1 instruction, 269
ldind.u2 instruction, 269
ldind.u4 instruction, 269
ldlen instruction, 290
ldloc <unsigned int16> instruction, 278
ldloc operation code, 25
ldloc Retval instruction, 15, 25
ldloc.0 instruction, 278
ldloc.1 instruction, 278
ldloc.2 instruction, 278
ldloc.3 instruction, 278
ldloca <unsigned int16> instruction, 278
ldloca.s <unsigned int8> instruction, 278
ldloc.n instruction, 25
ldloc.s <unsigned int8> instruction, 278
ldnull instruction, 30, 285
ldobj <token> instruction, 286
ldsfld <token> instruction, 280
ldsfld int32 Odd.or.Even, 16
ldsflda <token> instruction, 280
ldsflda instruction, 21
ldsflda int32 Odd.or.Even, 14
ldsflda valuetype CharArray8 Format

instruction, 14
ldstr :%d: metadata string constant, 24
ldstr <token> instruction, 286
ldstr :odd!: instruction, 16, 18
ldtoken <token> instruction, 288
ldvirtftn <token> instruction, 283
leave <int32> instruction, 266
leave instruction, 266, 296
leave.s <int8> instruction, 266
leave.s DidntBlowUp instruction, 28
leave.s instruction, 28
lexical tokens

auxiliary lexical tokens, 411
overview, 411

.line directive, 407
_LINE_NUMS_STRIPPED flag, 46
/LINENUM option, 393, 403, 456
Link Demand action, 349
Link Demand security action code, 358
Listed Boolean principle, 357
Listed enumerated principle, 357
literal contract flag, 167
_LNK_INFO flag, 54
_LNK_NRELOC_OVFL flag, 54
Load Configuration table address, 52
loader exceptions, 306
local block allocation, 279
local variables, 207–209

loading, 278
signatures, 161–162
storing, 278–279

■INDEX 489

Find it faster at http://superindex.apress.com
/

Ch25_Index_6463_FINAL 7/27/06 3:16 PM Page 489

_LOCAL_SYMS_STRIPPED flag, 46
Locale column, 98
.locale directive, 100
locale localization, 107
localization, 107
localloc instruction, 279
.locals directive, 13, 292
logical condition check instructions, 275–276
long-parameter form, 262
long-parameter instructions, 262
lpstr native type, 372
lptstr native type, 372
lpwstr native type, 372

■M
m bits, 85
Machine types, 44
main assembly, 107
MajorVersion column, 97, 99
MajorVersion field,

IMAGE_EXPORT_DIRECTORY, 65
managed arrays, 376
managed code, 4
managed compiler, 42
managed EH block exiting instructions, 266
managed exception handling, 4, 425
managed executable file, structure of

COFF header, 43–47
common language runtime header

data constants, 63
data sections, 63
EntryPointToken field, 58
Flags field, 57
header structure, 55–56
managed resources, 69
overview, 55
relocation section, 59–61
resources, 67
StrongNameSignature field, 59
text section, 61–62
thread local storage, 66–67
unmanaged export table, 64–66
unmanaged resources, 67–69
v-table, 63
VTableFixups field, 58–59

MS-DOS header/stub and PE signature,
42–43

overview, 41–42
PE header

data directory table, 51–52
overview, 47–51

section headers, 53–55
managed executables, 4
managed keyword, 12
managed method, Code management, 190
managed modules, 41, 73, 105
managed PE file, 382

managed pointers, 146, 148, 269, 284
managed resources

common language runtime header, 69
metadata and declaration, 107–110

managed types in signatures, 416–417
managed vectors, 376
managed/unmanaged marshaling, 151
mandatory methods, 136
manifest, 96–97
manifest declarations, 414–415
ManifestResource declarations, 112, 397
ManifestResource descriptors, 82
ManifestResource metadata table, 109
mapped fields, 17–18, 168, 171–173
mapping, 18

instance fields, 172
static fields, 63

MappingFlags entry, 366
marshal(<native_type>) reserved flags, 167
MarshalDirectiveException, interoperability

exceptions, 308
marshaling, 370
marshaling signatures, 417–419
.maxstack directive, 262
.maxstack value, 209
MaxStack value, 262
/MD command-line option, 459
MDH suboption, <met_opt>, 393
mdtCustomAttribute token type, 329
mdtFieldDef token type, 166
mdtMethodDef type, 186
mdtProperty type, 322
mdtStandAloneSig tokens, 229
mdtString tokens, 229
mdtTypeSpec tokens, 229
/MDV=<version_string> command, 455
MDValidator (metadata validator), 459
_MEM_DISCARDABLE flag, 54
_MEM_EXECUTE flag, 54
_MEM_NOT_CACHED flag, 54
_MEM_NOT_PAGED flag, 54
_MEM_READ flag, 54
_MEM_SHARED flag, 54
_MEM_WRITE flag, 54
Member Reference (MemberRef) metadata

item, 14
MemberAccess property,

ReflectionPermission permission, 352
MemberForwarded entry, 366
MemberRef descriptors, 81
MemberRef metadata table, 168
MemberRef record, 193
MemberRef signatures, 160
MemberRef table, 165, 249
MemberRef tokens, 193, 216
MemberRefParent group, 88
Memory Access Violation exception, 30

■INDEX490

Ch25_Index_6463_FINAL 7/27/06 3:16 PM Page 490

<met_opt> suboptions, 393
metadata, 4, 62

class metadata
ClassLayout metadata table, 121–122
InterfaceImpl metadata table, 121
NestedClass metadata table, 121
overview, 118–120
TypeDef metadata table, 120
TypeRef metadata table, 120–121

declarative security metadata, 358–359
event metadata

Event table, 316–317
EventMap table, 317
MethodSemantics table, 317–318
overview, 316

field metadata
defining Field, 166–168
overview, 165
referencing Field, 168

generic methods
MethodSpec metadata table, 249
overview, 247–248

method-related
method flags, 187–189
method implementation flags, 190–191
method implementation metadata, 194
method name, 190
method parameters, 191–193
Method table record entries, 186–187
referencing methods, 193

property metadata
overview, 321
Property table, 322
PropertyMap table, 322

validity rules, 346
metadata, generic type

GenericParam metadata table, 228–229
GenericParamConstraint metadata table,

229
overview, 226–228
TypeSpec metadata table, 229

metadata tables organization
general metadata header, 76–78
heaps, 75–76
metadata table streams, 79–82
metadata validation, 88
overview, 73
RIDs, 83
tokens, 83–88
what metadata is, 73–75

metadata validator (MDValidator), 459
/METAINFO options, 393
/METAINFO[=<met_opt>] option, 393
/METAINFO[=<specifier>] metadata

summary option, 458
method argument address loading, 277
method argument list, 278

method argument loading, 277
method argument storing, 277
method bodies, 12, 62
method calling conventions, 249
method declaration

external source directives, 425
IL instructions, 426
managed exception handling directives, 425
method body declarations, 424–425
overview, 423–424
sample code, 12–16

method definition (MethodDef), 12, 58
method descriptors, 74, 81
Method entry, MethodSemantics metadata

table, 317
method header, 206
method implementation, 189
method jumps (jmp), 283
method keyword, 33, 193, 241
method referencing, 419–420
method signatures, 159–160
Method table, 158, 249
method token(s), 59
method void Odd.or.Even, 14
MethodAccessException, execution engine,

307
MethodBody method, MethodImpl table, 194
MethodDecl method, MethodImpl table, 194
MethodDef token, 193, 216
MethodImpl descriptors, 81
MethodImpl table, 194
MethodList, 120
MethodPtr descriptors, 81
methods

aliasing of, 431
calling

constrained virtual calls, 284–285
direct calls, 281–282
indirect calls, 283
overview, 281
tail calls, 283–284

class constructors
and beforefieldinit flag, 210–212
module constructors, 212–213
overview, 209–210

explicit method overriding, 199–205
global, 220
instance constructors, 213–214
instance finalizers, 215
local variables, 207–209
metadata

method flags, 187–189
method implementation flags, 190–191
method implementation metadata, 194
method name, 190
method parameters, 191–193
Method table record entries, 186–187

■INDEX 491

Find it faster at http://superindex.apress.com
/

Ch25_Index_6463_FINAL 7/27/06 3:16 PM Page 491

methods (continued)
overview, 185–186
referencing methods, 193

method header attributes, 205–207
method overloading, 218–220
method overriding and accessibility, 205
overloading, 218
overview, 185
static, instance, virtual methods, 194–199
variable argument lists, 216–217
virtual methods in generic types, 239–242

MethodSemantics descriptors, 81
MethodSemantics table, 317–318
MethodSpec descriptors, 82
MethodSpec metadata table, 249
MethodSpec table, 185
Microsoft intermediate language (MSIL), 3
Microsoft Windows Portable Executable and

Common Object File Format
(PE/COFF), 41

MinorVersion, 98–99
MinorVersion field, IMAGE_EXPORT_

DIRECTORY, 65
mkrefany <token> instruction, 288
modopt modifier, 151
modopt token, 151
modopt([mscorlib]System.Runtime.

CompilerServices.IsConst) modifier,
152

modopt([mscorlib]System.Runtime.
CompilerServices.IsLong)int32
modifier, 152

modreq modifier, 151
modreq token, 151
module constructors, 212–213
Module declarations, 397
Module descriptors, 80
module entry point, 397
module linking, 397–398
Module metadata item, 9
Module metadata table and declaration, 105
module parameter declaration overview, 413

V-table fixup table declaration, 413
<Module>, TypeDef, 17
module-level declarations, 412
ModuleRef declarations, 112, 397
ModuleRef descriptors, 82
ModuleRef metadata table and declaration,

105
ModuleRef token, 129
modules and assemblies

application domains as logical units of
execution, 94–96

Assembly metadata table and declaration,
97–99

AssemblyRef metadata table and
declaration, 99–101

ExportedType metadata table and
declaration, 110–111

File metadata table and declaration,
106–107

loader in search of assemblies, 101–104
managed resource metadata and

declaration, 107–110
manifest, 96–97
Module metadata table and declaration,

105
ModuleRef metadata table and

declaration, 105
order of manifest declarations in ILAsm,

112–113
overview, 93
private and shared assemblies, 93–94
single-module and multimodule

assemblies, 112–113
what an assembly is, 93

MoreSects binary flag, 296
.mresource declaration, 111, 397
msAddOn value, Semantic entry, 318
mscorlib assembly, 14
.mscorlib directive, 141
[mscorlib]System prefix, 145
[mscorlib]System.Activator::CreateInstance

method, 369
[mscorlib]System.ArgIterator class library

value type, .NET Framework, 216
[mscorlib]System.Array abstract class, 149
[mscorlib]System.Array class, .NET

Framework, 289
[mscorlib]System.AsyncCallback type, 136
[mscorlib]System.Attribute abstract class,

329
[mscorlib]System.Console::WriteLine(string)

console output method, 29
[mscorlib]System.Delegate type, 136
[mscorlib]System.Diagnostics.DebuggableAt

tribute attribute, 402
[mscorlib]System.Enum class, 10
[mscorlib]System.Exception class, 305
[mscorlib]System.Exception handler, 300
[mscorlib]System.GC::SuppressFinalize class

library method, .NET Framework,
215

[mscorlib]System.IAsyncResult interface, 137
[mscorlib]System.IConvertible interface, 373
[mscorlib]System.Int32 value type, 157
[mscorlib]System.MulticastDelegate class,

136, 313
[mscorlib]System.NullReferenceException

exception, 28
[mscorlib]System.Object class, 130, 157, 215
[mscorlib]System.StackOverflowException

handler, 300
[mscorlib]System.Text.StringBuilder class, 371

■INDEX492

Ch25_Index_6463_FINAL 7/27/06 3:16 PM Page 492

[mscorlib]System.Threading.WaitHandle
class, 137

[mscorlib]System.Type::GetTypeFromProgID
method, 369

[mscorlib]System.Type::InvokeMember
method, 369

[mscorlib]System.ValueType class, 10, 135
Mscorlib.dll assembly, 9
MS-DOS header/stub, 42–43
msFire value, Semantic entry, 318
msGetter value, Semantic entry, 317
MSIL (Microsoft intermediate language), 3
msOther value, Semantic entry, 317
msRemoveOn value, Semantic entry, 318
msSetter value, Semantic entry, 317
/MSV=<int>.<int> command, 455
mul arithmetical operation instruction, 270
mul.ovf operation, 272
mul.ovf.un operation, 272
multidimensional arrays, 149
MultiDword value type, 178
multilanguage projects

ASMMETA, 398–400
compiling in debug mode, 402–408
creative round-tripping, 395–396
IL disassembler, 389–390, 392–394
IL inlining in high-level languages,

400–401
module linking through round-tripping,

397–398
overview, 389
principles of round-tripping, 394–395
resolving circular dependencies, 398–400
using class augmentation, 396

multimodule assemblies, 112–113, 125
multimodule assembly, 113
Mvid column, 105
MyComputer value, 354
MyNameSpace.Encl/Nestd1 definition, 139
MyNameSpace.Encl/Nestd1/Nestd2

definition, 139

■N
N+1 parameters, 265
Name column, 98, 105–106, 109
Name entries, 228
Name entry

Event table, 316
MemberRef metadata table, 168
Method parameter, 191
Method table, 186
Property table, 322

Name field
IMAGE_EXPORT_DIRECTORY, 65
IMAGE_SECTION_HEADER structure, 53

Name Pointer table (NPT), 66, 381

Name property,
StrongNameIdentityPermission
permission, 355

Name type, 120–121
.namespace directive, 33, 125
Namespace entry, 129
namespaces, 120–121, 124–125
NAN (not-a-number), 170
native int int32 type, 264
native int type, 264
native method, Code type, 190
native types in marshaling signatures,

417–419
native unmanaged flag, 12
neg arithmetical operation instruction, 271
Nestd1 class, 138
Nestd2 class, 138
nested assembly visibility flag, 127
nested class, 17, 38
nested famandassem visibility flag, 127
nested family visibility flag, 127
nested famorassem visibility flag, 127
nested generic types, 243–245
nested private visibility flag, 127
nested public visibility flag, 127
nested types, 138–140
NestedClass descriptors, 82
NestedClass type, 121
.nester keyword, 38
.NET Framework class library, 88, 350
.NET Framework classes, 9
.NET Framework Security, 347
_NET_RUN_FROM_SWAP flag, 46
.NET-oriented compilers, 4
newarr <token> instruction, 289
newobj <token> instruction, 286
newobj instruction, 162, 213–214, 369
newslot flag, 196, 395
newslot method, control flag, 188
NGEN utility, 7
[no ILAsm keyword] reserved flags, 167
_NO_DEFER_SPEC_EXC flag, 54
/NOAUTOINHERIT command, 453
/NOBAR option, 393, 457
/NOCA option, 457
/NOCORSTUB command, 455
/NOIL option, 393–394, 457
noinlining method, 191
/NOLOGO command, 453, 460
nomangle keyword, ILAsm, 365
nonblittable, 371
Non-CAS Demand security action code, 359
Non-CAS Inheritance Demand security

action code, 359
Non-CAS Link Demand security action code,

359

■INDEX 493

Find it faster at http://superindex.apress.com
/

Ch25_Index_6463_FINAL 7/27/06 3:16 PM Page 493

nonexpanding edge, 235
nonpublic member fields, 172
nonrunnable executables (DLL files), 58
nonvirtual method, 281
nop instruction, 267, 402
”normal” data section, 172
not-a-number (NAN), 170
notserialized contract flag, 167
NotSupportedException, execution engine,

307
NoZone value, 354
NPT (Name Pointer table), 66, 381
nullref constant type, 170
NullReference exception, 290
null-reference type, 332
NullReferenceException, execution engine,

307
<num_of_args> value, 160
Number entries, 228
NumberOfFunctions field,

IMAGE_EXPORT_DIRECTORY, 65
NumberOfLinenumbers field,

IMAGE_SECTION_HEADER
structure, 54

NumberOfNames field,
IMAGE_EXPORT_DIRECTORY, 65

NumberOfRelocations field,
IMAGE_SECTION_HEADER
structure, 54

NumberOfSections field, 53

■O
o evaluation stack type, 445
object reference, 284
object references, 146, 274
object type, 371
/OBJECTFILE=<obj_file_name> metadata

summary option, 458
ObjectRef type, 264
ObsoleteAttribute attribute, System, 344
Odd.or namespace, 21
OddOrEven application, 8
Odd.or.Even class, 11, 14, 37
offline verification tool reference, ?
Offset column, 109
OffSet entry, FieldLayout metadata table,

175, 177
OffsetToData characterize, 69
opcode (operation code), 262
optil method, Code type, 190
OptILTable binary flag, 296
optimization, 61
/OPTIMIZE command, 454
optimized metadata, 74
optional header, 47
options, 453
or operation, 272

Ordinal table (OT), 66, 381
OtherAssembly assembly, 101
/OUT:<file_name> option, 389, 394
/OUT=<out_filename> option, 456
/OUT=CON option, 456
OutOfMemoryException, loader, 306
output redirection options, 456
/OUTPUT=<targetfile> command, 454
overflow arithmetical operations, 271–272
overflow conversion operations, 274–275
Overflow exception, 271
OverflowException, execution engine, 307
overridden method, 239
.override directive, 203
overriding methods, 205

explicit methods, 199–205
virtual methods, 241, 253–257

.ovf suffix, 271
Owner entries, 228–229

■P
.pack directive, 131
.pack parameter, 370
PackingSize entry, 122
Param descriptors, 81
Param metadata table, 191
Param record, 192
<param_type> method, 323
parameter list, 225
parameterized contexts, 233
parameterized types, 225
parameters, 225

generic type parameters declaration, 421
marshaling, 20
method parameters, 191–193

ParamList entry, Method table, 187
ParamPtr descriptors, 81
Parent entry

Constant metadata table, 169
CustomAttribute table, 328
EventMap, 317
PropertyMap, 322

parent type, 129–130, 237
pColDefs fields, 80
/PDB, 454
PE header

data directory table, 51–52
overview, 47–51

PE signature, 42–43
/PE64 command, 455
permission classes, 350
.permission declarations, 361
permission set blob encoding, 359–360
permissions, security

access permissions, 350–353
custom permissions, 356–357
identity permissions, 354–355

■INDEX494

Ch25_Index_6463_FINAL 7/27/06 3:16 PM Page 494

overview, 350
permission sets, 358

PermissionSet blob, 361
PermissionSet entry, 358–359
PermissionSetAttribute attribute, 341
Permit Only action, 349
Permit Only security action code, 358
PEVerify tool, 88, 262, 459
PhysicalAddress/VirtualSize field,

IMAGE_SECTION_HEADER
structure, 53

pinned modifier, 152, 159
P/Invoke implementation map, 372
P/Invoke interaction, 377
P/Invoke mechanism, 20, 366
P/Invoke thunks, 367, 377, 380
pinvokeimpl flag, 366
pinvokeimpl method, Implementation flags,

188
pinvokeimpl(:msvcrt.dll: cdecl) attribute, 19
placeholder, value type as, 19
platform agnostic, 104
platform-agnostic assemblies, 104
platform-independence department, 180
platform-specific assemblies, 104
pointer arithmetic, 147
pointer table, 74
PointerToLinenumbers field,

IMAGE_SECTION_HEADER
structure, 54

PointerToRawData field,
IMAGE_SECTION_HEADER
structure, 54

PointerToRelocations field,
IMAGE_SECTION_HEADER
structure, 54

pop instruction, 29–30, 268
prefix instruction, 263
prefix instructions, 279–280
Pre-JIT Deny security action code, 359
Pre-JIT Grant security action code, 359
preservesig method, 191
prime module, 93, 113
primitive types in common language

runtime
data pointer types, 146–148
function pointer types, 148
modifiers, 151–153
native types, 153–155
overview, 145
primitive data types, 145–146, 153–155, 157
variant types, 155–157
vectors and arrays, 149–150

PrincipalPermissionAttribute attribute, 341
private accessibility flag, 166, 178
private assemblies, 93–94
private flag, 11, 128

private instance constructor(s), 213
private keyword, 10
private method, Accessibility flag, 187
private strict virtual method, 205
private visibility flag, 126
privatescope flag, 12, 166, 178
privatescope method, 187, 218
Processor Architecture, 104
ProgIdAttribute attribute, 339
program header, 8–9
prolog, 329
property declaration, 323–324, 427
Property descriptors, 81
property keyword, 332
property metadata

overview, 321
Property table, 322
PropertyMap table, 322

property signatures, 159–160
Property table, 158
PropertyList entry, PropertyMap, 322
PropertyMap descriptors, 81
PropertyPtr descriptors, 81
PropFlags entry, Property table, 322
protecting code, 26–30
pseudocustom attributes, 344–345
public accessibility flag, 166, 178
public flag, 128
public keyword, 10–11
public method, Accessibility flag, 188
public visibility flag, 126
PublicKey column, 98
.publickey directive, 100
PublicKey property,

StrongNameIdentityPermission
permission, 355

PublicKeyOrToken, 99
.publickeytoken directive, 100
publisher, 313
PublisherIdentityPermission permission, 355
PublisherIdentityPermissionAttribute

attribute, 341
/PUBONLY option, 457
pure IL, 45

■Q
qsort function, 377
/QUIET command, 453
/QUIET command-line option, 460
/QUOTEALLNAMES option, 457

■R
RankException, execution engine, 307
RAW suboption, <met_opt>, 393
/RAWEH option, 393, 456
Read property, RegistryPermission

permission, 352

■INDEX 495

Find it faster at http://superindex.apress.com
/

Ch25_Index_6463_FINAL 7/27/06 3:16 PM Page 495

readonly. instruction, 290
real class declaration, 141
redundant local variable slot, 208
refanytype <token> instruction, 288
refanyval <token> instruction, 288
reference types, 117
reference variant, 375
references, class, 129
Reflection, 330
Reflection methods, 171
ReflectionEmit property,

ReflectionPermission permission, 352
ReflectionPermission permission, 352
ReflectionPermissionAttribute attribute, 341
region, 107
RegistryPermission permission, 352
RegistryPermissionAttribute attribute, 341
relative virtual address (RVA), 42
_RELOCS_STRIPPED flag, 45
rem arithmetical operation instruction, 271
remote procedure call (RPC), 327
RemotingConfiguration property,

SecurityPermission permission, 353
RemotingException, execution engine, 307
_REMOVABLE_RUN_FROM_SWAP flag, 46
remove_<event_name> method, 318
RemoveImpl virtual method, 313
rem.un arithmetical operation instruction,

271
representing classes in signatures, 157–158
reqsecobj method, Reserved flags, 189
Request Minimum action, 348
Request Minimum security action code, 358
Request Optional action, 348
Request Optional security action code, 358
Request Refuse security action code, 358
Request security action code, 358
requested permissions, 96
/RES:<unmanaged_resource_file_name>

option, ILAsm compiler, 394
Reserved binary flag, 296
Reserved field, 69
Reserved flags, 189, 191
resolution scope, 330
ResolutionScope entry, 129
ResolutionScope indicator, 120
resource, 107
resource data, 67, 108
resource directory strings, 67
resource directory tables, 67
Resource table address, 51
/RESOURCE=<res_file> command, 454
ret instruction, 267, 284
<ret_type> method, 323
rethrow instruction, 289, 305
<return_type> value, 160
Retval local variable, 15

RevisionNumber, 98–99
RIDs, 83–84
round-tripping

creative, 395–396
module linking through, 397–398
principles of, 394–395

RPC (remote procedure call), 327
.rsrc, PE file, 55
.rsrc section, 67, 69
/RTF option, 456
rtspecialname flag, 210, 213, 317
rtspecialname method, Reserved flags, 189
rtspecialname property, 322
rtspecialname reserved flags, 128, 167
runtime, 104
runtime method, Code type, 190
run-time validation, 88
run-time verification, 88
Runtime.InteropServices.COMException,

interoperability exceptions, 308
Runtime.InteropServices.

InvalidOleVariantTypeException,
interoperability exceptions, 308

Runtime.InteropServices.
SafeArrayRankMismatchException,
interoperability exceptions, 308

Runtime.InteropServices.
SafeArrayTypeMismatchException,
interoperability exceptions, 308

Runtime.InteropServices.SEHException,
interoperability exceptions, 308

RVA (relative virtual address), 42
RVA entry, FieldRVA table, 172
RVA entry, Method table, 186
RVA value, 172

■S
sample code

calling unmanaged code, 19–20
class declaration, 9–11, 28–30
data declaration, 18–19
field declaration, 11–12
global items, 16–17
mapped fields, 17–18
method declaration, 12–16
overview, 7–8, 26–27
program header, 8–9
value type as placeholder, 19

satellite assembly, 107
_SCALE_INDEX flag, 54
SCH suboption, <met_opt>, 393
schema, 79
scope form, 301
.sdata, PE file, 55
sealed definition, 132
sealed type semantics flag, 127
section headers, 53–55, 296

■INDEX496

Ch25_Index_6463_FINAL 7/27/06 3:16 PM Page 496

SectionAlignment field, 53
security attributes

declarative actions, 348–349
declarative security, 348
declarative security metadata, 358–359
overview, 347
permission set blob encoding, 359–360
security attribute declaration, 360–361
security permissions

access permissions, 350–353
custom permissions, 356–357
identity permissions, 354–355
overview, 350
permission sets, 358

security declarations, 430
security policies, 347
SecurityAttribute attribute, 340
Security.Cryptography.

CryptographicException, loader, 306
SecurityPermission permission, 352
SecurityPermissionAttribute attribute, 341
Security.SecurityException, execution

engine, 307
SEH (structured exception handling)

mechanism, 28, 295
Semantic entry, MethodSemantics metadata

table, 317
<semantics> method, 323
sentinel, 15
sentinel modifier, 152, 159
separate resource file(s), 107
Sequence entry, Method parameter, 191
sequence points, tracking, 402
<sequence> sequence number, 192
sequential keyword, 10
sequential layout flag, 127
sequential type layout, 130
serializable type implementation flags, 127
serialization code, 331
serialization type codes, 329
SERIALIZATION_TYPE_ENUM, 331
SERIALIZATION_TYPE_PROPERTY property,

359
SerializationFormatter property,

SecurityPermission permission, 353
serialized type, 331
Set method, 289
set_<property_name> method, 321
setters, 321
shared assemblies, 93–94
shift operations, 273
shl operation, 273
short-parameter form, 262
short-parameter instructions, 262
shr operation, 273
shr.un operation, 273
Signature entry, 166, 168, 186

signatures
calling conventions, 158–159
field signatures, 159
of generic methods, 249–250
indirect call signatures, 161
local variables signatures, 161–162
managed types in, 416–417
MemberRef signatures, 160
method and property signatures, 159–160
native types in marshaling signatures,

417–419
overview, 158
representing classes in, 157–158
type specifications, 162

signed integer values, 150
SignedFile property,

PublisherIdentityPermission, 355
single-dimensional arrays, 150
single-module assemblies, 112–113
single-quoted literal, 123
SiteIdentityPermission permission, 355
SiteIdentityPermissionAttribute attribute,

341
Size characterize, 69
.size directive, 131
.size parameter, 370
<size_param_number> parameter, 155
sizeof <token> instruction, 288
SizeOfRawData field, IMAGE_SECTION_

HEADER structure, 53
SizeOfZeroFill field, 67
<sizes> parameter, 155
SkipVerification property,

SecurityPermission permission, 352
slash character (/), 393
small header, 296
software development kit. See SDK
SomeOtherAssembly assembly, 100
/SOURCE option, 456
specialname contract flag, 167
specialname flag, 210, 213
specialname flag value, 317
specialname method, Implementation flags,

188
specialname property, 322
specialname type semantics flag, 127
sscanf declaration, 20
sscanf function, 7, 26
sscanf function static method, 15
sscanf P/Invoke thunk, 24
stack manipulation, 267–268
/STACK=<int> command, 455
StackOverflowException, execution engine,

307
StandAloneSig descriptors, 81
StandAloneSig metadata table, 208
StandAloneSig table, 158

■INDEX 497

Find it faster at http://superindex.apress.com
/

Ch25_Index_6463_FINAL 7/27/06 3:16 PM Page 497

StandAloneSig token, 160–161
StandAloneSigs custom attribute, 335
starg <unsigned int16> instruction, 277
starg.s <unsigned int8> instruction, 277
StartAddressOfRawData field, 66
start/end parameters, 407
static contract flag, 167
static fields, 135, 168–169
static flag, 195
static keyword, 11–12
static members, 132
static methods, 188, 194–199, 247
/STATS option, 458
stdcall keyword, ILAsm, 365
stelem (stelem.any) <token> instruction, 291
stelem.i instruction, 291
stelem.i1 instruction, 291
stelem.i2 instruction, 291
stelem.i4 instruction, 291
stelem.i8 instruction, 291
stelem.r4 instruction, 291
stelem.r8 instruction, 291
stelem.ref instruction, 291
stfld <token> instruction, 280
stind.i instruction, 270
stind.i1 instruction, 270
stind.i2 instruction, 270
stind.i4 instruction, 270
stind.i8 instruction, 270
stind.r4 instruction, 270
stind.r8 instruction, 270
stind.ref instruction, 270
stloc <unsigned int16> instruction, 278
stloc instruction, 15
stloc Retval instruction, 15
stloc.s <unsigned int8> instruction, 279
stobj <token> instruction, 286
storage header, 76
storage signature, 76
strict flag, 205
strict method, control flag, 188
strict virtual method, 205
string, defined, 331
string constant, 170
String heap, 75, 124
string parameter, 20
string type, 371
StringBuilder class, 371
/STRIPRELOC command, 455
strong name signature, 94
strong names, 94
StrongNameIdentityPermission permission,

354
StrongNameIdentityPermissionAttribute

attribute, 341
StrongNameSignature field, common

language runtime header, 59

structured exception handling (SEH)
mechanism, 28, 295

stsfld <token> instruction, 280
stubs, 364
sub arithmetical operation instruction, 270
subclassing exceptions, 308
sub.ovf operation, 272
sub.ovf.un operation, 272
subscribers, 313
/SUBSYSTEM=<int> command, 454
summary local variables signature, 208
SuppressUnmanagedCodeSecurityAttribute

attribute, System.Security
namespace, 340

switch instruction, 263, 265–266
Syme, Don, 225
synchronized method, 191
:synthesized: (implicit) sequence points, 402
_SYSTEM flag, 46
System namespace, 10, 145, 373
[System]System.Net.DnsPermission

permission, 350
System.AsyncCallback delegate instance, 137
System.AttributeTargets enumeration, 336
System.AttributeUsageAttribute attribute,

336
System.Console class, 14
System.Delegate method, 314
System.Diagnostics.DebuggableAttribute

custom attribute, 337
System.DirectoryServices assembly, 354
[System.DirectoryServices]System.

DirectoryServices.DirectoryServices➥

Permission permission, 350
System.Int32 instance, 134
System.MulticastDelegate method, 314
System.NonSerializedAttribute attribute, 345
System.NullReferenceException exception, 30
System.Object class, 10, 117
System.Reflection class library, 88
System.Reflection.Emit class library, 88
System.Resources.ResourceManager class, 110
System.Runtime.CompilerServices.

AssemblyAttributesGoHere class, 343
System.Runtime.CompilerServices.

InternalsVisibleToAttribute attribute,
129

System.Runtime.CompilerServices.
MethodImplAttribute attribute, 345

System.Runtime.InteropServices namespace,
338

System.Runtime.InteropServices.ComImport
Attribute attribute, 344

System.Runtime.InteropServices.
DllImportAttribute attribute, 345

System.Runtime.InteropServices.
FieldOffsetAttribute attribute, 345

■INDEX498

Ch25_Index_6463_FINAL 7/27/06 3:16 PM Page 498

System.Runtime.InteropServices.
GuidAttribute, 328

System.Runtime.InteropServices.
InAttribute attribute, 345

System.Runtime.InteropServices.
MarshalAsAttribute attribute, 345

System.Runtime.InteropServices.
OptionalAttribute attribute, 345

System.Runtime.InteropServices.
OutAttribute attribute, 345

System.Runtime.InteropServices.
PreserveSigAttribute attribute, 345

System.Runtime.InteropServices.
StructLayoutAttribute attribute, 345

System.Runtime.InteropServices.
UnmanagedType enumerator, 153

System.Runtime.Remoting.Activation.
UrlAttribute attribute, TypeDef, 342

System.Runtime.Remoting.Contexts.Context
Attribute attribute, TypeDef, 341

System.Runtime.Remoting.Contexts.Synchro
nizationAttribute attribute, TypeDef,
341

System.Security.DynamicSecurityMethod➥

Attribute attribute, 345
System.Security.Permissions namespace,

340, 354
System.Security.UnverifiableCodeAttribute

custom attribute, 337
System.SerializableAttribute attribute, 345
System.Threading.WaitHandle class, 315
System.ThreadStaticAttribute custom

attribute, 338

■T
T type parameter, 245
tags, 85
tail calls, 283–284
tail. instruction, 284
target offset, 263
tbstr native type, 372
.text, PE file, 55
/TEXT option, 389, 456
.text section, 69, 108
text section, common language runtime

header, 61–62
this keyword, 37
this pointer, 138, 284
thiscall keyword, ILAsm, 365
thread local storage, 66–67, 172
thread local storage (TLS), 396
Threading.SynchronizationLockException,

execution engine, 307
Threading.ThreadAbortException, execution

engine, 307
Threading.ThreadInterruptedException,

execution engine, 307

Threading.ThreadStateException, execution
engine, 307

Threading.ThreadStopException, execution
engine, 307

throw instruction, 289
throw or rethrow instruction, 296
thunks, 20, 364
TimeDateStamp field, IMAGE_EXPORT_

DIRECTORY, 65
TLS (thread local storage), 396
.tls, PE file, 55
TLS directory structure, 67
tls keyword, 173
TLS table address, 52
token compression procedure, 151
tokens, 83–88
/TOKENS option, 392, 456
top bit, 68
ToString() method, 134
Total Boolean principle, 357
Total enumerated principle, 357
traditional unmanaged client, 387
Trusted value, 354
.try <label> to <label> code, 299
.try-catch protection, 30
TryLength entry, EH Clause, 296, 304
TryOffset entry, EH Clause, 296, 304
two-dimensional array, 150
type arguments, 232–233
type control, 4
type definition (TypeDef), 10, 118, 226
Type entry

Constant metadata table, 169
CustomAttribute table, 328
Property table, 322

type identification, 227
type initializer, 179
type instance, 284
type library, 375
Type Load exception, 18
type parameters, 226, 233–234, 254
type reference (TypeRef), 118, 226
type specification (TypeSpec), 162, 226
type variables, 225
TypeDef flags, 126
.typedef keyword, 33
TypeDef metadata table, 120, 126
TypeDef record, 121
TypeDef table, 88, 166
TypeDef token, 129, 151, 157, 162
TypeDefId token, 111
typedref typed reference, 217
TypeInformation property,

ReflectionPermission permission,
352

TypeInitializationException, execution
engine, 307

■INDEX 499

Find it faster at http://superindex.apress.com
/

Ch25_Index_6463_FINAL 7/27/06 3:16 PM Page 499

TypeLibFuncAttribute attribute, 339
TypeLibTypeAttribute attribute, 339
TypeLibVarAttribute attribute, 340
.typelist directive, 141
/TYPELIST option, 457
TypeLoad exception, 172, 175
TypeName token, 111
TypeNamespace token, 111
TypeRef descriptors, 80
TypeRef metadata table, 120–121
TypeRef metadata token, 129
TypeRef namespace, 10
TypeRef token, 151, 157, 162
types, 117

aliasing, 431
nested, 138–140

TypeSpec descriptors, 82
TypeSpec metadata table, 229
TypeSpec record, 162
TypeSpec table, 158

■U
uint32 instruction parameter types, 445
uint8 instruction parameter types, 445
UIPermissionAttribute attribute, 341
unaligned. <unsigned int8> instruction, 279
UnauthorizedAccessException, loader, 306
Unbound objects, 96
unbox <token> instruction, 287
unbox.any <token> instruction, 288
unboxed values, 133–134
unboxing, 133
uncoded TypeSpec token, 85
uncompressed metadata, 74
unconditional branching instructions, 263
Unexpected Type exception, 13
Unicode (UTF-16) format, 13, 170
unicode keyword, ILAsm, 365
/UNICODE option, 392, 457
unicode string formatting flags, 128
union declaration, 175–177
/UNIQUE command-line option, 460
unmanaged code, calling, 19–20
unmanaged exception mapping, 309
unmanaged export table, 64–66
unmanaged method, Code management, 190
unmanaged modules, 105
unmanaged PE file, 382
unmanaged pointers, 146–147, 269
unmanaged resources, common language

runtime header, 67–69
UnmanagedCode property,

SecurityPermission permission, 352
unmanagedexp method, Implementation

flags, 189
unoptimized metadata, 74
UNR suboption, <met_opt>, 393

Unresolved MemberRef ‘Format’ error
message, 21

unsigned int16 values, 330
unsigned integer, 262
Untrusted value, 354
_UP_SYSTEM_ONLY flag, 46
UrlIdentityPermission permission, 355
UrlIdentityPermissionAttribute attribute, 341
UsageAllowed property,

IsolatedStorageFilePermission, 351
user-defined string token, 84
UserQuota property,

IsolatedStorageFilePermission, 351
UTF-8 format, 331
UTF-16 format, 13, 170

■V
VA (virtual address), 42
val field, 15
VAL suboption, <met_opt>, 393
validation, 88
Value blob encoding, 329
Value entry

Constant metadata table, 169
CustomAttribute table, 328

value flag, 130
value semantics pseudoflags, 128
value types, 10, 176

boxed and unboxed values, 133–134
derivation of, 135
derivation of value types, 135
instance members of, 134–135
overview, 133

value field private, 181
<value1> value, 264
<value2> value, 264
valuetype CharArray8 Format, MemberRef,

14
valuetype CharArray8 type, 14
valuetype keyword, 232
valuetype type, 371
vararg calling convention, 210, 237
vararg generic methods, 249
vararg methods, 15, 20, 152, 160, 164, 194,

216, 276, 278, 396
VARENUM enumeration, 155
variable argument lists, 216–217
variable declaration, 133
variable-length argument list, 152
VBA (Visual Basic for Applications), 95
VC++ compiler, 61
VC++ linker, 46
VC++-generated mixed-code PE file, 367
vector instructions

element address loading, 290
element loading, 290–291
element storing, 291

■INDEX500

Ch25_Index_6463_FINAL 7/27/06 3:16 PM Page 500

overview, 289
vector creation, 289–290

vectors, 149–150, 225
vectors arrays, 149
.ver directive, 100
verbal value description, 332
/VERBOSE command-line option, 460
verification, 88
verification rules, 293
VerificationException, JIT compiler, 306
version policies, 101–102
Version property,

StrongNameIdentityPermission
permission, 355

virtual address (VA), 42
virtual call instruction, 195
virtual flag, 195
virtual generic methods, 253–257
virtual methods, 132, 188, 194–199, 201,

239–242, 281
VirtualAddress field, 51
VirtualAddress field, IMAGE_SECTION_

HEADER structure, 53
/VIS option, 394
visibility, class, 128–129
visibility filtering, 138
/VISIBILITY=<vis>[+<vis>*] option, 392
/VISIBILITY=<vis>[+<vis>.] option, 456
Visual Basic for Applications (VBA), 95
Visual Studio debugger, 342–343
void A<T>() method, 254
void B<U>() method, 254
void keyword, 12
void(string) method, 14
volatile. instruction, 279
v-table, 63, 380
v-table fixups, 59, 413
VTableFixup descriptors, 380
VTableFixup table, 380
VTableFixups field, 58–59
.vtentry directive, 381
.vtfixup declarations, 380
.vtfixup directive, 385

■W
WFC (Windows Foundation Classes), 95
wildcard character (*), 354
winapi keyword, ILAsm, 365
Windows Foundation Classes (WFC), 95
WORD entry, 206
wrappers, 364
Write property, RegistryPermission

permission, 352
WriteLine static method, 14
Wtypes.h file, 155

■X
X509Certificate property,

PublisherIdentityPermission, 355
/X64 command, 455
X64-specific assemblies, 104
xor operation, 272

■Z
zero-based table indexes, 83
ZoneIdentityPermission permission, 354
ZoneIdentityPermissionAttribute attribute,

341

■INDEX 501

Find it faster at http://superindex.apress.com
/

Ch25_Index_6463_FINAL 7/27/06 3:16 PM Page 501

	Expert .NET 2.0 IL Assembler
	Table of Content
	PART 1 Quick Start
	Chapter 1 Simple Sample
	Chapter 2 Enhancing the Code
	Chapter 3 Making the Coding Easier

	PART 2 Underlying Structures
	Chapter 4 The Structure of a Managed Executable File
	Chapter 5 Metadata Tables Organization

	PART 3 Fundamental Components
	Chapter 6 Modules and Assemblies
	Chapter 7 Namespaces and Classes
	Chapter 8 Primitive Types and Signatures
	Chapter 9 Fields and Data Constants
	Chapter 10 Methods
	Chapter 11 Generic Types
	Chapter 12 Generic Methods

	PART 4 Inside the Execution Engine
	Chapter 13 IL Instructions
	Chapter 14 Managed Exception Handling

	PART 5 Special Components
	Chapter 15 Events and Properties
	Chapter 16 Custom Attributes
	Chapter 17 Security Attributes
	Chapter 18 Managed and Unmanaged Code Interoperation
	Chapter 19 Multilanguage Projects

	PART 6 Appendixes
	Appendix A ILAsm Grammar Reference
	Appendix B Metadata Tables Reference
	Appendix C IL Instruction Set Reference
	Appendix D IL Assembler and Disassembler Command-Line Options
	Appendix E Offline Verification Tool Reference

	Index

