

Abstract Unpackers are as old as the packers themselves, but

anti-unpacking tricks are a more recent development. These

anti-unpacking tricks have developed quickly in number and, in

some cases, complexity. In this paper, we will describe some of

the most common anti-unpacking tricks, along with some

countermeasures.

INTRODUCTION

nti-unpacking tricks can come in different forms,

depending on what kind of unpacker they want to attack.

The unpacker can be in the form of a memory-dumper, a

debugger, an emulator, a code-buffer, or a W-X interceptor. It

can be a tool in a virtual machine. There are corresponding

tricks for each of these, and they will be discussed separately.

- A memory-dumper dumps the process memory of the

running process, without regard to the code inside it.

- A debugger attaches to the process, allowing single-

stepping, or the placing of breakpoints at key locations, in

order to stop execution at the right place. The process can

then be dumped with more precision than a memory-dumper

alone.

- An emulator, as used within this paper, is a purely

software-based environment, most commonly used by anti-

malware software. It places the file to execute inside the

environment and watches the execution for particular events of

interest.

- A code-buffer is similar to, but different from, a debugger.

It also attaches to a process, but instead of executing

instructions in-place, it copies each instruction into a private

buffer and executes it from there. It allows fine-grained control

over execution as a result. It is also more transparent than a

debugger, and faster than an emulator.

- A W-X interceptor uses page-level tricks to watch for

write-then-execute sequences. Typically, an executable region

is marked as read-only and executable, and everything else is

marked as read-only and non-executable (or simply non-

present, depending on the hardware capabilities). Then the

code is allowed to execute freely. The interceptor intercepts

exceptions that are triggered by writes to read-only pages, or

execution from non-executable or non-present pages. If the

hardware supports it, a read-only page will be replaced by a

writable but non-executable page, and the write will be allowed

to continue. Otherwise, the single-step exception will be used

to allow the write to complete, after which the page will be

restored to its non-present state. In either case, the page

address is kept in a list. In the event of exceptions triggered by

execution of non-executable or non-present pages, the page

address is compared to the entries in that list. A match

indicates the execution of newly-written code, and is a possible

host entrypoint.

I. ANTI-UNPACKING BY ANTI-DUMPING

a. SizeOfImage

The simplest of anti-dumping tricks is to change the

SizeOfImage value in the Process Environment Block (PEB).

This interferes with process access, including preventing a

debugger from attaching to the process. It also breaks tools

such as LordPE in default mode, among others.

Example code looks like this:

 mov eax, fs:[30h] ;PEB

 mov eax, [eax+0ch] ;LdrData

 ;get InLoadOrderModuleList

 mov eax, [eax+0ch]

 ;adjust SizeOfImage

 add dw [eax+20h], 1000h

The technique is used by many packers now. However,

the technique is easily defeated, even by user-mode code.

We can simply ignore the SizeOfImage value, and call the

VirtualQuery() function instead. The VirtualQuery() function

returns the number of sequential pages whose attributes are

the same. Since there cannot be gaps between sections in

memory, the ranges can be enumerated by querying the first

page after the end of the previous range. The enumeration

would begin with the ImageBase page and continue while

the MEM_IMAGE type is returned. A page that is not of

the MEM_IMAGE type did not come from the file.

b. Erasing the header

Some unpackers examine the section table to gather

interesting information about the image. Erasing or altering

that section table in the PE header can interfere with the

gathering of that information. This is typically used as to

defeat ProcDump-style tools, which rely on the section table

to dump the image.

Example code looks like this:

ANTI-UNPACKER TRICKS

CURRENT
Peter Ferrie, Senior Anti-Virus Researcher, Microsoft Corporation

A

 ;get image base

 push 0

 call GetModuleHandleA

 push eax

 push esp

 push 4 ;PAGE_READWRITE

 ;rounded up to hardware page size

 push 1

 push eax

 xchg edi, eax

 call VirtualProtect

 xor ecx, ecx

 mov ch, 10h ;assume 4kb pages

 ;store VirtualProtect return value

 rep stosb

This technique is used by Yoda's Crypter, among others.

As above, the VirtualQuery() function can be used to

recover the image size, and some of the layout (i.e. which

pages are executable, which are writable, etc), but there is no

way to recover the section table once it has been erased.

c. Nanomites

Nanomites are a more advanced method of anti-dumping.

They were introduced in Armadillo. They work by replacing

branch instructions with an "int 3" instruction, and using

tables in the unpacking code to determine the details. The

details in this case are whether or not the "int 3" is a

nanomite or a debug break; whether or not the branch

should be taken, if it is a nanomite; the address of the

destination, if the branch is taken; and how large the

instruction is, if the branch is not taken.

A process that is protected by nanomites requires self-

debugging (known as "Debug Blocker" in Armadillo, see

Anti-Debugging:Self-Debugging section below), which uses

a copy of the same process. This allows the debugger to

intercept the exceptions that are generated by the debuggee

when the nanomite is hit. When the exception occurs in the

debuggee, the debugger recovers the exception address and

searches for it in an address table. If a match is found, then

the nanomite type is retrieved from a type table. If the CPU

flags match the type, then the branch will be taken. When

that happens, the destination address is retrieved from a

destination table, and execution resumes from that address.

Otherwise, the size of the branch is retrieved from the size

table, in order to skip the instruction.

d. Stolen Bytes

Stolen bytes are opcodes that are taken from the host and

placed in dynamically allocated memory, where they will be

executed separately. A jump instruction is placed at the

start of the stolen bytes in the host, to point to the start of

the relocated code. A jump instruction is placed at the end

of the relocated code, to point to the end of the stolen bytes.

The rest of the opcodes in the s tolen region in the host are

then replaced with garbage. The relocated code can also be

interspersed with garbage instructions, in order to make it

more difficult to determine the real instructions from the fake

instructions. This complicates the restoration of the original

code. This technique was introduced in ASProtect.

e. Guard Pages

Guard pages act as a one-shot access alarm. The first

time that a guard page is accessed for any reason, an

EXCEPTION_GUARD_PAGE (0x80000001) exception will be

raised. This can be used for a variety of things, but overall it

acts as a demand-paging system for ring 3 code. The

technique is achieved by intercepting the

EXCEPTION_GUARD_PAGE (0x80000001) exception,

checking if the page is within a particular range (for example,

within the process image space), then mapping in some

appropriate content if so.

This technique is used by Shrinker to perform on-

demand decompression. By decompressing only the pages

that are accessed, the startup time is reduced significantly.

The committed memory consumption can be reduced, since

any pages that are not accessed do not need any physical

memory to back them. The overall application performance

can also be increased, when compared to other packers that

decompress the entire application immediately. Shrinker

works by hooking the ntdll KiUserExceptionDispatcher()

function, and watching for the EXCEPTION_GUARD_PAGE

(0x80000001) exception. If the exception occurs within the

process image space, then Shrinker will load from disk the

individual page that is being accessed, decompress it, and

then resume execution. If an access spans two pages, then

upon resuming, an exception will occur for the next page,

and Shrinker will load and decompress that page, too.

A variation of this technique is used by Armadillo, to

perform on-demand decryption (known as "CopyMem2").

However, as with nanomites, it requires the use of self-

debugging. This is in contrast to Shrinker, which is entirely

self-contained. Armadillo decompresses all of the pages

into memory at once, rather than loading them from disk

when they are accessed. Armadillo uses the debugger to

intercept the exceptions in the debuggee, and watches for

the EXCEPTION_GUARD_PAGE (0x80000001) exception. If

the exception occurs within the process image space, then

Armadillo will decrypt the individual page that is being

accessed, and then resume execution. If an access spans

two pages, then upon resuming, an exception will occur for

the next page, and Armadillo will decrypt that page, too.

If performance were not a concern, a protection method of

this type could also remember the last page that was loaded,

and discard it when an exception occurs for another page

(unless the exception address suggests an access that

spanned them). That way, no more than two pages will ever

be in the clear in memory at the same time. In fact, that

Armadillo does not do this could be considered a weakness

in the implementation, because by simply touching all of the

pages in the image, Armadillo will decrypt them all, and then

the process can be dumped entirely.

f. Imports

The list of imported functions can be very useful to get at

least some idea of what a program does. To combat this,

some packers alter the import table after the imports have

been resolved. The alteration typically takes the form of

completely erasing the import table, but there are variations

that include changing the imported address to point to a

private buffer that is allocated dynamically. Within the

buffer is a jump to the real function address. This buffer is

usually not dumped by default, so when the process exits,

the information is lost as to the real function addresses.

g. Virtual machines

Virtual machines are perhaps the ultimate in anti-dumping

technology, because at no point is the directly executable

code ever visible in memory. Further, the import table might

contain only the absolutely required functions

(LoadLibrary() and GetProcAddress()), leaving no clue as to

what the program does. Additionally, the p-code might be

encoded in some way, such that two behaviourally identical

samples might have very different-looking contents. This

technique is used by VMProtect.

The p-code itself can be polymorphic, where do-nothing

instructions are inserted into the code flow, in the same way

as is often done for native code. This technique is used by

Themida.

The p-code can contain anti-debugging routines, such as

checking specific memory locations for specific values (see

Anti-Debugging section below). This technique is used by

HyperUnpackMe2
i
.

The p-code interpreter can be obfuscated, such that the

method for interpretation is not immediately obvious. This

technique is used by Themida and Virtual CPU
ii
.

II. ANTI-UNPACKING BY ANTI-DEBUGGING

a. PEB fields

i. NtGlobalFlag

The NtGlobalFlag field exists at offset 0x68 in the PEB.

The value in that field is zero by default. On Windows

2000 and later, there is a particular value that is typically

stored in the field when a debugger is running. The

presence of that value is not a reliable indication that a

debugger is really running (especially since it is entirely

absent on Windows NT). However, it is often used for

that purpose. The field is composed of a set of flags. The

value that suggests the presence of a debugger is

composed of the following flags:

FLG_HEAP_ENABLE_TAIL_CHECK (0x10)

FLG_HEAP_ENABLE_FREE_CHECK (0x20)

FLG_HEAP_VALIDATE_PARAMETERS (0x40)

Example incorrect code looks like this:

 mov eax, fs:[30h] ;PEB

 ;check NtGlobalFlag

 cmp b [eax+68h], 70h

 jne being_debugged

This technique is used by ExeCryptor, among others.

The "cmp" instruction above is a common mistake.

The assumption is that no other flags can be set, which is

not true. Those three flags alone are usually set for a

process that is created by a debugger, but not for a

process to which a debugger attaches afterwards.

However, there are three further exceptions.

The first exception is that additional flags can be set for

all processes, by a registry value. The registry value is

the "GlobalFlag" string value of the

"HKLM\System\CurrentControlSet\Control\Session

Manager" registry key.

The second exception is that all of the flags can be

controlled on a per-process basis, by a different registry

value. The registry value is the also the "GlobalFlag"

string value (note that "Windows Anti-Debug Reference"

by Nicolas Falliere
iii
 incorrectly calls it "GlobalFlags") of

the "HKLM\Software\Microsoft\Windows

NT\CurrentVersion\Image File Execution

Options\<filename>" registry key. The "<filename>" must

be replaced by the name of the executable file (not a DLL)

to which the flags will be applied when the file is

executed. An empty "GlobalFlag" string value will result

in no flags being set.

The third exception is that, on Windows 2000 and later,

all of the flags can be controlled on a per-process basis,

by the Load Configuration Structure. The Load

Configuration Structure has existed since Windows NT,

but the format was not documented by Microsoft in the

PE/COFF Specification until 2006 (and incorrectly). The

structure was extended to support Safe Exception

Handling in Windows XP, but it also contains two fields

of relevance to this paper: GlobalFlagsClear and

GlobalFlagsSet. As their names imply, they can be used

to clear and/or set any combination of bits in the PEB-

>NtGlobalFlag field. The flags specified by the

GlobalFlagsClear field are cleared first, then the flags

specified by the GlobalFlagsSet field are set. This means

that even if all of the flags are specified by the

GlobalFlagsClear field, any flags that are specified by the

GlobalFlagsSet field will still be set. No current packer

supports this structure.

If the FLG_USER_STACK_TRACE_DB (0x1000) is

specified to be set, either by the "GlobalFlag" registry

value, or in the GlobalFlagsSet field, the

FLG_HEAP_VALIDATE_PARAMETERS will

automatically be set, even if it is specified in the

GlobalFlagsClear field.

Thus, the correct implementation to detect the default

value is this one:

 mov eax, fs:[30h] ;PEB

 mov al, [eax+68h] ; NtGlobalFlag

 and al, 70h

 cmp al, 70h

 je being_debugged

The simplest method to defeat this technique is to

create the empty "GlobalFlag" string value.

b. Heap flags

The process default heap is another place to find

debugging artifacts. The base heap pointer can be retrieved

by the kernel32 GetProcessHeap() function. Some packers

avoid using the API and look directly at the PEB instead.

Example code looks like this:

 mov eax, fs:[30h] ;PEB

 ;get process heap base

 mov eax, [eax+18h]

Within the heap are two fields of interest. The PEB-

>NtGlobalFlags field forms the basis for the values in those

fields. The first field (Flags) exists at offset 0x0c in the heap,

the second one (ForceFlags) is at offset 0x10 in the heap.

The Flags field indicates the settings that were used for the

current heap block. The ForceFlags field indicates the

settings that will be used for subsequent heap manipulation.

The value in the first field is two by default, the value in the

second field is zero by default. There are particular values

that are typically stored in those fields when a debugger is

running, but the presence of those values is not a reliable

indication that a debugger is really running. However, they

are often used for that purpose.

The fields are composed of a set of flags. The value in

the first field that suggests the presence of a debugger is

composed of the following flags:

HEAP_GROWABLE (2)

HEAP_TAIL_CHECKING_ENABLED (0x20)

HEAP_FREE_CHECKING_ENABLED (0x40)

HEAP_SKIP_VALIDATION_CHECKS (0x10000000)

HEAP_VALIDATE_PARAMETERS_ENABLED

(0x40000000)

Example code looks like this:

 mov eax, fs:[30h] ;PEB

 ;get process heap base

 mov eax, [eax+18h]

 mov eax, [eax+0ch] ;Flags

 dec eax

 dec eax

 jne being_debugged

The value in the second field that suggests the presence

of a debugger is composed of the following flags:

HEAP_TAIL_CHECKING_ENABLED (0x20)

HEAP_FREE_CHECKING_ENABLED (0x40)

HEAP_VALIDATE_PARAMETERS_ENABLED

(0x40000000)

Example code looks like this:

 mov eax, fs:[30h] ;PEB

 ;get process heap base

 mov eax, [eax+18h]

 cmp [eax+10h], 0 ;ForceFlags

 jne being_debugged

The "tail" flags are set in the heap fields if the

FLG_HEAP_ENABLE_TAIL_CHECK flag is set in the PEB-

>NtGlobalFlags field. The "free" flags are set in the heap

fields if the FLG_HEAP_ENABLE_FREE_CHECK flag is set

in the PEB->NtGlobalFlags field. The validation flags are set

in the heap fields if the

FLG_HEAP_VALIDATE_PARAMETERS flag is set in the

PEB->NtGlobalFlags field. However, the heap flags can be

controlled on a per-process basis, through the

"PageHeapFlags" value, in the same manner as "GlobalFlag"

above.

c. The Heap

The problem with simply clearing the heap flags is that

the initial heap will have been initialised with the flags

active, and that leaves some artifacts that can be detected.

Specifically, at the end of the heap block will one definite

value, and one possible value. The

HEAP_TAIL_CHECKING_ENABLED flag causes the

sequence 0xABABABAB to always appear twice at the

exact end of the allocated block. The

HEAP_FREE_CHECKING_ENABLED flag causes the

sequence 0xFEEEFEEE (or a part thereof) to appear if

additional bytes are required to fill in the slack space until

the next block.

Example code looks like this:

 mov eax, <heap ptr>

 ;get unused_bytes

 movzx ecx, b [eax-2]

 movzx edx, w [eax-8] ;size

 sub eax, ecx

 lea edi, [edx*8+eax]

 mov al, 0abh

 mov cl, 8

 repe scasb

 je being_debugged

These values are checked by Themida.

d. Special APIs

i. IsDebuggerPresent

The kernel32 IsDebuggerPresent() function was

introduced in Windows 95. It returns TRUE if a debugger

is present. Internally, it simply returns the value of the

PEB->BeingDebugged flag.

Example code looks like this:

 call IsDebuggerPresent

 test al, al

 jne being_debugged

Some packers avoid using the kernel32

IsDebuggerPresent() function and look directly at the PEB

instead.

Example code looks like this:

 mov eax, fs:[30h] ;PEB

 ;check BeingDebugged

 cmp b [eax+2], 0

 jne being_debugged

To defeat these methods requires only setting the PEB-

>BeingDebugged flag to FALSE. A common

convenience while debugging is to place a breakpoint at

the first instruction in the kernel32 IsDebuggerPresent()

function. Some unpackers check explicitly for this

breakpoint.

Example code looks like this:

 push offset l1

 call GetModuleHandleA

 push offset l2

 push eax

 call GetProcAddress

 cmp b [eax], 0cch

 je being_debugged

 ...

l1: db "kernel32", 0

l2: db "IsDebuggerPresent", 0

Some packers check that the first byte in the function is

the "64" opcode ("FS:" prefix).

Example code looks like this:

 push offset l1

 call GetModuleHandleA

 push offset l2

 push eax

 call GetProcAddress

 cmp b [eax], 64h

 jne being_debugged

 ...

l1: db "kernel32", 0

l2: db "IsDebuggerPresent", 0

ii. CheckRemoteDebuggerPresent

The kernel32 CheckRemoteDebuggerPresent() function

has these parameters: HANDLE hProcess, PBOOL

pbDebuggerPresent. The function is a wrapper that was

introduced in Windows XP SP1, to query a value that has

existed since Windows NT. "Remote" in this sense refers

to a separate process on the same machine. The function

sets to 0xffffffff the value to which the

pbDebuggerPresent argument points, if a debugger is

present. Internally, it simply returns the value from the

ntdll NtQueryInformationProcess (ProcessDebugPort

class) function.

Example code looks like this:

 push eax

 push esp

 push -1 ;GetCurrentProcess()

 call CheckRemoteDebuggerPresent

 pop eax

 test eax, eax

 jne being_debugged

Some packers avoid using the kernel32

CheckRemoteDebuggerPresent() function, and call the

ntdll NtQueryInformationProcess() function directly.

iii. NtQueryInformationProcess

The ntdll NtQueryInformationProcess() function has

these parameters: HANDLE ProcessHandle,

PROCESSINFOCLASS ProcessInformationClass, PVOID

ProcessInformation, ULONG ProcessInformationLength,

PULONG ReturnLength. Windows Vista supports 45

classes of ProcessInformationClass information (up from

38 in Windows XP), but only four of them are documented

by Microsoft so far. One of them is the

ProcessDebugPort. It is possible to query for the

existence (not the value) of the port. The return value is

0xffffffff if the process is being debugged. Internally, the

function queries for the non-zero state of the EPROCESS-

>DebugPort field.

Example code looks like this:

 push eax

 mov eax, esp

 push 0

 push 4 ;ProcessInformationLength

 push eax

 push 7 ;ProcessDebugPort

 push -1 ;GetCurrentProcess()

 call NtQueryInformationProcess

 pop eax

 test eax, eax

 jne being_debugged

This technique is used by MSLRH, among others.

Since this information comes from the kernel, there is no

easy way for user-mode code to prevent this call from

revealing the presence of the debugger.

iv. Debug Objects

Windows XP introduced a "debug object". When a

debugging session begins, a debug object is created, and

a handle is associated with it. It is possible to query for

the value of this handle, using the undocumented

ProcessDebugObjectHandle class.

Example code looks like this:

 push eax

 mov eax, esp

 push 0

 push 4 ;ProcessInformationLength

 push eax

 ;ProcessDebugObjectHandle

 push 1eh

 push -1 ;GetCurrentProcess()

 call NtQueryInformationProcess

 pop eax

 test eax, eax

 jne being_debugged

This technique is used by HyperUnpackMe2, among

others. Since this information comes from the kernel,

there is no easy way for user-mode code to prevent this

call from revealing the presence of the debugger.

The undocumented ProcessDebugFlags class returns

the inverse value of the EPROCESS->NoDebugInherit bit.

That is, the return value is FALSE if a debugger is

present.

Example code looks like this:

 push eax

 mov eax, esp

 push 0

 push 4 ;ProcessInformationLength

 push eax

 push 1fh ;ProcessDebugFlags

 push -1 ;GetCurrentProcess()

 call NtQueryInformationProcess

 pop eax

 test eax, eax

 je being_debugged

This technique is used by HyperUnpackMe2, among

others. Since this information comes from the kernel,

there is no easy way for user-mode code to prevent this

call from revealing the presence of the debugger.

v. NtQuerySystemInformation

The ntdll NtQuerySystemInformation() function has

these parameters: SYSTEM_INFORMATION_CLASS

SystemInformationClass, PVOID SystemInformation,

ULONG SystemInformationLength, PULONG

ReturnLength. Windows Vista supports 106 classes of

SystemInformationClass information (up from 72 in

Windows XP), but only nine of them are documented by

Microsoft so far. None of them is the

SystemKernelDebuggerInformation class, which has

existed since Windows NT.

The SystemKernelDebuggerInformation class returns

the value of two flags: KdDebuggerEnabled in al, and

KdDebuggerNotPresent in ah. Thus, the return value in

ah is FALSE if a debugger is present.

Example code looks like this:

 push eax

 mov eax, esp

 push 0

 push 2 ;SystemInformationLength

 push eax

 ;SystemKernelDebuggerInformation

 push 23h

 call NtQuerySystemInformation

 pop eax

 test ah, ah

 je being_debugged

This technique is used by SafeDisc. Since this

information comes from the kernel, there is no easy way to

prevent this call from revealing the presence of the

debugger.

vi. NtQueryObject

The ntdll NtQueryObject() function has these

parameters: HANDLE Handle,

OBJECT_INFORMATION_CLASS

ObjectInformationClass, PVOID ObjectInformation,

ULONG ObjectInformationLength, PULONG

ReturnLength. Windows NT-based platforms support five

classes of ObjectInformationClass information, but only

two of them are documented by Microsoft so far. Neither

of them is the ObjectAllTypesInformation, which we

require.

As noted above, when a debugging session begins on

Windows XP, a debug object is created, and a handle is

associated with it. It is possible to query for the list of

existing objects, and check the number of debug objects

that exist. This API is supported by Windows NT-based

platforms, but only Windows XP and later will return a

debug object in the list.

Example code looks like this:

 xor ebx, ebx

 push ebx

 push esp ;ReturnLength

 ;ObjectInformationlength of 0

 ;to receive required size

 push ebx

 push ebx

 ;ObjectAllTypesInformation

 push 3

 push ebx

 call NtQueryObject

 pop ebp

 push 4 ;PAGE_READWRITE

 push 1000h ;MEM_COMMIT

 push ebp

 push ebx

 call VirtualAlloc

 push ebx

 ;ObjectInformationLength

 push ebp

 push eax

 ;ObjectAllTypesInformation

 push 3

 push ebx

 xchg esi, eax

 call NtQueryObject

 lodsd ;handle count

 xchg ecx, eax

l1: lodsd ;string lengths

 movzx edx, ax ;length

 ;pointer to TypeName

 lodsd

 xchg esi, eax

 ;sizeof(L"DebugObject")

 ;avoids superstrings

 ;like "DebugObjective"

 cmp edx, 16h

 jne l2

 xchg ecx, edx

 mov edi, offset l3

 repe cmpsb

 xchg ecx, edx

 jne l2

 ;TotalNumberOfObjects

 cmp [eax], edx

 jne being_debugged

 ;point to trailing null

l2: add esi, edx

 ;round down to dword

 and esi, -4

 ;skip trailing null

 ;and any alignment bytes

 lodsd

 loop l1

 ...

l3: dw "D","e","b","u","g"

 dw "O","b","j","e","c","t"

Since this information comes from the kernel, there is

no easy way for user-mode code to prevent this call from

revealing the presence of the debugger.

vii. Thread hiding

Windows 2000 introduced an explicitly anti-debugging

API extension, in the form of an information class called

HideThreadFromDebugger. It can be applied on a per-

thread basis, using the ntdll SetInformationThread()

function.

Example code looks like this:

 push 0

 push 0

 ;HideThreadFromDebugger

 push 11h

 push -2 ;GetCurrentThread()

 call NtSetInformationThread

When the function is called, the thread will continue to

run but a debugger will no longer receive any events

related to that thread. Among the missing events are that

the process has terminated, if the main thread is the

hidden one. This technique is used by

HyperUnpackMe2, among others.

viii. OpenProcess

When a process acquires the SeDebugPrivilege, it

gains full control of the CSRSS.EXE, even though

CSRSS.EXE is a system process. The reason for that is

because SeDebugPrivilege overrides all of the restrictions

for that process alone. Further, the privilege is passed to

child processes, such as the ones created by a debugger.

The result is if a debugged application can obtain the

process ID for CSRSS.EXE, it can open the process via

the kernel32 OpenProcess() function. The process ID can

be obtained by the kernel32 CreateToolhelp32Snapshot()

function and a kernel32 Process32Next() function

enumeration; or the ntdll NtQuerySystemInformation

(SystemProcessInformation (5)) function (and the ntdll

NtQuerySystemInformation() function is how the kernel32

CreateToolhelp32Snapshot() function gets its information

on Windows NT-based platforms). Alternatively,

Windows XP introduced the ntdll CsrGetProcessId()

function, which simplifies things greatly.

Example code looks like this:

 call CsrGetProcessId

 push eax

 push 0

 push 1f0fffh ;PROCESS_ALL_ACCESS

 call OpenProcess

 test eax, eax

 jne being_debugged

This opens (no pun intended) the way to a system-

level denial-of-service, by causing the CSRSS.EXE

process to perform an illegal operation. One method is

the creation of a thread at an invalid memory address, or a

thread that executes an infinite loop. However, since the

control is complete, an application can inject a thread into

the CSRSS.EXE process space and perform some

meaningful action, which results in a privilege elevation.

However, this is of only minor concern, since usually only

Administrators will be able to acquire the debug privilege,

and Administrators are highly privileged already. This

technique was described publicly by Piotr Bania
iv
 in 2005.

Both OllyDbg and WinDbg acquire the debug privilege,

but Turbo Debug does not. The best way to defeat this

technique is to not acquire the privilege arbitrarily, and

keep it for only as long as truly necessary.

ix. CloseHandle

If an invalid handle is passed to the kernel32

CloseHandle() function (or directly to the ntdll NtClose()

function), and no debugger is present, then an error code

is returned. However, if a debugger is present, an

EXCEPTION_INVALID_HANDLE (0xc0000008) exception

will be raised. This exception can be intercepted by an

exception handler, and is an indication that a debugger is

running.

Example code looks like this:

 xor eax, eax

 push offset being_debugged

 push dw fs:[eax]

 mov fs:[eax], esp

 ;any illegal value will do

 ;must be dword-aligned on Vista

 push esp

 call CloseHandle

To defeat this method is easiest on Windows XP, where

a FirstHandler Vectored Exception Handler can be

registered by the debugger to hide the exception and

silently resume execution. Of course, there is the problem

of transparently hooking the kernel32

AddVectoredExceptionHandler() function, in order to

prevent another handler from registering as the first

handler. However, it is still better than the problem of

transparently hooking the ntdll NtClose() on Windows NT

and Windows 2000, in order to register a Structured

Exception Handler to hide the exception.

x. OutputDebugString

The kernel32 OutputDebugString() function can

demonstrate different behaviour, depending on whether

or not a debugger is present. The most obvious

difference in behaviour that the kernel32 GetLastError()

function will return zero if a debugger is present.

Example code looks like this:

 push 0

 push esp

 call OutputDebugStringA

 call GetLastError

 test eax, eax

 je being_debugged

xi. ReadFile

The kernel32 ReadFile() function can be used as a

technique for self-modification, by reading file content

into the code stream. It is also an effective method for

removing software breakpoints that a debugger might

place. This is a technique that I discussed privately in

1999, but it was described publicly by Piotr Bania
v
 in 2007.

Example code looks like this:

 xor ebx, ebx

 mov ebp, offset l2

 push 104h ;MAX_PATH

 push ebp

 push ebx ;self filename

 call GetModuleFileNameA

 push ebx

 push ebx

 push 3 ;OPEN_EXISTING

 push ebx

 push 1 ;FILE_SHARE_READ

 push 80000000h ;GENERIC_READ

 push ebp

 call CreateFileA

 push ebx

 push esp

 ;more bytes might be more useful

 push 1

 push offset l1

 push eax

 call ReadFile

 ;replaced by "M"

 ;from the MZ header

l1: int 3

 ...

l2: db 104h dup (?);MAX_PATH

The way to defeat this technique is to use hardware

breakpoints instead of software breakpoints after the API

call.

xii. WriteProcessMemory

The kernel32 WriteProcessMemory() function

technique is a simple variation on the kernel32 ReadFile()

function technique above, but it requires that the data to

write are already present in the process memory space.

Example code looks like this:

 push 1

 push offset l1

 push offset l2

 push -1 ;GetCurrentProcess()

 call WriteProcessMemory

l1: nop

l2: int 3

This technique is used by NsAnti. The way to defeat

this technique is to use hardware breakpoints instead of

software breakpoints after the API call.

xiii. UnhandledExceptionFilter

When an exception occurs, and no registered

Structured Exception Handlers (neither Safe nor Legacy)

or Vectored Exception Handlers exist, or none of the

registered handlers handles the exception, the kernel32

UnhandledExceptionFilter() function will be called as a

last resort. Within that function is a call to the handler

that was registered by the kernel32

SetUnhandledExceptionFilter() function, but that call will

not reached if a debugger is present. Instead, the

exception will be passed to the debugger. The presence

of a debugger is determined by a call to the ntdll

NtQueryInformationProcess (ProcessDebugPort class)

function. So, for applications that do not know about the

ntdll NtQueryInformationProcess (ProcessDebugPort

class) function, the missing exception can be used to infer

the presence of the debugger.

Example code looks like this:

 push offset l1

 call SetUnhandledExceptionFilter

 ;force an exception to occur

 int 3

 jmp being_debugged

l1: ...

xiv. Block Input

The user32 BlockInput() function blocks mouse and

keyboard events from reaching applications. It is a very

effective way to disable debuggers.

Example code looks like this:

 push 1

 call BlockInput

This technique is used by Yoda's Protector, among

others.

xv. SuspendThread

The kernel32 SuspendThread() function can be another

very effective way to disable user-mode debuggers like

OllyDbg and Turbo Debug. This can be achieved by

enumerating the processes, as described above, then

suspending the main thread of the parent process, if it

does not match "Explorer.exe". This technique is used by

Yoda's Protector.

xvi. Guard Pages

Guard pages can be used for a simple debugger

detection. An exception handler is registered, an

executable/writable page is allocated dynamically, a "C3"

opcode ("RET" instruction) is written to it, and then the

page protection is changed to PAGE_GUARD. Then an

attempt is made to execute the instruction. This should

result in an EXCEPTION_GUARD_PAGE (0x80000001)

exception being received by the exception handler, but if a

debugger is present, the debugger might intercept the

exception and allow the execution to continue. In fact,

that's exactly what happens in OllyDbg (see Anti-

debugging:OllyDbg section below).

Example code looks like this:

 xor ebx, ebx

 push 40h ;PAGE_EXECUTE_READWRITE

 push 1000h ;MEM_COMMIT

 push 1

 push ebx

 call VirtualAlloc

 mov b [eax], 0c3h

 push eax

 push esp

 ;PAGE_EXECUTE_READWRITE

 ;+ PAGE_GUARD

 push 140h

 push 1

 push eax

 xchg ebp, eax

 call VirtualProtect

 push offset l1

 push dw fs:[ebx]

 mov fs:[ebx], esp

 push offset being_debugged

 ;executing ret will branch

 ;to being_debugged

 jmp ebp

 ;an exception will reach here

l1: ...

This technique is used by PC Guard.

xvii. Alternative desktop

Windows NT-based platforms support multiple

desktops per session. It is possible to select a different

active desktop, which has the effect of hiding the

windows of the previously active desktop, and with no

obvious way to switch back to the old desktop.

Example code looks like this:

 xor eax, eax

 push eax

 ;DESKTOP_CREATEWINDOW

 ;+ DESKTOP_WRITEOBJECTS

 ;+ DESKTOP_SWITCHDESKTOP

 push 182h

 push eax

 push eax

 push eax

 push offset l1

 call CreateDesktopA

 push eax

 call SwitchDesktop

 ...

l1: db "mydesktop", 0

This technique is used by HyperUnpackMe2.

e. Hardware tricks

i. Prefetch queue

Given this code:

l1: call l3

l2: ...

l3: mov al, 0c3h

 mov edi, offset l3

 or ecx, -1

 rep stosb

What happens next? The answer depends on several

things. Clearly, the code overwrites itself, which might

lead one to conclude that it stops as soon as the REP is

destroyed. If a debugger is used to single-step, then that

is exactly what happens. However, if a debugger is not

present, then the write continues until an exception

occurs. Which exception that is depends on the memory

layout at the time.

If, after the code, is a purely virtual region that has

been accessed by a debugger, for example, then an access

violation exception will occur and the program will exit if

no exception handler has been registered.

On the other hand, if the virtual memory has not been

accessed, then the REP will stop. No visible exception

will occur, but a "C3" opcode ("RET" instruction) will be

executed, and control will be returned to l2.

Why? The answer is the prefetch queue. On the x86

family of CPUs prior to the Pentium, the prefetch queue

would not be flushed automatically when a memory write

occurred at an address that corresponded to the address

of the bytes in the prefetch queue. However, the queue

would be flushed whenever an exception occurred, such

as the single-step exception that many debuggers use to

step through code. This behaviour allowed for all kinds

of anti-debugger tricks, mostly concerned with

overwriting the next instruction to execute. In the

absence of a debugger, the prefetch queue would execute

the original instruction. In the presence of a debugger

that triggers a single-step exception, the queue would be

flushed, and the alteration would be applied.

Intel considered this behaviour to be a bug, and it was

fixed in the Pentium and later CPUs, but with two

exceptions that remain to this day: the REP MOVS and

REP STOS instructions. For those two instructions, the

CPU still caches them and continues to execute them even

when the instruction sequence has been overwritten in

memory.

The execution continues until completion, or until an

exception occurs. In the case above, an exception occurs,

but it is a page fault when the value in EDI reaches a

reserved page in memory. At that time, the CPU flushes

and reloads the prefetch queue, sees the "C3" opcode

("RET" instruction) where the REP STOS instruction was

previously, and executes that instead.

This technique is used by Invius.

Another example of this trick exists that does not rely

on the page fault.

Example code looks like this:

l1: mov al, 90h

 push 10h

 pop ecx

 mov edi, offset l1

 rep stosb

 ...

One variation contains a JMP instruction within the

altered range; the other contains a JECXZ instruction

outside of the altered range. They have opposite effects.

In both cases, the "90" opcode ("NOP" instruction) in

the AL register is used to overwrite the REP STOSB and

some of the following bytes. Incorrect emulation (or

single-stepping through the code, as with a debugger)

will cause the REP to exit prematurely, allowing the

instructions immediately following the STOSB instruction

to execute. In the first variation, the JMP instruction will

be executed as a result, revealing the presence of a

debugger or similar. In the second variation, the value in

ECX will be zero only if the REP STOSB completes. If the

JECXZ instruction is not executed, this reveals the

presence of a debugger or similar.

The JECXZ version of this technique is used by

Obsidium.

The Pentium Pro introduced an additional behaviour,

called a "fast string" operation, which is also supported

by modern CPUs. It is available for both MOVS and

STOS. It requires these conditions: REP prefix, EDI

aligned to a multiple of 8 bytes (and ESI, too, for MOVS

on a Pentium 3), ESI and EDI at least a cache-line apart

(64 bytes for the Pentium 4 and later CPUs, 32 bytes for

earlier CPUs) for MOVS, ECX at least 64, D flag clear in

the EFLAGS register, and WB or WC memory type for

EDI (and ESI for MOVS). Additionally, a Model Specific

Register (MSR) must be set appropriately (though by

default it is already enabled) - either 1A0 bit 0 or 1E0 bit 2.

Of particular interest is that the single-step exception

cannot interrupt the operation.

ii. Hardware Breakpoints

When an exception occurs, Windows passes to the

exception handler a context structure which contains the

values of the general registers, segment registers, control

registers, and the debug registers. If a debugger is

present and passes the exception to the debuggee with

hardware breakpoints in use, then the debug registers will

contain values that reveal the presence of the debugger.

Example code looks like this:

 xor eax, eax

 push offset l1

 push dw fs:[eax]

 mov fs:[eax], esp

 ;force an exception to occur

 jmp eax

 ...

 ;ContextRecord

l1: mov eax, [esp+0ch]

 mov eax, [eax+4] ;Dr0

 or eax, [eax+8] ;Dr1

 or eax, [eax+0ch] ;Dr2

 or eax, [eax+10h] ;Dr3

 jne being_debugged

The debugger is also vulnerable to being bypassed if

the debuggee erases the contents of the debug registers

prior to resuming execution after the exception. This

technique is used by ASProtect, among others.

iii. Instruction Counting

Instruction counting can be performed by registering

an exception handler, then setting some hardware

breakpoints on particular addresses. When each address

is hit, an EXCEPTION_SINGLE_STEP (0x80000004)

exception will be raised. This exception will be passed to

the exception handler, which can adjust the instruction

pointer to point to a new instruction, and then resume

execution. To set the breakpoints requires access to a

context structure. This can be achieved by calling the

kernel32 GetThreadContext() function. Alternatively, a

context structure is passed to an exception handler, so by

forcing an exception to occur, the context can be acquired

in a more obfuscated manner. Some debuggers do not

handle correctly hardware breakpoints that they did not

set themselves, leading to some instructions not being

counted by the exception handler.

Example code looks like this:

 xor eax, eax

 cdq

 push offset l5

 push dw fs:[eax]

 mov fs:[eax], esp

 int 3

l1: nop

l2: nop

l3: nop

l4: nop

 div edx

 cmp al, 4

 jne being_debugged

 ...

l5: xor eax, eax

 ;ExceptionRecord

 mov ecx, [esp+4]

 ;ContextRecord

 mov edx, [esp+0ch]

 ;CONTEXT_Eip

 inc b [edx+0b8h]

 ;ExceptionCode

 mov ecx, [ecx]

 ;EXCEPTION_INT_DIVIDE_BY_ZERO

 cmp ecx, 0c0000094h

 jne l6

 ;CONTEXT_Eip

 inc b [edx+0b8h]

 mov [edx+4], eax ;Dr0

 mov [edx+8], eax ;Dr1

 mov [edx+0ch], eax ;Dr2

 mov [edx+10h], eax ;Dr3

 mov [edx+14h], eax ;Dr6

 mov [edx+18h], eax ;Dr7

 ret

 ;EXCEPTION_BREAKPOINT

l6: cmp ecx, 80000003h

 jne l7

 ;Dr0

 mov dw [edx+4], offset l1

 ;Dr1

 mov dw [edx+8], offset l2

 ;Dr2

 mov dw [edx+0ch], offset l3

 ;Dr3

 mov dw [edx+10h], offset l4

 ;Dr7

 mov dw [edx+18h], 155h

 ret

 ;EXCEPTION_SINGLE_STEP

l7: cmp ecx, 80000004h

 jne being_debugged

 ;CONTEXT_Eax

 inc b [edx+0b0h]

 ret

This technique is used by tELock .

iv. Execution Timing

When a debugger is present, and used to single-step

through the code, there is a significant delay between the

executions of the individual instructions , when compared

to native execution. This delay can be measured using

one of several possible time sources. These sources

include the RDTSC instruction, the kernel32

GetTickCount() function, and the winmm timeGetTime()

function, among others. However, the resolution of the

winmm timeGetTime() function is variable, depending on

whether or not it branches internally to the kernel32

GetTickCount() function, making it very unreliable to

measure small intervals.

Example code looks like this for RDTSC:

 rdtsc

 xchg ecx, eax

 rdtsc

 sub eax, ecx

 cmp eax, 500h

 jnbe being_debugged

Example code looks like this for kernel32

GetTickCount():

 call GetTickCount

 xchg ebx, eax

 call GetTickCount

 sub eax, ebx

 cmp eax, 1

 jnb being_debugged

Example code looks like this for winmm timeGetTime():

 call timeGetTime

 xchg ebx, eax

 call timeGetTime

 sub eax, ebx

 cmp eax, 10h

 jnb being_debugged

v. EIP via Exceptions

Using exceptions to alter the value of eip is a very

common technique among packers. It serves as an

effective anti-debugging technique, since debuggers

typically intercept some of the exceptions (int 1 and int 3,

for example). It also provides for a level of obfuscation,

particularly if the exception trigger is not immediately

obvious.

Example code looks like this:

 xor eax, eax

 push offset l3

 push dw fs:[eax]

 mov fs:[eax], esp

l1: call l1

l2: jmp l2

l3: pop eax

 pop eax

 pop esp

l4: ...

Is l2 ever reached? No, it's not. A stack overflow

exception occurs at l1, causing a transfer of control to l3.

After the stack is restored, execution continues from l4.

This technique is used by PECompact, among others.

f. Process tricks

i. Header entrypoint

Any section of the file, whose attributes do not include

IMAGE_SCN_MEM_WRITE (writable) and/or

IMAGE_SCN_MEM_EXECUTE (executable), is read-only

by default to a remote debugger. This includes the PE

header, since there is no section that describes it (there is

an exception to this, see Anti-Emulating:File-Format

section below). If the entrypoint happens to be in such a

section, then a debugger will not be able to successfully

set any breakpoints, if it does not first call the kernel32

VirtualProtectEx() function to write-enable the memory

region. Further, if the failure to set the breakpoint is not

noticed by the debugger, then the debugger might allow

the debuggee to run freely. This is the case for Turbo

Debugger. This technique is used by MEW, among

others.

ii. Parent process

Users usually execute applications manually via a

window provided by the shell. As a result, the parent of

any such process will be Explorer.exe. Of course, if the

application is executed from the command-line, then the

command-line application will be the parent. Executing

applications from the command-line can be a problem for

certain packers. This is because some packers check the

parent process name, expecting it to be "Explorer.exe", or

the packers compare the parent process ID against that of

Explorer.exe. A mismatch in either case is then assumed

to be caused by a debugger creating the process.

The process ID of both Explorer.exe, and the parent of

the current process, can be obtained by the kernel32

CreateToolhelp32Snapshot() function and a kernel32

Process32Next() function enumeration.

Example code looks like this:

 xor esi, esi

 xor edi, edi

 push esi

 push 2 ;TH32CS_SNAPPROCESS

 call CreateToolhelp32Snapshot

 mov ebx, offset l5

 push ebx

 push eax

 xchg ebp, eax

 call Process32First

l1: call GetCurrentProcessId

 ;th32ProcessID

 cmp [ebx+8], eax

 ;th32ParentProcessID

 cmove edi, [ebx+18h]

 test esi, esi

 je l2

 test edi, edi

 je l2

 cmp esi, edi

 jne being_debugged

l2: lea ecx, [ebx+24h] ;szExeFile

 push esi

 mov esi, ecx

l3: lodsb

 cmp al, "\"

 cmove ecx, esi

 or b [esi-1], " "

 test al, al

 jne l3

 sub esi, ecx

 xchg ecx, esi

 push edi

 mov edi, offset l4

 repe cmpsb

 pop edi

 pop esi

 ;th32ProcessID

 cmove esi, [ebx+8]

 push ebx

 push ebp

 call Process32Next

 test eax, eax

 jne l1

 ...

l4: db "explorer.exe "

 ;sizeof(PROCESSENTRY32)

l5: dd 128h

 db 124h dup (?)

This technique is used by Yoda's Protector, among

others. Since this information comes from the kernel,

there is no easy way for user-mode code to prevent this

call from revealing the presence of the debugger.

However, a common technique is to force the kernel32

Process32Next() function to return FALSE, which causes

the loop to exit early. It should be a suspicious condition

if either Explorer.exe or the current processes were not

seen, but Yoda's Protector (and some other packers) does

not contain any requirement that both were found.

The process ID of both Explorer.exe, and the parent of

the current process, can be obtained by the ntdll

NtQuerySystemInformation (SystemProcessInformation

(5)) function.

Example code looks like this:

 xor ebp, ebp

 xor esi, esi

 xor edi, edi

 jmp l2

l1: push 8000h ;MEM_RELEASE

 push esi

 push ebx

 call VirtualFree

l2: xor eax, eax

 mov ah, 10h ;MEM_COMMIT

 add ebp, eax ;4kb increments

 push 4 ;PAGE_READWRITE

 push eax

 push ebp

 push esi

 call VirtualAlloc

 ;function does not return

 ;required length for this class

 push esi

 ;must calculate by brute-force

 push ebp

 push eax

 ;SystemProcessInformation

 push 5

 xchg ebx, eax

 call NtQuerySystemInformation

 ;STATUS_INFO_LENGTH_MISMATCH

 cmp eax, 0c0000004h

 je l1

l3: call GetCurrentProcessId

 ;UniqueProcessId

 cmp [ebx+44h], eax

 ;InheritedFromUniqueProcessId

 cmove edi, [ebx+48h]

 test esi, esi

 je l4

 test edi, edi

 je l4

 cmp esi, edi

 jne being_debugged

l4: mov ecx, [ebx+3ch] ;ImageName

 jecxz l6

 push esi

 xor eax, eax

 mov esi, ecx

l5: lodsw

 cmp eax, "\"

 cmove ecx, esi

 push ecx

 push eax

 call CharLowerW

 mov w [esi-2], ax

 pop ecx

 test eax, eax

 jne l5

 sub esi, ecx

 xchg ecx, esi

 push edi

 mov edi, offset l7

 repe cmpsb

 pop edi

 pop esi

 ;UniqueProcessId

 cmove esi, [ebx+44h]

 ;NextEntryOffset

l6: mov ecx, [ebx]

 add ebx, ecx

 inc ecx

 loop l3

 ...

l7: dw "e","x","p","l","o","r"

 dw "e","r",".","e","x","e",0

However, the process ID of Explorer.exe can be

obtained most simply by the user32 GetShellWindow()

and user32 GetWindowThreadProcessId() functions. The

process ID of the parent of the current process can be

obtained most simply by the ntdll

NtQueryInformationProcess (ProcessBasicInformation

(0)) function.

Example code looks like this:

 call GetShellWindow

 push eax

 push esp

 push eax

 call GetWindowThreadProcessId

 push 0

 ;sizeof(PROCESS_BASIC_INFORMATION)

 push 18h

 mov ebp, offset l1

 push ebp

 push 0 ;ProcessBasicInformation

 push -1 ;GetCurrentProcess()

 call NtQueryInformationProcess

 pop eax

 ;InheritedFromUniqueProcessId

 cmp [ebp+14h], eax

 jne being_debugged

 ...

;sizeof(PROCESS_BASIC_INFORMATION)

l1: db 18h dup (?)

iii. Self-execution

One of the simplest ways to escape from the control of

a debugger is for a process to execute another copy of

itself. Typically, the process will use a synchronisation

object, such as a mutex, to prevent infinite executions.

The first process will create the mutex, and then execute

the copy of the process. The second process will not be

debugged, even if the first process was. It will also know

that it is the copy since the mutex will exist.

Example code looks like this:

 xor ebx, ebx

 push offset l2

 push eax

 push eax

 call CreateMutexA

 call GetLastError

 ;ERROR_ALREADY_EXISTS

 cmp eax, 0b7h

 je l1

 mov ebp, offset l3

 push ebp

 call GetStartupInfoA

 call GetCommandLineA

 ;sizeof(PROCESS_INFORMATION)

 sub esp, 10h

 push esp

 push ebp

 push ebx

 push ebx

 push ebx

 push ebx

 push ebx

 push ebx

 push eax

 push ebx

 call CreateProcessA

 pop eax

 push -1 ;INFINITE

 push eax

 call WaitForSingleObject

 call ExitProcess

l1: ...

l2: db "my mutex", 0

 ;sizeof(STARTUPINFO)

l3: db 44h dup (?)

A common mistake is the use of the kernel32 Sleep()

function, instead of the kernel32 WaitForSingleObject()

function, because it introduces a race condition. The

problem occurs when there is CPU-intensive activity.

This could be because of a sufficiently complicated

protection (or intentional delays) in the second process;

but also actions that the user might perform while the

execution is in progress, such as browsing the network or

extracting files from an archive. The result is that the

second process might not reach the mutex check before

the delay expires; leading it to think that it is the first

process. The result is that it executes yet another copy of

the process. This behaviour can be repeated any number

of times, until one of the processes completes the mutex

check successfully. This technique is used by MSLRH,

and the exact problem is present there.

iv. Process Name

As noted above, the list of process names can be

retrieved by the kernel32 CreateTool32Snapshot()

function, or the ntdll QuerySystemInformation() function.

In addition to finding Explorer.exe or the current process

name, some packers look for other process names,

particularly those which belong to anti-malware vendors

or specialised tools.

Example code looks like this for kernel32

CreateToolhelp32Snapshot():

 push 0

 push 2 ;TH32CS_SNAPPROCESS

 call CreateToolhelp32Snapshot

 mov ebx, offset l5

 push ebx

 push eax

 xchg ebp, eax

 call Process32First

l1: lea ecx, [ebx+24h] ;szExeFile

 mov esi, ecx

l2: lodsb

 cmp al, "\"

 cmove ecx, esi

 or b [esi-1], " "

 test al, al

 jne l2

 sub esi, ecx

 xchg ecx, esi

 mov edi, offset l4

l3: push ecx

 push esi

 repe cmpsb

 je being_debugged

 mov al, " "

 not ecx

 ;move to previous character

 dec edi

 ;then find end of string

 repne scasb

 pop esi

 pop ecx

 cmp [edi], al

 jne l3

 push ebx

 push ebp

 call Process32Next

 test eax, eax

 jne l1

 ...

l4: <array of space-terminated ASCII

strings, space to end>

 ;sizeof(PROCESSENTRY32)

l5: dd 128h

 db 124h dup (?)

Example code looks like this for ntdll

NtQuerySystemInformation():

 xor ebp, ebp

 xor esi, esi

 jmp l2

l1: push 8000h ;MEM_RELEASE

 push esi

 push ebx

 call VirtualFree

l2: xor eax, eax

 mov ah, 10h ;MEM_COMMIT

 add ebp, eax ;4kb increments

 push 4 ;PAGE_READWRITE

 push eax

 push ebp

 push esi

 call VirtualAlloc

 ;function does not return

 ;required length for this class

 push esi

 ;must calculate by brute-force

 push ebp

 push eax

 ;SystemProcessInformation

 push 5

 xchg ebx, eax

 call NtQuerySystemInformation

 ;STATUS_INFO_LENGTH_MISMATCH

 cmp eax, 0c0000004h

 je l1

l3: mov ecx, [ebx+3ch] ;ImageName

 jecxz l6

 xor eax, eax

 mov esi, ecx

l4: lodsw

 cmp eax, "\"

 cmove ecx, esi

 push ecx

 push eax

 call CharLowerW

 mov w [esi-2], ax

 pop ecx

 test eax, eax

 jne l4

 sub esi, ecx

 xchg ecx, esi

 mov edi, offset l7

l5: push ecx

 push esi

 repe cmpsb

 je being_debugged

 not ecx

 ;move to previous character

 dec edi

 ;force word-alignment

 and edi, -2

 ;then find end of string

 repne scasw

 pop esi

 pop ecx

 cmp [edi], ax

 jne l5

 ;NextEntryOffset

l6: mov ecx, [ebx]

 add ebx, ecx

 inc ecx

 loop l3

 ...

 ;must be word-aligned

 ;for correct scanning

 align 2

l7: <array of null-terminated Unicode

strings, null to end>

v. Threads

Threads are used by some packers to perform actions

such as periodically checking for the presence of a

debugger, or ensuring the integrity of the main code. The

use of threads had an additional advantage early on,

which was that some anti-malware emulators did not

support threads, allowing the packed file to cause an early

exit.

Example code looks like this:

l1: xor eax, eax

 push eax

 push esp

 push eax

 push eax

 push offset l2

 push eax

 push eax

 call CreateThread

 ...

l2: xor eax, eax

 cdq

 mov ecx, offset l4 - offset l1

 mov esi, offset l1

l3: lodsb

 ;simple sum

 ;to detect breakpoints

 add edx, eax

 loop l3

 cmp edx, <checksum>

 jne being_debugged

 ;small delay then restart

 push 100h

 call Sleep

 jmp l2

l4: ;code end

This technique is used by PE-Crypt32, among others.

vi. Self-debugging

Self-debugging is the act of running a copy of a

process, and attaching to it as a debugger. Since only

one debugger can be attached to a process at any point in

time, the copy of the process becomes undebuggable by

ordinary means.

Example code looks like this:

 xor ebx, ebx

 mov ebp, offset l3

 push ebp

 call GetStartupInfoA

 call GetCommandLineA

 mov esi, offset l4

 push esi

 push ebp

 push ebx

 push ebx

 push 1 ;DEBUG_PROCESS

 push ebx

 push ebx

 push ebx

 push eax

 push ebx

 call CreateProcessA

 mov ebx, offset l5

 jmp l2

l1: push 10002h ;DBG_CONTINUE

 push dw [esi+0ch] ;dwThreadId

 push dw [esi+8] ;dwProcessId

 call ContinueDebugEvent

l2: push -1 ;INFINITE

 push ebx

 call WaitForDebugEvent

 cmp b [ebx], 5

;EXIT_PROCESS_DEBUG_EVENT

 jne l1

 ...

 ;sizeof(STARTUPINFO)

l3: db 44h dup (?)

 ;sizeof(PROCESS_INFORMATION)

l4: db 10h dup (?)

 ;sizeof(DEBUG_EVENT)

l5: db 60h dup (?)

This technique is used by Armadillo, among others.

This technique can be defeated most easily by kernel-

mode code zeroing the EPROCESS->DebugPort field.

Doing so will allow another debugger to attach to the

process. The debugged process can also be opened via

the kernel32 OpenProcess() function, which means that a

DLL can be injected into the process space.

Alternatively, on Windows XP and later, the kernel32

DebugActiveProcessStop() function can be used to

detach the debugger.

vii. Disassembly

Some packers examine not just the first few bytes of an

API for breakpoints, but actively disassemble the

function code. There are a few reasons why they might

do that. One reason is in order to perform API

interception, whereby some complete instructions from

the function are copied to a private buffer and executed

from there. A jump is placed at the end of those

instructions, to point after the last copied instruction in

the original API code. This has the effect of bypassing

breakpoints that are placed anywhere within the first few

instructions of the original API code.

Another reason is in order to perform a more reliable

search for breakpoints. By knowing the location of the

instruction boundaries, there is no risk of encountering

what appears to be a breakpoint, but is actually some

data. For example, 0xb8 0xcc 0x00 0x00 0x00 appears to

contain a breakpoint, but when disassembled and

displayed, the sequence is "MOV EAX, 000000CC".

In addition to searching for breakpoints, some packers

search for detours. Detours are jump instructions that are

inserted, usually as the first instruction, to point to a

private location. The code at that private location

typically creates a log of the APIs that are called, though

it is not restricted to that behaviour. The problem with

detecting detours is that it also detects hot-patching.

Microsoft added a dummy instruction to many functions

in Windows XP, that allows a jump instruction to be

placed cleanly (that is, without concern for instruction

boundaries, since the dummy instruction achieves the

required alignment). This jump instruction would point to

a private location that contains code to deal with a

vulnerability in the hooked function. If a packer detects

detours and refuses to run if a detour of any kind is

found, then it will also refuse to run if a function has been

hot-patched.

viii. TLS Callback

This is a technique that allows the execution of user-

defined code before the execution of the main entrypoint

code. It is a technique that I discussed privately in 2000,

but it was demonstrated publicly by Radim Picha
vi
 later

that same year. It was used in a virus
vii

 in 2002. It has

been used by ExeCryptor and others since 2004.

ix. Device names

Tools that make use of kernel-mode drivers also need a

way to communicate with those drivers. A very common

method is through the use of named devices. Thus, by

attempting to open such a device, any success indicates

the presence of the driver.

Example code looks like this:

 xor eax, eax

 mov edi, offset l2

l1: push eax

 push eax

 push 3 ;OPEN_EXISTING

 push eax

 push eax

 push eax

 push edi

 call CreateFileA

 inc eax

 jne being_debugged

 or ecx, -1

 repne scasb

 cmp [edi], al

 jne l1

 ...

l2: <array of ASCIIZ strings, null to

end>

A typical list includes the following names:

\\.\SICE

\\.\SIWVID

\\.\NTICE

These names belong to SoftICE. Note that a

successful opening of the device does not mean that

SoftICE is active, but that it is present. However, that is

sufficient for many people. The first two drivers are

present on Windows 9x-based platforms, the third driver

is present on Windows NT-based platforms, but a lot of

copy/paste occurs in the packer space, so this list

appears often, even in packers that do not run on

Windows 9x-based platforms.

Other common device names include these:

\\.\REGVXG

\\.\REGSYS

These names belong to RegMon. The first name is for

Windows 9x-based platforms, the second name is for

Windows NT-based platforms.

\\.\FILEVXG

\\.\FILEM

These names belong to FileMon. The first name is for

Windows 9x-based platforms, the second name is for

Windows NT-based platforms.

\\.\TRW

This name belongs to TRW. TRW is a debugger for

only Windows 9x-based platforms, yet some packers

check for it even on Windows NT-based platforms.

\\.\ICEEXT

This name belongs to SoftICE extender.

g. SoftICE-specific

For many years, SoftICE was the most popular of

debuggers for the Windows platform. It is a debugger that

makes use of a kernel-mode driver, in order to support

debugging of both user-mode and kernel-mode code,

including transitions in either direction between the two.

SoftICE contains a number of vulnerabilities. A

description of them is beyond the scope of this paper. A

companion paper (Anti-Unpacking Tricks - Future) will

cover the topic in detail.

i. Driver information

The names of the device drivers on the system can be

enumerated. This can be achieved using the ntdll

NtQuerySystemInformation (SystemModuleInformation

(0x0b)) function. For each module that is returned, the

version information in the file can be retrieved using the

version VerQueryValue() function. This information

typically includes the Product Name and Copyright

strings, which can be matched against specific products

and companies, such as "SoftICE", "Compuware", and

"NuMega".

ii. Interrupt 1

The interrupt 1 descriptor normally has a descriptor

privilege level (DPL) of 0, which means that the "cd 01"

opcode ("int 1" instruction) cannot be issued from ring 3.

An attempt to execute this interrupt directly will result in a

general protection fault ("int 0x0d" exception) being

issued by the CPU, eventually resulting in an

EXCEPTION_ACCESS_VIOLATION (0xc0000005)

exception being raised by Windows.

However, if SoftICE is running, it hooks interrupt 1 and

adjusts the DPL to 3, so that SoftICE can single-step

through user-mode code. This is not visible from within

SoftICE, though - the "IDT" command, to display the

interrupt descriptor table, shows the original interrupt 1

handler address with a DPL of 0, as though SoftICE were

not present.

The problem is that when an interrupt 1 occurs, SoftICE

does not check if it was caused by the trap flag or by a

software interrupt. The result is that SoftICE always calls

the original interrupt 1 handler, and an

EXCEPTION_SINGLE_STEP (0x80000004) exception is

raised instead of the EXCEPTION_ACCESS_VIOLATION

(0xc0000005) exception, allowing for an easy detection

method.

Example code looks like this:

 xor eax, eax

 push offset l1

 push dw fs:[eax]

 mov fs:[eax], esp

 int 1

 ...

 ;ExceptionRecord

l1: mov eax, [esp+4]

 ;EXCEPTION_SINGLE_STEP

 cmp dw [eax], 80000004h

 je being_debugged

This technique is used by SafeDisc. To defeat this

technique might appear to be a simple matter of restoring

the DPL of interrupt 1. It is not so simple. The problem is

to determine reliably the cause of an exception at the

interrupt 0x0d level. The instruction queue can be

examined for an "int 1" sequence, but the trap flag could

also appear to be set at the same time, even though it did

not become active. This can happen if interrupts are

delayed for one instruction (via "pop ss", for example),

then the trap flag will not be responsible for the exception,

even though it is set. A companion paper (Anti-

Unpacking Tricks - Future) will cover some additional

aspects of this problem.

h. OllyDbg-specific

OllyDbg is perhaps the most popular of user-mode

debuggers. It supports plug-ins. Some packers have been

written to detect OllyDbg, so some plug-ins have been

written to attempt to hide OllyDbg from those packers.

Correspondingly, other packers have been written to detect

these plug-ins. A description of those plug-ins, and the

vulnerabilities in them, is beyond the scope of this paper. A

companion paper (Anti-Unpacking Tricks - Future) will

cover the topic in detail.

i. Malformed files

OllyDbg is too strict regarding the Portable Executable

format - it will refuse to open a file whose data directories

do not end at exactly the end of the Optional Header. It

attempts to allocate the amount of memory specified by

the Export Directory Size, Base Relocation Directory Size,

Export Address Table Entries, and PE->SizeOfCode fields,

regardless of how large the values are. This can cause

the operating system swap file to grow enormously,

which has a significant performance impact on the

system.

ii. Initial esi value

The esi register has an initial value of 0xffffffff in

OllyDbg on Windows XP, which seems to be constant,

leading some people to use it as a detection method
viii

. In

fact, it's just a coincidence (and the initial value is 0 on

Windows 2000). The value is a remnant of an exception

handler structure that Windows XP created during a call

to the ntdll RtlAllocateHeap() function. That location of

that value corresponds to the esi member in the context

structure that is created by the kernel32 CreateProcess()

function. The kernel32 CreateProcess() function does not

initialise the esi member.

iii. OutputDebugString

OllyDbg passes user-defined data directly to the

msvcrt _vsprintf() function. If those data contain

formatting string tokens, particularly if multiple "%s"

tokens are used, then it is likely that one of them will point

to an invalid memory region and crash OllyDbg.

iv. FindWindow

OllyDbg can be found by calling the user32

FindWindow() function, and passing "OLLYDBG" as the

class name to find.

Example code looks like this:

 push 0

 push offset l1

 call FindWindowA

 test eax, eax

 jne being_debugged

 ...

l1: db "OLLYDBG", 0

v. Guard Pages

OllyDbg uses guard pages to handle memory

breakpoints. As noted above, if an application places

executable instructions in a guarded page, an attempt to

execute them should result in an exception, but in

OllyDbg they will be executed instead.

i. HideDebugger-specific

HideDebugger is a plug-in for OllyDbg. Early versions of

HideDebugger hooked the debuggee's kernel32

OpenProcess() function. The hook was done by placing a

far jump to a new handler, at offset 6 in the kernel32

OpenProcess() function. The presence of the jump was a

good indicator that the HideDebugger plug-in was present.

Example code looks like this:

 push offset l1

 call GetModuleHandleA

 push offset l2

 push eax

 call GetProcAddress

 cmp b [eax+6], 0eah

 je being_debugged

 ...

l1: db "kernel32", 0

l2: db "OpenProcess", 0

j. ImmunityDebugger-specific

ImmunityDebugger is essentially OllyDbg with a Python

command-line interface. In fact, it is largely byte-for-byte

identical to the OllyDbg code. Correspondingly, it has the

same vulnerabilities as OllyDbg, with respect to both detect

and exploitation.

k. WinDbg-specific

i. FindWindow

WinDbg can be found by calling the user32

FindWindow() function, and passing

"WinDbgFrameClass" as the class name to find.

Example code looks like this:

 push 0

 push offset l1

 call FindWindowA

 test eax, eax

 jne being_debugged

 ...

l1: db "WinDbgFrameClass", 0

l. Miscellaneous tools

i. FindWindow

There are several less common tools that are of interest

to some packers, such as window name of "Import

REConstructor v1.6 FINAL (C) 2001-2003 MackT/uCF", or

a class name of "TESTDBG", "kk1, "Eew57", or

"Shadow". These names are checked by MSLRH.

III. ANTI-UNPACKING BY ANTI-EMULATING

Some methods to detect emulators and virtual machines

have been described elsewhere
ix
. Some additional methods are

described here. A companion paper (Anti-Unpacking Tricks -

Future) will describe some further methods.

a. Software Interrupts

i. Interrupt 3

When an EXCEPTION_BREAKPOINT (0x80000003)

occurs, the eip register has already been advanced to the

next instruction, so Windows wants to rewind the eip to

point to the proper place. The problem is that Windows

assumes that the exception is caused by a single-byte

"CC" opcode (short form "INT 3" instruction). If the "CD

03" opcode (long form "INT 3" instruction) is used to

cause the exception, then the eip will be pointing to the

wrong location. The same behaviour can be seen if any

prefixes are placed before the short-form "INT 3"

instruction. An emulator that does not behave in the

same way will be revealed instantly. This technique is

used by TryGames.

b. Time-locks

Time-locks are a very effective anti-emulation technique.

Most anti-malware emulators intentionally contain a limit to

the amount of time and/or the number of CPU instructions

that can be emulated, before the emulator will exit with no

detection. This behavior is almost a requirement, since a

user will typically not be patient enough to wait for an

emulated application to exit on its own (if it ever would),

before being able to access it normally. This leads to a

vulnerability, whereby an attacker will produce a sample

which intentionally delays its main execution, usually via a

dummy loop, in an attempt to force an emulator to give up.

Example code looks like this:

 mov ecx, 400000h

l1: loop l1

In some cases, such dummy loops can be recognized and

skipped, but in that case, care must be taken to adjust the

values of any internal timers, and also the CPU registers that

are involved. Otherwise, the arbitrary skipping of the loop

might be detected.

Example code looks like this:

 call GetTickCount

 xchg ebx, eax

 mov ecx, 400000h

l1: loop l1

 call GetTickCount

 sub eax, ebx

 cmp eax, 1000h

 jbe being_debugged

Further, the loop might not be a dummy one at all, in the

sense that the results might be used for a real purpose, even

though they could have been calculated without resorting to

a loop.

Real-world example code looks like this:

 mov ebp, esp

 mov ebp, [ebp+1ch] ;0ffffffffh

 sub ebp, 5

l1: sub ebp, 0ah

 dec eax

 or ebp, ebp

 jne l1

In this case, the calculated value is also used as a key, so

the loop cannot be skipped arbitrarily. This technique is

used by Tibs.

c. Invalid API parameters

Many APIs return error codes when they receive invalid

parameters. The problem for anti-malware emulators is that,

for simplicity, such error checking is not implemented. This

leads to a vulnerability, whereby an attacker will

intentionally pass known invalid parameters to the function,

and expecting an error code to be returned. In s ome cases,

this error code is used as a key for decryption. Any

emulator that fails to return the error code will not be able to

decrypt the data.

Example code looks like this:

 push 1

 push 1

 call Beep

 call GetLastError

 ;ERROR_INVALID_PARAMETER (0x57)

 push 5 ;sizeof(l2)

 pop ecx

 xchg edx, eax

 mov esi, offset l2

 mov edi, esi

l1: lodsb

 xor al, dl

 stosb

 loop l1

 ...

l2: db 3fh, 32h, 3bh, 3bh, 38h

;secret message

This technique is used by Tibs.

d. GetProcAddress

The kernel32 GetProcAddress() function is intended to

return the address of a function exported by the specified

module. Since there is a potentially unlimited number of

possible functions which can be retrieved from an infinite

number of modules, it is impossible for them all to be

available in an emulated environment that is provided by an

anti-malware emulator. However, even some expected

functions might be missing from such an environment,

because of their lack of likely requirement, such as the

kernel32 GetTapeParameters() function. The problem is that

some packers will exit early if not all function addresses

could be retrieved. To defeat that, some anti-malware

emulators will always return a value for the kernel32

GetProcAddress(), regardless of the parameters that are

passed in. This leads to a vulnerability, whereby an attacker

will intentionally pass known invalid parameters to the

function, and expecting no function address to be returned.

Any emulator that returns an address in such a situation will

be revealed.

Example code looks like this:

 push offset l1

 push 12345678h ;illegal value

 call GetProcAddress

 test eax, eax

 jne being_debugged

 ...

l1: db "myfunction", 0

This technique is used by NsAnti. It is a specific case of

the general bad API problem from above.

e. GetProcAddress(internal)

Some anti-malware emulators export special APIs, which

can be used to communicate with the host environment, for

example. This technique has been published elsewhere
x
.

Example code looks like this:

 push offset l1

 call GetModuleHandleA

 push offset l2

 push eax

 call GetProcAddress

 test eax, eax

 jne being_debugged

 ...

l1: db "kernel32", 0

l2: db "Aaaaaa", 0

f. "Modern" CPU instructions

Different CPU emulators have different capabilities. The

problem for anti-malware emulators is that, for simplicity,

some (in some cases, many) CPU instructions are not

supported. This can include entire classes, such as FPU,

MMX, and SSE, as well as less common instructions such as

CMPXCHG8B. In addition, some instructions have slightly

unexpected behaviours which might also not be supported,

such as that the CMPXCHG instruction always writes to

memory, regardless of the result. Some of these behaviours

have attributes (particularly the CPU flags) that are marked

as "undefined", but nothing is undefined in hardware. The

challenge is to determine the algorithm to reproduce it.

Some packers use FPU and MMX instructions as do-

nothing instructions, but the side-effect is that the anti-

malware emulator might give up and fail to detect anything.

g. Undocumented instructions

Some packers make use of undocumented CPU

instructions, for the same reason as they do for the modern

CPU instructions. That is, an anti-malware emulator is less

likely to support undocumented instructions or

undocumented encodings of documented instructions, so it

might give up and fail to detect anything. A list of these has

been published elsewhere
xi
.

h. Selector verification

Selector verification is used to ensure that the descriptor

table layout matches the operating system platform, as

returned by the kernel32 GetVersion() function, for example.

On Windows 9x-based platforms, the value of the cs selector

can exceed 0xff, but on Windows NT-based platforms, the

value is always 0x1b for ring 3 code.

Example code looks like this:

 call GetVersion

 test eax, eax

 ;Windows 9x-based platform

 js l1

 mov eax, cs

 xor al, al

 test eax, eax

 jne being_emulated

l1: ...

This technique is used by MSLRH, among others.

i. Memory layout

There are certain in-memory structures that are always in

a predictable location. One of those is the

RTL_USER_PROCESS_PARAMETERS, which appears at

memory location 0x20000 in normal circumstances. Within

that structure, the "DllPath" field exists at 0x20498, and the

command-line at 0x205f8. This structure can be moved if PE-

>ImageBase value is 0x20000 or less. The reason for this is

because the PE sections are mapped into memory first, then

the environment (at 0x10000 by default, and occupying 64kb

of virtual memory because of the behaviour of the memory

allocation function that is used), then the process

parameters. By accessing these fields directly, certain APIs,

such as the kernel32 GetCommandLine() function, do not

need to be called. This can make it difficult to know from

where certain information is gathered, and anti-malware

emulators might not include these structures at all. This

technique is used by TryGames.

j. File-format tricks

There are many known file-format tricks, yet occasionally

a new one will appear. This can be a significant problem for

anti-malware emulators, since if the emulator is responsible

for parsing the file-format, then incompatibilities can appear

because of differences in the emulated operating system.

For example, Windows 9x-based platforms use a hard-coded

value for the size of the Optional Header, and ignore the PE-

>SizeOfOptionalHeader field. They also allow gaps in the

virtual memory described by the section table. Windows NT-

based platforms honour the value in the PE-

>SizeOfOptionalHeader field, and do not allow any gaps.

Typical tricks include:

i. Non-aligned SizeOfImage

The file-format documentation states that the value in

the PE->SizeOfImage field should be a multiple of the

value in the PE->SectionAlignment field, but this is not a

requirement. Instead, Windows will round up the value as

required.

ii. Overlapping structures

By adjusting the values of certain fields, it is possible

to produce structures that overlap each other. The

common targets are the MZ->lfanew field, to produce a PE

header that appears inside the MZ header; the PE-

>SizeOfOptionalHeader field, to produce a section table

that appears inside the DataDirectory array; and the

Import Address Table and Import Lookup Table virtual

addresses, to produce an import table which has fields

inside the PE header.

iii. Non-standard NumberOfRvaAndSizes

A common mistake is to assume that the value in the

PE->NumberOfRvaAndSizes field is set to the value that

exactly fills the Optional Header, and that the section

table follows immediately. The proper method to calculate

the location of the section table is to use the PE-

>SizeOfOptionalHeader field. Both SoftICE and OllyDbg

contain this mistake. A companion paper (Anti-

Unpacking Tricks - Future) will cover the implications in

detail.

iv. Non-aligned SizeOfRawData

The SizeOfRawData field in the section table is another

field that is subject to automatic rounding up by

Windows. By relying on this behavior, it is possible to

produce a section whose entrypoint appears to reside in

purely virtual memory, but because of rounding, will have

physical data to execute.

v. Non-aligned PointerToRawData

The PointerToRawData field in the section table is a

field that is subject to automatic rounding down by

Windows. By relying on this behaviour, it is possible to

produce a section whose entrypoint appears to point to

data other than what will actually be executed.

vi. No section table

An interesting thing happens if the value in the PE-

>SectionAlignment field is reduced to less than 4kb.

Normally, the section that contains the PE header is

neither writable nor executable, since there is no section

table entry that describes it. However, if the value in the

PE->SectionAlignment field is less than 4kb, then the PE

header is marked internally as both writable and

executable. Further, the contents of the section table

become optional. That is, the entire section table can be

zeroed out, and the file will be mapped as though it were

one section whose size is equal to the value in the PE-

>SizeOfImage field.

IV. ANTI-UNPACKING BY ANTI-INTERCEPTING

a. Write->Exec

Some unpacking tools work by intercepting the execution

of newly written pages, to guess when the unpacker has

completed its main function and transferred control to the

host. By writing then executing a dummy instruction, an

unpacker can cause an intercepter to exit early.

Example code looks like this:

 mov [offset dest], 0c3h

 call dest

This technique is used by ASPack , among others.

However, it is probably for an entirely different reason,

which is to force a CPU queue flush for multiprocessor

environments.

b. Write^Exec

Some unpacking tools work by changing the previously

writable-executable page attributes to either writable or

executable, but not both. These changes can be detected

indirectly. The easier method to achieve this is to use a

function that uses the kernel to write to a specified user-

mode address. The function will return an error if it fails to

write to the address. In this case, the address to specify is

one in which the page attributes are likely to have been

altered. A good candidate function is the kernel32

VirtualQuery() function.

Example code looks like this:

 ;sizeof(MEMORY_BASIC_INFORMATION)

 push 1ch

 mov ebx, offset l1

 push ebx

 push ebx

 call VirtualQuery

 test eax, eax

 je being_debugged

 ...

 ;sizeof(MEMORY_BASIC_INFORMATION)

l1: db 1ch dup (?)

Not only does the kernel32 VirtualQuery() function write

to a specified user-mode address, but it also returns the

original value of the page attributes. Any change in the

attributes is an indication that an intercepter is running.

Example code looks like this:

 ;sizeof(MEMORY_BASIC_INFORMATION)

 push 1ch

 mov ebx, offset l1

 push ebx

 push ebx

 call VirtualQuery

 ;PAGE_EXECUTE_READWRITE

 cmp b [ebx+14h], 40h

 jne being_debugged

 ...

 ;sizeof(MEMORY_BASIC_INFORMATION)

l1: db 1ch dup (?)

The kernel32 VirtualProtect() function is another way to

query the page attributes, since the previous attributes are

returned by the function. Any change in the attributes is an

indication that an intercepter is running.

Example code looks like this:

l1: push eax

 push esp

 push 40h ;PAGE_EXECUTE_READWRITE

 push 1

 push offset l1

 call VirtualProtect

 pop eax

 ;PAGE_EXECUTE_READWRITE

 cmp al, 40h

 jne being_debugged

V. MISCELLANEOUS

a. Fake signatures

Some packers emit the startup code for other popular

packers and tools, in an attempt to fool unpackers into

misidentifying the wrapper. Among the most popular of

these fake signatures is the startup code for Microsoft

Visual C, which was written to fool PEiD. This technique is

used by RLPack Professional, among others.

CONCLUSION

There are many different classes of anti-unpacking

techniques, and this paper has attempted to describe a subset

of the known ones. A companion paper (Anti-Unpacking

Tricks - Future) will describe some of the possible future ones,

so that we can, where possible, construct defenses against

them.

Final note:

The text of this paper was completed before I joined

Microsoft.

It was produced without access to any Microsoft source

code or personnel.

i
 http://crackmes.de/users/thehyper/hyperunpackme2/
ii
 http://www.honeynet.org/scans/scan33/index.html

iii
 http://www.securityfocus.com/infocus/1893

iv
 http://www.piotrbania.com/all/articles/antid.txt

v

http://piotrbania.com/all/articles/bypassing_the_breakpoints.tx

t
vi
 http://www.defendion.com/EliCZ/infos/TlsInAsm.zip

vii
 http://pferrie.tripod.com/papers/chiton.pdf

viii
 http://vx.eof-project.net/viewtopic.php?id=142

ix
 http://pferrie.tripod.com/papers/attacks2.pdf

x
 http://pferrie.tripod.com/papers/attacks2.pdf

xi

http://www.symantec.com/enterprise/security_response/weblo

g/2007/02/x86_fetchdecode_anomalies.html

